Transfer Learning. keywords: transfer learning, inductive transfer, domain adaptation, multitask learning, semi-supervised learning
|
|
- Θυώνη Κολιάτσος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 1 Transfer Learnng Toshhro Kamshma Natonal Insttute of Advanced Industral Scence and Technology (AIST) keywords: transfer learnng, nductve transfer, doman adaptaton, multtask learnng, sem-supervsed learnng 1. (transfer learnng) [TT 05] the problem of retanng and applyng the knowledge learned n one or more tasks to effcently develop an effectve hypothess for a new task CPU montor CPU montor CPU Web (sem-supervsed learnng) [Chapelle 06] [ 05, 97] 1995 NIPS [LtL 95] 10 (nductve transfer) (doman adaptaton) (multtask learnng) knowledge transfer, learnng to learn lfetme learnng (covarate shft) [Shmodara 00, 06] [Heckman 79, 09] Pan & Yang [Pan 08b] Daumé [Daumé]
2 [Bshop 08, 03, 06, 09] 2. (a) (b) (source doman) (target doman) (S) (T ) D {S,T } X (D) X (D) M Y (D) Y (D) {0,1} { 1,+1} (x (D),y (D) ) (X (D),Y (D) ) x (D) X (D) N (D) N 2 2 (multtask learnng) Daumé / Daumé Pan & Yang A B C B C A A C B A B C A B C A B C B C A A (B C) 1(a) A A B C 1(b) (meta learnng) [Vlalta 02] No Free Lunch [Wolpert 97]
3 3 1 (1) S+T + (2) S+T (3) S T + (4) S T Daumé 1 (1) S+T + {(x (S),y (S) )} {(x (T ),y (T ) )} Pan & Yang Daumé (1) (nductve transfer learnng) (2) (transductve transfer learnng) (3) (self-taught learnng) (4) (unsupervsed transfer learnng) (1) S+T + Pr (S) [X,Y ] Pr (T ) [X,Y ] X (S) X (T ) Y (S) Y (T ) (2) S+T Daumé Pan & Yang Pr (S) [Y X] = Pr (T ) [Y X] Pr (S) [X] Pr (T ) [X] X (3) S T + Daumé Pr (S) [X] = Pr (T ) [X] Rana [Rana 07] Pr (S) [X] = Pr (T ) [X] Y (S) Y (T ) Rana Pr (S) [X] Pr (T ) [X] Rana Pr (S) [X] Pr (T ) [X] (4) S T Pr (S) [X] = Pr (T ) [X] Daumé X (S) X (T ) [Wang 08] 2 4 [Caruana 97] (negatve transfer) [Rosensten 05] 2
4 Pan & Yang Daumé (feature-based) (nstance-based) (separated) (ntegrated) 3(a) 3(b) (a) (b) [Pan 08b, Daumé, 09] [TT 05, TSL 09, TM 09] 90 [Caruana 96, Munro 97] Thrun [Thrun 96] 1 k explanaton-based Caruana [Caruana 97]
5 5 (1) (data amplfcaton) (2) (attrbute selecton) (3) (eavesdroppng) (4) (representaton bas) [Daumé 07] 0 3 (x (T ),y (T ) ) ( x (T ),0,x (T ),y (T ) ) (x (S),y (S) ) ( x (S),x (S),0,y (S) ) [Caruana 97] K Pr[x,y Θ ]Pr[Θ Ψ] Θ Ψ [Rana 06] [Daumé 06] f Gbbs exp(λ f) λ Gbbs [Xue 08] plsa [Hofmann 99] must/cannot [Wagstaff 01] [Ando 08] [Tshby 99] [Da 07a] (co-clusterng) [Argyrou 07] K k f k (x) = M m a mk(u x) M u a mk 0 u a mk U A K k=1 =1 N L(y k,a k (U x k )) + γ A 2 2,1 1 2 L 2 L 1 0 [Lng 08]
6 normalzed cut [Sh 00] W W (S) D = dag(w1) D (S) = dag(w (S) 1), x x (D W)x x Dx + β U x + λ x (D (S) W (S) )x x D (S) x 1 Raylegh W 0 1 x β λ 2 3 [Rana 07] m M b 1,...,b m mn a,b x (S) m a j b j β a 1, s.t. b j 2 1 j a j m j b arg mn x (T ) c j c j b j γ c 1 m c y (T ) [Ando 05] [Argyrou 08] [Satpal 07] [Wang 08] Fsher [Do 06, Pan 08a] [Rückert 08] 3 4 AdaBoost [Freund 96, 99] TrAdaBoost [Da 07b] TrAdaBoost T t h t (x ) {0,1} h t ( ) ϵ t < 1/2 β t = ϵ t /(1 ϵ t ) 1/β t 1/(1 + (2lnt)/T ) 1 0 T t= T/2 β h t(x) t T t= T/2 β 1/2 t RankBoost[Freund 03] [ 09] [Breman 96] TrBagg[Kamshma 09] TrBagg
