Θερμοδυναμική. Ενότητα 3: Ασκήσεις στη Θερμοδυναμική. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θερμοδυναμική. Ενότητα 3: Ασκήσεις στη Θερμοδυναμική. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ"

Transcript

1 Θερμοδυναμική Ενότητα 3: Ασκήσεις στη Θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο TEI Δυτικής Μακεδονίας και στην Ανώτατη Εκκλησιαστική Ακαδημία Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

4 Σκοποί ενότητας Να κατανοήσει ο φοιτητής τα βασικά στοιχεία της θερμοδυναμικής μέσω σχετικών ασκήσεων. 4

5 Περιεχόμενα ενότητας Ασκήσεις στη θερμοδυναμική. 5

6 Άσκηση 1 Μια οριζόντια διάταξη εμβόλου-κυλίνδρου τοποθετείται σε ένα λουτρό σταθερής θερμοκρασίας. Το έμβολο κινείται με αμελητέες τριβές, ενώ μια εξωτερική δύναμη το συγκρατεί στη θέση του. Η αρχική πίεση του αερίου μέσα στον κύλινδρο είναι 14 bar. Ο αρχικός όγκος του αερίου είναι V 1 t = 0,03 m 3. Ο εκθέτης «t» δηλώνει τον ολικό όγκο. Η εξωτερική δύναμη που δρα στο έμβολο μειώνεται σταδιακά επιτρέποντας στο αέριο να εκτονωθεί μέχρι να διπλασιαστεί ο όγκος του. Πειραματικά προκύπτει ότι κάτω από τέτοιες συνθήκες ο όγκος του αερίου συνδέεται με την πίεσή του έτσι ώστε το γινόμενο PV t να είναι σταθερό. Να υπολογιστεί το έργο που παράγει το αέριο μετακινώντας την εξωτερική δύναμη. Πόσο έργο παράγει το αέριο, αν η εξωτερική δύναμη αντί να μειωθεί σταδιακά, μειώνεται απότομα στη μισή από την αρχική της τιμή; (Πηγή: Smith et al., 2005). 6

7 Ισόθερμη διεργασία: Άσκηση 1 Λύση (1) Η θερμοκρασία παραμένει σταθερή. Ο όγκος αυξάνει αλλά η πίεση μειώνεται. Ο κύλινδρος βρίσκεται σε επαφή με λουτρό σταθερής θερμοκρασίας και θερμότητα προστίθεται στο αέριο ενόσω διαρκεί η εκτόνωση. Ο μηχανισμός εξασφαλίζει σχεδόν ίσες και αντίθετες πιέσεις. du = 0 dq = dw Q = W ΔU=ΔΗ=0 dw = PdV = RT V dv = RT dv V Σχήμα 1. Ισόθερμη διεργασία, πηγή: Sussman,

8 Ισόθερμη διεργασία: Άσκηση 1 Λύση (2) W = Q = RTln V 2 V 1 = RTln P 2 P 1 ή W = Q = nrtln V 2 V 1 = nrtln P 2 P 1 ή W = Q = nrtln V 2 V 1 = nrtln P 2 P 1 (Πηγή: Sussman, 1972). 8

9 Ισόθερμη διεργασία: Άσκηση 1 Λύση (3) 9

10 Ισόθερμη διεργασία: Άσκηση 1 Λύση (4) Πρώτη περίπτωση: Όμως V 1 t = 0,03 m 3 και V 2 t = 0,06 m 3. Άρα W = ln 0,06 0,03 = J και P 2 = k V 2 t = ,06 = Pa ή 7 bar. 10

11 Δεύτερη περίπτωση: Μη αντιστρεπτή διεργασία Μεταφορά θερμότητας μεταφέρει το σύστημα στην ίδια τελική κατάσταση ισορροπίας με την αντιστρεπτή διεργασία. Το έργο το υπολογίζουμε από τα αποτελέσματα στο περιβάλλον: W = P 2 V = ,06 0,03 = J. Προφανώς η διεργασία είναι μη αντιστρεπτή και σε σχέση με την αντιστρεπτή διεργασία έχει απόδοση: = 0,721 = 72,1%. 11

12 Άσκηση 2 (1) Αέρας υπό πίεση 1 bar και θερμοκρασία 25 C (298,15 K) συμπιέζεται στα 5 bar και 298,15 K με δύο διαφορετικές μηχανικά αντιστρεπτές διεργασίες (Πηγή: Smith et al., 2005): Α) Ψύξη υπό σταθερή πίεση και στη συνέχεια θέρμανση υπό σταθερό όγκο. Β) Θέρμανση υπό σταθερό όγκο και στη συνέχεια ψύξη υπό σταθερή πίεση. Υπολογίστε τις απαιτούμενες ποσότητες θερμότητας και έργου, καθώς και τα ΔU και ΔΗ του αέρα για κάθε διεργασία. Οι θερμοχωρητικότητες του αέρα μπορούν να θεωρηθούν ανεξάρτητες της θερμοκρασίας: C V = 20,78 και C P = 29,10 J mol 1 K 1 Θεωρείστε επίσης ότι το πηλίκο PV/T είναι σταθερό. Λάβετε επίσης υπόψη ότι στους 298,15 Κ και 1 bar ο γραμμομοριακός όγκος του αέρα είναι 0,02479 m 3 mol 1. 12