7 7 [Eaton 08] [Gao 08] (covarate shft) [Shmodara 00] Pr (S) [X] Pr (T ) [X] Pr (S) [Y X] = Pr (T ) [Y X] θ N (T ) Pr (T ) [x ] Pr (S) [x ] loss(y(s),x (S) ;θ) [ 06] [Sugyama 07b, Huang 07, 07a] (sample selecton bas) [Heckman 79, 09] [Zadrozny 04] x y s {0,1} (x,y) s = 1 s = 0 x s y Pr[y s,x] = Pr[y x] Pr[y x] Pr[y x] Pr[x] Pr[y s,x] = Pr[y x] Pr[y x] s Pr[x] s SVM SVM [Xng 07] brdged refnement 3 5 Mgratory-Logt [Lao 05] µ w max w,µ σ(y (T ) w x (T ) ) + lnσ(y (S) w x (S) + y (S) µ ) 1 subject to y (S) N (S) µ C, C 0, y (S) µ 0 y (D) { 1,+1} y w x y (S) µ (S) x (S) y (S) w x (S) y (S) µ (S) N (S) C C [Wu 04] 3 3 [Wu 04] 3 6 (currculum learnng) [Bengo 09]
8 [Rosensten 05] (negatve transfer) [Sh 08] [Bltzer 08, Crammer 08] [Ben-Davd 07, Da 07b] 4. [TSL 09, TM 09] [Ando 05] Ando, R. K. and Zhang, T.: A Framework for Learnng Predctve Structures from Multple Tasks and Unlabeled Data, Journal of Machne Learnng Research, Vol. 6, pp (2005) [Ando 08] Ando, S. and Suzuk, E.: Unsupervsed Cross-doman Learnng by Interacton Informaton Co-clusterng, n Proc. of The 8th IEEE Int l Conf. on Data Mnng, pp (2008) [Argyrou 07] Argyrou, A., Evgenou, T., and Pontl, M.: Mult-Task Feature Learnng, n Advances n Neural Informaton Processng Systems 19, pp (2007) [Argyrou 08] Argyrou, A., Maurer, A., and Pontl, M.: An Algorthm for Transfer Learnng n a Heterogeneous Envronment, n Proc. of The ECML/PKDD2008, Part I, pp (2008), [LNAI 5211] [ 03],,,, 6, (2003) [ 09] Doman Adaptaton, 2009, pp (2009) [Ben-Davd 07] Ben-Davd, S., Bltzer, J., Crammer, K., and Perera, F.: Analyss of Representatons for Doman Adaptaton, n Advances n Neural Informaton Processng Systems 19, pp (2007) [Bengo 09] Bengo, Y., Louradour, J., Collobert, R., and Weston, J.: Currculum Learnng, n Proc. of The 26th Int l Conf. on Machne Learnng, pp (2009) [Bshop 08] Bshop, C. M.:, ( ), [Bltzer 08] Bltzer, J., Crammer, K., Kulesza, A., Perera, F., and Wortman, J.: Learnng Bounds for Doman Adaptaton, n Advances n Neural Informaton Processng Systems 20, pp (2008) [Breman 96] Breman, L.: Baggng Predctors, Machne Learnng, Vol. 24, pp (1996) [Caruana 96] Caruana, R., Baluja, S., and Mtchell, T.: Usng The Future to Sort Out The Present: Rankprop and Multtask Learnng for Medcal Rsk Evaluaton, n Advances n Neural Informaton Processng Systems 8, pp (1996) [Caruana 97] Caruana, R.: Multtask Learnng, Machne Learnng, Vol. 28, pp (1997) [Chapelle 06] Chapelle, O., Schölkopf, B., and Zen, A. eds.: Semsupervsed Learnng, MIT Press (2006) [Crammer 08] Crammer, K., Kearns, M., and Wortman, J.: Learnng from Multple Sources, Journal of Machne Learnng Research, Vol. 9, pp (2008) [Da 07a] Da, W., Xue, G.