13 Άσκηση 2 (2) Σχήμα 2. Οι δύο διαφορετικές μηχανικά αντιστρεπτές διεργασίες της Άσκησης 2, πηγή: Smith et al.,

14 Άσκηση 2 Λύση (1) Σε κάθε περίπτωση παίρνουμε σαν το σύστημά μας 1 mol αέρα που περιέχεται σε μια υποθετική διάταξη εμβόλου-κυλίνδρου. Επειδή οι διεργασίες που εξετάζουμε είναι μηχανικά αντιστρεπτές θεωρούμε ότι το έμβολο κινείται χωρίς τριβές. Ο τελικός όγκος θα είναι: V 2 = V 1 P 1 P 2 = 0, = 0, m3 Α) Κατά την διάρκεια του πρώτου σταδίου, ο αέρας ψύχεται υπό σταθερή πίεση 1 bar μέχρι να αποκτήσει τελικό όγκο 0, m 3. Η θερμοκρασία του αέρα στο τέλος της ψύξης θα είναι: T V = T 2 1 = 298,15 0, V 1 0,02479 = 59,63 K οπότε 14

15 Άσκηση 2 Λύση (2) 1->1 : Q = H = C P T = 29,10 59,63 298,15 = J U = H PV = H P V = , ,02479 = J 1 ->2: Κατά τη διάρκεια του δεύτερου βήματος, ο όγκος διατηρείται σταθερός και ίσος με V2 ενώ ο αέρας θερμαίνεται προς την τελική του κατάσταση. Από την εξίσωση (2.19)* έχουμε: U = Q = C V T = 20,78 298,15 59,63 = 4,958 J Άρα για την συνολική διεργασίας 1 2 θα προσθέσουμε: 1->2: Q = = J και U = = 0 Επειδή ο 1 ος νόμος ισχύει και για την συνολική διεργασία: U = Q + W 0 = W W = J 15

16 Άσκηση 2 Λύση (3) Η εξίσωση (2.15)*, H = U + PV ισχύει και για την συνολική διεργασία. Όμως Τ 1 =Τ 2 και άρα P 1 V 1 =P 2 V 2 και άρα Δ(PV)=0 οπότε: ΔΗ=ΔU=0 Β) Και εδώ έχουμε δύο βήματα: στο πρώτο ο αέρας θερμαίνεται υπό σταθερό όγκο ίσο με τον αρχικό του όγκο μέχρι η τελική πίεσή του να γίνει 5 bar. Η θερμοκρασία στο τέλος αυτού του βήματος θα είναι: 1->1 : Τ = Τ 1 P 2 P 1 = 298, = 1490,75 K και επειδή ο όγκος παραμένει σταθερός: Q = U = C V T = 20, ,75 298,15 = J 16

17 Άσκηση 2 Λύση (4) Στο δεύτερο βήμα ο αέρας ψύχεται υπό σταθερή P=5 bar στην τελική του κατάσταση: 1 2:Q = H = C P T = 29,10 298, ,75 = J U = H PV = H P V = = , ,02479 = J Για την συνολική διεργασία: 1->2: Q = = J U = = 0 W = U Q = = J και όπως πριν: ΔΗ=ΔU=0 Τι παρατηρούμε αν συγκρίνουμε τις δύο διαφορετικές διεργασίες; 17

18 Άσκηση 3 Να υπολογιστούν οι μεταβολές της εσωτερικής ενέργειας και της ενθαλπίας, όταν αέρας μεταφέρεται από μια αρχική κατάσταση 40 F και 10 atm όπου ο γραμμομοριακός του όγκος είναι 36,49 (ft) 3 (lbmole) 1, σε μια τελική κατάσταση 140 F και 1 atm. Να υποτεθεί ότι ο όρος PV/T παραμένει σταθερός και ότι C V =5 και C P =7 (Btu)(lbmole) 1 ( F) 1 18

19 Άσκηση 3 Λύση (1) Αφού οι μεταβολές των θερμοδυναμικών καταστατικών ιδιοτήτων είναι ανεξάρτητες από τις διεργασίες που τις προκαλούν, μπορούμε να κάνουμε τους υπολογισμούς μας με τη βοήθεια μιας απλής μηχανικά αντιστρεπτής διεργασίας που περιλαμβάνει δύο βήματα: α) ψύξη υπό σταθερό όγκο μέχρι την τελική πίεση και β) θέρμανση υπό σταθερή πίεση μέχρι την τελική θερμοκρασία (Δέστε το παρακάτω σχήμα). Σχήμα 3. Λύση άσκησης 3, πηγή: Smith et al.,

20 Άσκηση 3 Λύση (2) 20

21 Άσκηση 3 Λύση (3) 21

22 Άσκηση 4 (1) Αέρας συμπιέζεται από μια αρχική κατάσταση θερμοκρασίας 25 C (298,15K) και πίεσης 1 bar σε τελική 5 bar και 25 C (298,15K). Η συμπίεση γίνεται με τρεις διαφορετικές μηχανικά αντιστρεπτές διεργασίες σε κλειστό σύστημα. α) Θέρμανση υπό σταθερό όγκο και στην συνέχεια ψύξη υπό σταθερή πίεση. β) Ισόθερμη συμπίεση. γ) Αδιαβατική συμπίεση και στη συνέχεια ψύξη υπό σταθερό όγκο. Υποθέστε ότι ο αέρας συμπεριφέρεται ιδανικά με σταθερές ειδικές θερμότητες C V =(5/2)R και C P =(7/2)R. Να υπολογίσετε το απαιτούμενο έργο, τη θερμότητα που μεταφέρεται και τις μεταβολές της εσωτερικής ενέργειας και ενθαλπίας του αέρα για κάθε μία από τις τρεις παραπάνω διεργασίες. 22