-R., Yang, Q., and Yu, Y.: Co-clusterng based Classfcaton for Out-of-doman Documents, n Proc. of The 13th Int l Conf. on Knowledge Dscovery and Data Mnng, pp (2007) [Da 07b] Da, W., Yang, Q., Xue, G.-R., and Yu, Y.: Boostng for Transfer Learnng, n Proc. of The 24th Int l Conf. on Machne Learnng, pp (2007) [Daumé] Daumé, H., III: natural language processng blog, doman%20adaptaton [Daumé 06] Daumé, H., III and Marcu, D.: Doman Adaptaton for Statstcal Classfers, Journal of Artfcal Intellgence Research, Vol. 26, pp (2006) [Daumé 07] Daumé, H., III: Frustratngly Easy Doman Adaptaton, n Proc. of the 45th Annual Meetng of the Assocaton of Computatonal Lngustcs, pp (2007) [Do 06] Do, C. B. and Ng, A. Y.: Transfer Learnng for Text Classfcaton, n Advances n Neural Informaton Processng Systems 18, pp (2006) [Eaton 08] Eaton, E., desjardns, M., and Lane, T.: Modelng Transfer Relatonshps Between Learnng Tasks for Improved Inductve Transfer, n Proc. of The ECML/PKDD2008, Part I, pp (2008), [LNAI 5211] [Freund 96] Freund, Y. and Schapre, R. E.: Experments wth a New Boostng Algorthm, n Proc. of The 13th Int l Conf. on Machne Learnng, pp (1996) [ 99] Y., R.,,, Vol. 14, No. 5, pp (1999) [Freund 03] Freund, Y., Iyer, R., Schapre, R. E., and Snger, Y.: An
9 9 Effcent Boostng Algorthm for Combnng Preferences, Journal of Machne Learnng Research, Vol. 4, pp (2003) [Gao 08] Gao, J., Fan, W., Jang, J., and Han, J.: Knowledge Transfer va Multple Model Local Structure Mappng, n Proc. of The 14th Int l Conf. on Knowledge Dscovery and Data Mnng, pp (2008) [Heckman 79] Heckman, J.: Sample Selecton Bas as a Specfcaton Error, Econometrca, Vol. 47, pp (1979) [Hofmann 99] Hofmann, T.: Probablstc Latent Semantc Analyss, n Uncertanty n Artfcal Intellgence 15, pp (1999) [ 09],, (2009) [Huang 07] Huang, J., Smola, A. J., Gretton, A., Borgwardt, K. M., and Schölkopf, B.: Correctng Sample Selecton Bas by Unlabeled Data, n Advances n Neural Informaton Processng Systems 19, pp (2007) [Kamshma 09] Kamshma, T., Hamasak, M., and Akaho, S.: TrBagg: A Smple Transfer Learnng Method and Its Applcaton to Personalzaton n Collaboratve Taggng, n Proc. of The 9th IEEE Int l Conf. on Data Mnng, pp (2009) [ 09],,, R, 5, (2009) [Lao 05] Lao, X., Xue, Y., and Carn, L.: Logstc Regresson wth an Auxlary Data Source, n Proc. of The 22nd Int l Conf. on Machne Learnng, pp (2005) [Lng 08] Lng, X., Da, W., Xue, G.-R., Yang, Q., and Yu, Y.: Spectral Doman-Transfer Learnng, n Proc. of The 14th Int l Conf. on Knowledge Dscovery and Data Mnng, pp (2008) [LtL 95] Learnng to Learn: Knowledge Consoldaton and Transfer n Inductve Systems, ca/courses/comp/dslver/nips95 LTL/transfer. workshop.1995.html (1995) [ 06],,,, (2006) [Munro 97] Munro, P. W. and Parmanto, B.: Competton Among Networks Improves Commttee Performance, n Advances n Neural Informaton Processng Systems 9, pp (1997) [ 