23 Άσκηση 4 (2) Σχήμα 4. Σχήμα άσκησης 4, πηγή: Smith et al.,

24 Άσκηση 4 Λύση (1) Ως σύστημα λαμβάνουμε 1 mol αέρα. Για R=8,314 J mol 1 K 1 οι ειδικές θερμότητες: C V = 20,785 και C P =29,099 J mol 1 K 1 Η αρχική και τελική κατάσταση του αέρα είναι ακριβώς ίδιες με αυτές στο Παράδειγμα 2.9 που λύσαμε προηγουμένως οπότε: V 1 =0,02479 και V 2 =0, m 3 Επειδή η θερμοκρασία στην αρχή και στο τέλος της διεργασίας είναι η ίδια, θα ισχύει για όλες τις περιπτώσεις: ΔU=ΔΗ=0 24

25 Άσκηση 4 Λύση (2) α) Αυτή η διεργασία είναι ακριβώς ίδια με αυτήν του Παραδείγματος 2.9 (β) οπότε: Q= J και W=9.915 J β) Για την ισόθερμη συμπίεση ιδανικού αερίου ισχύει η εξίσωση (3.27)*: W = Q = RTln V 2 V 1 = RTln P 2 P 1 = 8, ,15 ln 1 5 = J (Πηγή: Smith et al., 2005). 25

26 γ) Αδιαβατική διεργασία Άσκηση 4 Λύση (3) P 1 V 1 γ = P2 V 2 γ ή PV γ = σταθ. Τ 1 P 1 (1 γ) γ = Τ2 P 2 (1 γ) γ ή ΤP (1 γ) γ = σταθ. και Τ 1 V 1 (γ 1) = Τ2 V 2 (γ 1) ή ΤV (γ 1) = σταθ. Με την αδιαβατική συμπίεση ο όγκος του αέρα γίνεται 0, m 3 οπότε η θερμοκρασία του στο σημείο αυτό δίνεται από την εξίσωση (3.30a)*: T = T 1 V 1 V 2 γ 1 = 298,15 0, , ,4 = 567,57 K Για το στάδιο αυτό ισχύει Q=0 και το έργο της συμπίεσης δίνεται από την εξ. (3.32)*: W = C V T = 20, ,57 298,15 = J (Πηγή: Smith et al., 2005). 26

27 Άσκηση 4 Λύση (4) Για την ψύξη υπό σταθερό όγκο θα έχουμε ΔV=0 οπότε η μεταφερόμενη θερμότητα θα είναι: Q = U = C V T 2 T = J έτσι για τη διεργασία (γ) W=5.600 J και Q= J Παρατηρούμε ότι αν και οι μεταβολές ΔU και ΔΗ σε κάθε διεργασία είναι μηδενικές (γιατί;), τα Q και W εξαρτώνται από την διαδρομή αλλά εδώ ισχύει Q= W. Στο σχήμα της άσκησης, οι διεργασίες απεικονίζονται σε διάγραμμα P-V. Το έργο βέβαια καθεμίας μπορεί να υπολογισθεί από το ολοκλήρωμα W = PdV επειδή όλες είναι μηχανικά αντιστρεπτές. Οι τιμές αυτών των ολοκληρωμάτων αντιστοιχούν προφανώς στα εμβαδά των επιφανειών μεταξύ των καμπυλών και του άξονα -V. 27

28 Άσκηση 5 (1) Ένα ιδανικό αέριο υφίσταται τις ακόλουθες κατά σειρά μηχανικά αντιστρεπτές διεργασίες σε κλειστό σύστημα: α) Από μια αρχική κατάσταση θερμοκρασίας 70 C και πίεσης 1 bar, συμπιέζεται αδιαβατικά στους 150 C. β) Στη συνέχεια ψύχεται από τους 150 C στους 70 C υπό σταθερή πίεση. γ) Τέλος, εκτονώνεται ισόθερμα στην αρχική του κατάσταση. Υπολογίστε τα W, Q, ΔU,ΔH για κάθε μια από τις τρεις διεργασίες καθώς και για την συνολική κυκλική διεργασία. Θεωρείστε C V =(3/2) R, C P =(5/2)R. 28

29 Άσκηση 5 (2) Σχήμα 5. Σχήμα άσκησης 5, πηγή: Smith et al.,

30 Άσκηση 5 Λύση (1) Για R=8,314 J mol 1 K 1, οι ειδικές θερμότητες C V =12,471 και C P =20,785 J mol 1 K 1 Η κυκλική διεργασία φαίνεται στο σχήμα σε διάγραμμα P-V. Σαν σύστημά μας παίρνουμε 1 mol αερίου. α) Για αδιαβατική συμπίεση έχουμε Q=0 οπότε: U = W = C V T = 12, = 998 J H = C P T = 20, = J Η πίεση P 2 μπορεί να υπολογισθεί από την Εξ. (3.30 b)*: P 1 V 1 γ = P2 V 2 γ ή PV γ = σταθ. Τ 1 P 1 (1 γ) γ = Τ2 P 2 (1 γ) γ ή ΤP (1 γ) γ = σταθερό. και Τ 1 V 1 (γ 1) = Τ2 V 2 (γ 1) ή ΤV (γ 1) = σταθερό. 30