97],, Vol. 38, No. 7, pp (1997) [Pan 08a] Pan, S. J., Kwok, J. T., and Yang, Q.: Transfer Learnng va Dmensonalty Reducton, n Proc. of the 23rd Natonal Conf. on Artfcal Intellgence, pp (2008) [Pan 08b] Pan, S. J. and Yang, Q.: A Survey on Transfer Learnng, Techncal Report HKUST-CS08-08, Dept. of Computer Scence and Engneerng, Hong Kong Unv. of Scence and Technology (2008) [Rana 06] Rana, R., Ng, A. Y., and Koller, D.: Constructng Informatve Prors usng Transfer Learnng, n Proc. of The 23rd Int l Conf. on Machne Learnng, pp (2006) [Rana 07] Rana, R., Battle, A., Lee, H., Packer, B., and Ng, A. Y.: Self-taught Learnng: Transfer Learnng from Unlabeled Data, n Proc. of The 24th Int l Conf. on Machne Learnng, pp (2007) [Rosensten 05] Rosensten, M. T., Marx, Z., Kaelblng, L. P., and Detterch, T. G.: To Transfer or Not To Transfer, n NIPS-2005 Workshop on Inductve Transfer: 10 Years Later (2005) [Rückert 08] Rückert, U. and Kramer, S.: Kernel-Based Inductve Transfer, n Proc. of The ECML/PKDD2008, Part II, pp (2008), [LNAI 5212] [Satpal 07] Satpal, S. and Sarawag, S.: Doman Adaptaton of Condtonal Probablty Models va Feature Subsettng, n Proc. of the 11th European Conf. on Prncples of Data Mnng and Knowledge Dscovery, pp (2007), [LNAI 4702] [Sh 00] Sh, J. and Malk, J.: Normalzed Cuts and Image Segmentaton, IEEE Trans. on Pattern Analyss and Machne Intellgence, Vol. 22, No. 8, pp (2000) [Sh 08] Sh, X., Fan, W., and Ren, J.: Actvely Transfer Doman Knowledge, n Proc. of The ECML/PKDD2008, Part II, pp (2008), [LNAI 5212] [Shmodara 00] Shmodara, H.: Improvng Predctve Inference under Covarate Shft by Weghtng the Log-Lkelhood Functon, J. of Statstcal Plannng and Inference, Vol. 90, pp (2000) [ 06],, Vol. 13, No. 3, pp (2006) [ 07a],, Vol. 18, No. 10, pp. 1 6 (2007) [Sugyama 07b] Sugyama, M., Krauledat, M., and Müller, K. R.: Covarate Shft Adaptaton by Importance Weghted Cross Valdaton, Journal of Machne Learnng Research, Vol. 8, pp (2007) [ 09],,,, n WdbDB Forum 2009 (2009) [Thrun 96] Thrun, S.: Is Learnng The n-th Thng Any Easer Than Learnng The Frst?, n Advances n Neural Informaton Processng Systems 8, pp (1996) [Tshby 99] Tshby, N., Perera, F. C., and Balek, W.: The Informaton Bottleneck Method, n Proc. of The 37th Annual Allerton Conference on Communcatons, Control and Computng (1999) [TM 09] ICDM 2009 Workshop: Int l Workshop on Transfer Mnng, snnopan/cfp/ cdm09wtm.html (2009) [TSL 09] NIPS 2009 Workshop: Transfer Learnng for Structured Data, snnopan/ nps09tlsd/ (2009) [TT 05] NIPS 2005 Workshop Inductve Transfer: 10 Years Later, (2005) [Vlalta 02] Vlalta, R. and Drss, Y.: A Perspectve Vew and Survey of Meta-Learnng, Artfcal Intellgence Revew, Vol. 18, pp (2002) [Wagstaff 01] Wagstaff, K., Carde, C., Rogers, S., and Schroedl, S.: Constraned K-means Clusterng wth Background Knowledge, n Proc. of The 18th Int l Conf. on Machne Learnng, pp (2001) [Wang 