31 Άσκηση 5 Λύση (2) T γ γ 1 P 2 = P ,15 1 = 1 T ,15 2,5 = 1,689 bar (Πηγή: Smith et al., 2005). 31

32 Άσκηση 5 Λύση (3) β) Γι αυτήν την ισοβαρή διεργασία ισχύει: Q = H = C P T = 20, = J U = C V T = 12, = 998 J W = U Q = = 665 J γ) Γνωρίζουμε ότι στα ιδανικά αέρια ΔU =ΔΗ=0 για ισόθερμες διεργασίες οπότε η Εξίσωση (3.27)* δίνει: W = Q = RTln V 2 V 1 = RTln P 2 P 1 32

33 Άσκηση 5 Λύση (4) Για την συνολική κυκλική διεργασία: Q = = 168 J W = = 168 J U = = 0 H = = 0 Κυκλικές διεργασίες ΔΗ=ΔU=0 Q= W (Πηγή: Smith et al., 2005). 33

34 Άσκηση 6 Ένας κατακόρυφος κύλινδρος που σφραγίζεται με έμβολο χωρίς τριβές, περιέχει ορισμένη ποσότητα αερίου αζώτου. Το βάρος του εμβόλου κάνει την πίεση του αζώτου κατά 0,35 bar μεγαλύτερη της ατμοσφαιρικής που είναι 1 bar στους 27 C. Έτσι η αρχική πίεση του αζώτου είναι 1,35 bar, και βρίσκεται σε μηχανική και θερμική ισορροπία με το περιβάλλον του. Το έμβολο σπρώχνεται εντός του κυλίνδρου, ώστε το άζωτο να συμπιεσθεί στα 2,7 bar. Στην πίεση αυτή, το άζωτο αφήνεται να έρθει σε θερμική ισορροπία με το περιβάλλον του στους 27 C. Στο σημείο αυτό το έμβολο σταθεροποιείται με σύρτες. Οι σύρτες αφαιρούνται από την συσκευή ελευθερώνοντας το έμβολο και η συσκευή με τον χρόνο επανέρχεται σε θερμική και μηχανική ισορροπία με το περιβάλλον της. Να συζητήσετε τις εφαρμογές της θερμοδυναμικής σ αυτήν την διεργασία. Στις συνθήκες αυτές το άζωτο μπορεί να θεωρηθεί ιδανικό αέριο. (Πηγή: Smith et al., 2005). 34

35 Άσκηση 6- Λύση (1) Όταν οι σύρτες που συγκρατούν το έμβολο αφαιρεθούν, το έμβολο κινείται ανοδικά με ταχύτητα και εξ αιτίας της αδρανείας του φτάνει πιο ψηλά από την θέση ισορροπίας. Αυτή η αρχική εκτόνωση προσεγγίζει μια αντιστρεπτή, αδιαβατική διεργασία, αφού οι στροβιλισμοί που προκαλούνται από ένα και μόνο χτύπημα του εμβόλου είναι μικρής έκτασης και ο ρυθμός μεταφοράς θερμότητας είναι σχετικά μικρός. Ωστόσο οι ταλαντώσεις του εμβόλου που επακολουθούν εισάγουν προκαλούν μια Μη αντιστρεψιμότητα στη διεργασία λόγω των αναδεύσεων και στροβιλισμών τόσο στο αέριο όσο και στην ατμόσφαιρα. Η διαδικασία αυτή συνεχίζεται για αρκετό χρονικό διάστημα μέχρι που η μεταφορά θερμότητας είναι αρκετή ώστε το άζωτο να επιστρέψει στην αρχική του θερμοκρασία 27 C και πίεση 1,35 bar. 35

36 Άσκηση 6- Λύση (2) Σχήμα 6. Σχήμα άσκησης 6, πηγή: Smith et al.,

37 Άσκηση 6- Λύση (3) Ο προσδιορισμός της διαδρομής μιας μη αντιστρεπτής διεργασίας είναι αδύνατος, γι αυτό είναι αδύνατος και ο υπολογισμός των Q και W. Αντίθετα όμως από την θερμότητα και το έργο, οι μεταβολές των θερμοδυναμικών καταστατικών ιδιοτήτων μπορούν να υπολογισθούν επειδή εξαρτώνται μόνο από τις αρχικές και τελικές καταστάσεις του συστήματος οι οποίες είναι γνωστές. Έτσι τόσο η ΔU όσο και η ΔΗ είναι μηδενικές γι αυτή τη διεργασία εκτόνωσης αφού η αρχική και τελική θερμοκρασία είναι ίσες με 27 C. Ο 1 ος νόμος ισχύει τόσο για αντιστρεπτές όσο και για μη αντιστρεπτές διεργασίες που σ αυτή την περίπτωση γράφεται: U = Q + W = 0 Q = W 37

38 Άσκηση 6- Λύση (4) Αν και τα Q,W δεν μπορούν να υπολογισθούν, οι απόλυτες τιμές τους είναι ίσες. Η διεργασία έχει σαν αποτέλεσμα την ανύψωση του εμβόλου και της ατμόσφαιρας και στην μείωση βέβαια της εσωτερικής ενέργειας του περιβάλλοντος ώστε να αντισταθμισθεί η αύξηση της ολικής δυναμική ενέργειας: 38

39 Βιβλιογραφία Smith, J. M., Van Ness, H. C. & Abbott, M. M. (2005). Introduction to Chemical Engineering Thermodynamics. McGraw-Hill, USA. Sussman, M. V. (1972). Elementary Thermodynamics. Addison-Wesley Publishing Company Inc., USA. 39

40 Τέλος Ενότητας

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου; E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Β2.25 Θερµική µηχανή είναι, α) το τρόλεϊ; β) ο φούρνος; γ) το ποδήλατο; δ) ο κινητήρας του αεροπλάνου; Επιλέξτε τη σωστή απάντηση. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά

Διαβάστε περισσότερα

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 1. Ποιες από τις επόµενες προτάσεις που αναφέρονται στο έργο αερίου, είναι σωστές; α. Όταν το αέριο εκτονώνεται, το έργο του είναι θετικό.

Διαβάστε περισσότερα

Επαναληπτικό Χριστουγέννων Β Λυκείου

Επαναληπτικό Χριστουγέννων Β Λυκείου Επαναληπτικό Χριστουγέννων Β Λυκείου 1.Ποιά από τις παρακάτω προτάσεις είναι σωστή ; Σύµφωνα µε τον 1ο θερµοδυναµικό νόµο το ποσό της θερµότητας που απορροφά η αποβάλει ένα θερµοδυναµικό σύστηµα είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

8 2.ΘΕΜΑ B 2-16138 Β.1

8 2.ΘΕΜΑ B 2-16138 Β.1 1 ΘΕΜΑ B Καταστατική εξίσωση των ιδανικών αερίων 1.ΘΕΜΑ Β 2-16146 Β.1 Μια ποσότητα ιδανικού αερίου βρίσκεται σε κατάσταση θερμοδυναμικής ισορροπίας, καταλαμβάνει όγκο V, έχει απόλυτη θερμοκρασία Τ, ενώ

Διαβάστε περισσότερα

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ.

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ. . σκήσεις ς. Ομάδα..1. Ισοβαρής θέρμανση και έργο. Ένα αέριο θερμαίνεται ισοβαρώς από θερμοκρασία Τ 1 σε θερμοκρασία Τ, είτε κατά την μεταβολή, είτε κατά την μεταβολή Δ. i) Σε ποια μεταβολή παράγεται περισσότερο

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

Ο πρώτος νόμος της Θερμοδυναμικής. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Ο πρώτος νόμος της Θερμοδυναμικής. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Ο πρώτος νόμος της Θερμοδυναμικής Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι έννοιες Το θερμοδυναμικό σύστημα ή απλά σύστημα είναι η περιοχή του σύμπαντος που μας

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α.

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α. ΘΕΜΑ Α. Σωστή απάντηση είναι η α. Πριν το κλείσιμο του διακόπτη η αντίσταση του κυκλώματος είναι: λ, = Λ +. Μετά το κλείσιμο του διακόπτη η ολική αντίσταση είναι: λ, = Λ. Έτσι,,,, Ι < Ι. Οπότε ο λαμπτήρας

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΕΡΓΟ ΑΕΡΙΟΥ Κατά την εκτόνωση ενός αερίου, το έρο του είναι θετικό ( δηλαδή παραόμενο). Κατά την συμπίεση ενός

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Ισόθερμη, εάν κατά τη διάρκειά της η θερμοκρασία του αερίου παραμένει σταθερή

Ισόθερμη, εάν κατά τη διάρκειά της η θερμοκρασία του αερίου παραμένει σταθερή Με βάση το δίχρονο βενζινοκινητήρα που απεικονίζεται στο παρακάτω σχήμα, να γράψετε στο τετράδιό σας τους αριθμούς 1,2,3,4,5 από τη στήλη Α και δίπλα ένα από τα γράμματα α, β, γ, δ, ε, στ της στήλης Β,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Δ. Τσιπλακίδης Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Φυσική Χημεία Υλικών και Ηλεκτροχημεία» ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Βασικές

Διαβάστε περισσότερα

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων.

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων. Το σώμα Α μάζας m A = 1 kg κινείται με ταχύτητα u 0 = 8 m/s σε λείο οριζόντιο δάπεδο και συγκρούεται μετωπικά με το σώμα Β, που έχει μάζα m B = 3 kg και βρίσκεται στο άκρο αβαρούς και μη εκτατού (που δεν

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το «φρεσκάρισμα» των γνώσεων από τη Θερμοδυναμική με σκοπό

Διαβάστε περισσότερα

ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ

ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ Νικήτα Μ Ριζόπολο «Ασκήσεις Φσικής» ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ Ιδανικό αέριο έχει θερμοκρασία 7 ο C και όγκο 3L Θερμαίνομε το αέριο με σταθερή πίεση στος 7 ο C Πόσος είναι ο νέος όγκος Ιδανικό αέριο

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕ-ΕΧΝ ΚΑΕΥΘΥΝΣΗΣ Κινητική θεωρία των ιδανικών αερίων. Νόμος του Boyle (ισόθερμη μεταβή).σταθ. για σταθ.. Νόμος του hales (ισόχωρη μεταβή) p σταθ. για σταθ. 3. Νόμος του Gay-Lussac