08] Wang, Z., Song, Y., and Zhang, C.: Transferred Dmensonalty Reducton, n Proc. of The ECML/PKDD2008, Part II, pp (2008), [LNAI 5212] [ 05],,,,,,, (2005) [Wolpert 97] Wolpert, D. H. and Macready, W. G.: No Free Lunch Theorems for Optmzaton, IEEE Transactons on Evolutonary Computaton, Vol. 1, pp (1997) [Wu 04] Wu, P. and Detterch, T. G.: Improvng SVM Accuracy by Tranng on Auxlary Data Sources, n Proc. of The 21st Int l Conf. on Machne Learnng, pp (2004) [Xng 07] Xng, D., Da, W., Xue, G.-R., and Yu, Y.: Brdged Refnement for Transfer Learnng, n Proc. of the 11th European Conf. on Prncples of Data Mnng and Knowledge Dscovery, pp (2007), [LNAI 4702] [Xue 08] Xue, G.-R., Da, W., Yang, Q., and Yu, Y.: Topc-brdged PLSA for Cross-Doman Text Classfcaton, n Proc. of The 31th Annual ACM SIGIR Conf. on Research and Development n Informaton Retreval, pp (2008) [Zadrozny 04] Zadrozny, B.: Learnng and Evaluatng Classfers under Sample Selecton Bas, n Proc. of The 21st Int l Conf. on Machne Learnng, pp (2004) ( ) AAAI, ACM
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF
100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]
Discriminative Language Modeling Based on Risk Minimization Training
1,a) 1 1 1 2 Bayes Dscrmnatve Language Modelng Based on Rsk Mnmzaton Tranng Kobayash Ako 1,a) Oku Takahro 1 Fujta Yuya 1 Sato Shoe 1 Nakagawa Sech 2 Abstract: Ths paper descrbes dscrmnatve language models
ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm
32 7 Vol 32 7 2011 7 Journal of Harbn Engneerng Unversty Jul 2011 do 10 3969 /j ssn 1006-7043 2011 07 018 150001 2 Yale PIE TE2 TP391 4 1006-7043 2011 07-0938-05 Kernel orthogonal and uncorrelated neghborhood
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
DEIM Forum 2013 A2-2 606 8501 E-mail: kato@dl.kuis.kyoto-u.ac.jp 1. 2. 1 4 A B C D A B C D A : B :: C : D : :: : : :: : A B C D A= B= C= D= D 3 Turney [20] A B C D A B C D Bollegala [5] Web SVM A B C D
Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities
Evaluaton of Expressng Uncertan Causaltes as Condtonal Causal ossbltes Koch Yamada Department of lannng & Management Scence, agaoa Unversty of Technology eng & Regga (v u u u v v u (v u ) 0 u v V [1] [1]
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
A Method for Determining Service Level of Road Network Based on Improved Capacity Model
30 4 2013 4 Journal of Hghway and Transportaton Research and Development Vol. 30 No. 4 Apr. 2013 do10. 3969 /j. ssn. 1002-0268. 2013. 04. 018 1 1 2 1. 4000742. 201804 2 U491. 1 + 3 A 1002-0268 201304-0101
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
Power allocation under per-antenna power constraints in multiuser MIMO systems
33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,
Quantum annealing inversion and its implementation
49 2 2006 3 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 2 Mar., 2006,,..,2006,49 (2) :577 583 We C, Zhu P M, Wang J Y. Quantum