Διαβάστε περισσότερα

ΧΗΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ: ΑΝΑΣΚΟΠΗΣΗ ΜΕΓΕΘΩΝ ΚΑΙ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ

ΧΗΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ: ΑΝΑΣΚΟΠΗΣΗ ΜΕΓΕΘΩΝ ΚΑΙ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ ΧΗΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ: ΑΝΑΣΚΟΠΗΣΗ ΜΕΓΕΘΩΝ ΚΑΙ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ ΣΥΣΤΗΜΑΤΑ ΜΟΝΑ ΩΝ (SI) Χρόνος βασική µονάδα το δευτερόλεπτο (s) Ορίζεται ως η χρονική διάρκεια 9192631770 κύκλων ακτινοβολίας για µια συγκεκριµένη

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων ή μορίων) του

Διαβάστε περισσότερα

1. Θερµοδυναµικό σύστηµα Αντιστρεπτές και µη αντιστρεπτές µεταβολές

1. Θερµοδυναµικό σύστηµα Αντιστρεπτές και µη αντιστρεπτές µεταβολές Θερµοδυναµική Φυσική Θετικής & εχνολοικής Κατεύθυνσης Λυκείου ο Κεφάλαιο Θερµοδυναµική. Θερµοδυναµικό σύστηµα ντιστρεπτές και µη αντιστρεπτές µεταβολές Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται

Διαβάστε περισσότερα

ΘΕΜΑ Δ Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες

ΘΕΜΑ Δ Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες μέτρων υ 1 = 6 m s -1, υ 2 = 2 m s -1 αντίστοιχα, ώστε να πλησιάζουν

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 1: Εισαγωγικές έννοιες Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 5: Γεωθερμία Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΔΗΜΗΤΡΙΟΣ ΚΟΥΖΟΥΔΗΣ Γενικό Τμήμα Πολυτεχνικής Σχολής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ 2 Σεπτεμβρίου 2011 2 Περιεχόμενα 1 Βασικές έννοιες Θερμιδομετρίας 5 1.1 Θερμική Αλληλεπίδραση.....................

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Διοίκηση ανθρωπίνων Πόρων Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Ο Ένα κλειστό δοχείο µε ανένδοτα τοιχώµατα περιέχει ποσότητα η=0,4mol ιδανικού αερίου σε θερµοκρασία θ 1 =17 ο C. Να βρεθούν: α) το παραγόµενο έργο, β) η θερµότητα

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ 1 (Εργαστήριο)

Προγραμματισμός Η/Υ 1 (Εργαστήριο) Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 1: Εισαγωγή στη C - Αλγόριθμοι Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ θερµι µ κή µ η µ χα χ ν α ή ενεργό υλικό Κυκλική µεταβολή

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ θερµι µ κή µ η µ χα χ ν α ή ενεργό υλικό Κυκλική µεταβολή ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ ιάγραµµα ροής ενέργειας σε µια θερµική µηχανή (=διάταξη που µεταφέρει µέρος της θερµότητας σε µηχανική ενέργεια. Περιέχει ενεργό υλικόδηλ., µια ποσότητα ύλης στο εσωτερικό της που υποβάλλεται

Διαβάστε περισσότερα

Για τα μέτρα της μεταβολής της ορμής και τις μεταβολές της κινητικής ενέργειας ισχύει: Μονάδες 4. Μονάδες 9

Για τα μέτρα της μεταβολής της ορμής και τις μεταβολές της κινητικής ενέργειας ισχύει: Μονάδες 4. Μονάδες 9 Β.1 Προσφέρουμε ένα ποσό θερμότητας σε ένα αέριο. α. Η θερμοκρασία του αερίου μειώνεται πάντα. β. Υπάρχει περίπτωση να μειωθεί η θερμοκρασία του αερίου. γ. Δεν υπάρχει περίπτωση να μειωθεί η θερμοκρασία

Διαβάστε περισσότερα

Διεθνείς Επενδύσεις & Διεθνές Εμπόριο

Διεθνείς Επενδύσεις & Διεθνές Εμπόριο Διεθνείς Επενδύσεις & Διεθνές Εμπόριο Ενότητα 3: Θεωρία του Διεθνούς Εμπορίου Θεωρητικές προσεγγίσεις Γεώργιος Μιχαλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ.

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. 2.1 Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΑΡΗΣ ΟΥΣΙΑΣ. Μια ουσία της οποίας η χημική σύσταση παραμένει σταθερή σε όλη της την έκταση ονομάζεται καθαρή ουσία. Δεν είναι υποχρεωτικό να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ 5. Η εσωτερική ενέργεια Τα υλικά σώµατα αποτελούνται από δοµικούς λίθους, δηλαδή άτοµα, ιόντα ή µόρια. Kάθε δοµικός λίθος σώµατος διαθέτει δυναµική και κινητική ενέργεια.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ 1 Κ. ΤΟΥΜΠΑ THΛ : 919113 9494 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:.....................

Διαβάστε περισσότερα

1. Eσωτερική ενέργεια σώµατος

1. Eσωτερική ενέργεια σώµατος 1. Eσωτερική ενέργεια σώµατος H εσωτερική ενέργεια αποτελεί σηµαντική έννοια για την κατανόηση πολλών φυσικών διεργασιών και για το λόγο αυτό επιβάλλεται η αυστηρή αποσαφήνισή της. Eίναι γνωστό ότι, οι

Διαβάστε περισσότερα

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Ενότητα 3: Ο Υπολογιστής Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 10: Μονοπωλιακός Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 10: Μονοπωλιακός Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 10: Μονοπωλιακός Ανταγωνισμός Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ- ΠΑΠΑΤΣΑΚΩΝΑΣ ΗΜΗΤΡΗΣ ΘΕΜΑ 1 ο Επιλέξτε τη σωστή απάντηση

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 4 η : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙ ΙΟ Ο ΗΓΙΩΝ ΧΡΗΣΕΩΣ

ΕΓΧΕΙΡΙ ΙΟ Ο ΗΓΙΩΝ ΧΡΗΣΕΩΣ ΣΥΣΚΕΥΗ ΝΟΜOY ΤΩΝ ΑΕΡΙΩΝ GLA01 ΕΓΧΕΙΡΙ ΙΟ Ο ΗΓΙΩΝ ΧΡΗΣΕΩΣ ΕΠΙΣΤΗΜΟΝΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ Ε.Π.Ε. Αγ.Σαράντα 45, 18346 Μοσχάτο, Τηλ. 2104823421, 2104838270, Fax: 2104820580 ΣΚΟΠΟΣ Η πραγματοποίηση και παρατήρηση

Διαβάστε περισσότερα

ΥΓΙΕΙΝΗ ΚΑΙ ΑΣΦΑΛΕΙΑ ΕΡΓΑΣΙΑΣ

ΥΓΙΕΙΝΗ ΚΑΙ ΑΣΦΑΛΕΙΑ ΕΡΓΑΣΙΑΣ ΥΓΙΕΙΝΗ ΚΑΙ ΑΣΦΑΛΕΙΑ ΕΡΓΑΣΙΑΣ Ενότητα 4 η : Αντιμετώπιση πυρκαγιών στους χώρους εργασίας Τσικριτζής Λάζαρος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα.

Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα. 2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα. Για εκπαιδευτικό υλικό, όπως εικόνες, διαγράμματα,

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No 05 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

ιαγώνισµα για το σπίτι

ιαγώνισµα για το σπίτι ιαγώνισµα για το σπίτι p 2 V Θέµα 1 ο Να εξηγήσετε γιατί στη µεταβολή 1 2 η γραµµοµοριακή θερµοχωρητικότητα του αερίου είναι µικρότερη από το µέγεθος C p και µεγαλύτερη από το C V Για τη δικαιολόγηση θα

Διαβάστε περισσότερα

Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος

Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υδραυλικά & Πνευματικά ΣΑΕ Εργαστηριακό μέρος του μαθήματος Ενότητα: Σημειώσεις Εργαστηρίου Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Στις παρακάτω ερωτήσεις πολλαπλής ιλογής Α-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που

Διαβάστε περισσότερα

Καταστατική εξίσωση ιδανικών αερίων

Καταστατική εξίσωση ιδανικών αερίων Καταστατική εξίσωση ιδανικών αερίων 21-1. Από τι εξαρτάται η συμπεριφορά των αερίων; Η συμπεριφορά των αερίων είναι περισσότερο απλή και ομοιόμορφη από τη συμπεριφορά των υγρών και των στερεών. Σε αντίθεση

Διαβάστε περισσότερα

ΚΥΚΛΟΙ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής

ΚΥΚΛΟΙ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΚΥΚΛΟΙ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθη. Δρ. Μηχ. Α. Φατσής Ιδανικός πρότυπος κύκλος OO Υποθέσεις ια ιδανικό πρότυπο κύκλο Otto Το εραζόμενο μέσο είναι ιδανικό (ή τέλειο) αέριο

Διαβάστε περισσότερα

γ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της

γ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της Βασικές ασκήσεις στις φθίνουσες ταλαντώσεις.. Μικρό σώμα εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται με το χρόνο σύμφωνα με τη σχέση =,8e,t (S.I.). Να υπολογίσετε: α. το πλάτος της ταλάντωσης τη

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές 2 ο κεφάλαιο φυσικές έννοιες κινητήριες μηχανές 1. Τι μπορεί να προκαλέσει η επίδραση μιας δύναμης, πάνω σ ένα σώμα ; 21 Την μεταβολή της κινητικής του κατάστασης ή την παραμόρφωσή του. 2. Πώς καθορίζεται

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων

Οι ιδιότητες των αερίων μεροσ 1 Ισορροπία Στο Μέρος 1 του βιβλίου αναπτύσσονται οι έννοιες που είναι απαραίτητες για τη μελέτη της ισορροπίας στη χημεία. Όταν μελετάμε την ισορροπία αναφερόμαστε τόσο σε φυσικές μεταβολές, όπως

Διαβάστε περισσότερα

Καβάλα, Οκτώβριος 2013

Καβάλα, Οκτώβριος 2013 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΑΝ.ΜΑΚΕ ΟΝΙΑΣ - ΘΡΑΚΗΣ Επιχειρησιακό Πρόγραµµα "Ψηφιακή Σύγκλιση" Πράξη: "Εικονικά Μηχανολογικά Εργαστήρια", Κωδικός ΟΠΣ: 304282 «Η Πράξη συγχρηµατοδοτείται από το Ευρωπαϊκό

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

Επιλύοντας, έχω: (p atm -p E )LA=(p atm +p E )αla p atm -p E =p atm α+p E α p atm (1-α)=p E (1+α) ο C. Ζητούνται:

Επιλύοντας, έχω: (p atm -p E )LA=(p atm +p E )αla p atm -p E =p atm α+p E α p atm (1-α)=p E (1+α) ο C. Ζητούνται: ΑΣΚΗΣΗ 1 Μια ποσότητα αερίου εγκλωβίζεται αεροστεγώς σε κυλινδρικό δοχείο με έμβολο διαμέτρου d=81 mm. Όταν η ανοικτή πλευρά του δοχείου είναι από την κάτω πλευρά (Θέση 1) το έμβολο απέχει κατά απόσταση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΚΛΙΜΑΤΙΣΜΟΥ ΨΥΧΡΟΜΕΤΡΙΑ

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΚΛΙΜΑΤΙΣΜΟΥ ΨΥΧΡΟΜΕΤΡΙΑ ΤΕΙ - ΧΑΛΚΙ ΑΣ Τµήµα Μηχανολογίας Εργαστ:Ψύξη-Κλιµατισµός- Θέρµανση & Α.Π.Ε. 34400 ΨΑΧΝΑ ΕΥΒΟΙΑΣ TEI - CHALKIDOS Department of Mecanical Engineering Cooling, Air Condit., Heating and R.E. Lab. 34400 PSACHNA

Διαβάστε περισσότερα

Ηλεκτροτεχνικές Εφαρμογές

Ηλεκτροτεχνικές Εφαρμογές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ηλεκτροτεχνικές Εφαρμογές Ενότητα 1: Εξαρτήματα Ηλεκτρικών Συσκευών Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες

Διαβάστε περισσότερα

Υψηλές Τάσεις. Ενότητα 4: Υγρά Μονωτικά Υλικά. Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ

Υψηλές Τάσεις. Ενότητα 4: Υγρά Μονωτικά Υλικά. Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υψηλές Τάσεις Ενότητα 4: Υγρά Μονωτικά Υλικά Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Διοίκηση ανθρωπίνων Πόρων Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Εργαστήριο

Αρχιτεκτονική Υπολογιστών Εργαστήριο Αρχιτεκτονική Υπολογιστών Εργαστήριο Ενότητα: ΠΑΡΑΔΕΙΓΜΑ ΑΠΟΣΦΑΛΜΑΤΩΣΗΣ Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Μαΐου 2010 Ώρα : 10:00-12:30 Προτεινόμενες λύσεις ΘΕΜΑ 1 0 (12 μονάδες) Για τη μέτρηση της πυκνότητας ομοιογενούς πέτρας (στερεού

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το πρώτο θερμοδυναμικό αξίωμα είναι μια έκφραση της διατήρησης της ενέργειας για θερμοδυναμικά συστήματα. Εάν ένα κλειστό σύστημα αλληλεπιδρά με το περιβάλλον μπορεί να αυξήσει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

Ηλεκτρονικό Εμπόριο. Ενότητα 1: Εισαγωγικές Έννοιες. Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Ηλεκτρονικό Εμπόριο. Ενότητα 1: Εισαγωγικές Έννοιες. Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Ηλεκτρονικό Εμπόριο Ενότητα 1: Εισαγωγικές Έννοιες Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ηλεκτρονικό Εμπόριο. Ενότητα 8: Διαδικτυακή Διαφήμιση Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Ηλεκτρονικό Εμπόριο. Ενότητα 8: Διαδικτυακή Διαφήμιση Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Ηλεκτρονικό Εμπόριο Ενότητα 8: Διαδικτυακή Διαφήμιση Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Εισαγωγή Διάκριση των ρευστών

Εισαγωγή Διάκριση των ρευστών ΥΔΡΑΥΛΙΚΗ Εισαγωγή στην Υδραυλική Αντικείμενο Πυκνότητα και ειδικό βάρος σωμάτων Συστήματα μονάδων Ιξώδες ρευστού, επιφανειακή τάση, τριχοειδή φαινόμενα Υδροστατική πίεση Εισαγωγή Ρευστομηχανική = Μηχανικές

Διαβάστε περισσότερα

Εργαστήριο ήπιων µορφών ενέργειας

Εργαστήριο ήπιων µορφών ενέργειας Εργαστήριο ήπιων µορφών ενέργειας Ενότητα: Θερµικός υπολογισµός ηλιακού συλλέκτη Ταουσανίδης Νίκος Τµήµα ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. - Όλα τα σώματα που αρχικά ολισθαίνουν πάνω

Διαβάστε περισσότερα

Ρύπανση Υδάτων και Εδαφών

Ρύπανση Υδάτων και Εδαφών Ρύπανση Υδάτων και Εδαφών Ενότητα 3η: Φυσικοχημικές και μηχανικές ιδιότητες εδαφών Τσικριτζής Λάζαρος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 4: Ψύξη - Κατάψυξη (/3), ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Συντελεστής

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 8: ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ

ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ Εισαγωγή Τα περισσότερα είδη ινών είναι υγροσκοπικά, έχουν δηλαδή την ιδιότητα να απορροφούν υγρασία (υδρατμούς) όταν η ατμόσφαιρα

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΧΗΜΕΙΑ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΧΗΜΕΙΑ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Υπολογιστικά Συστήματα

Υπολογιστικά Συστήματα Υπολογιστικά Συστήματα Ενότητα 6: Ασκήσεις στη Visual Basic for Applications (VBA) Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα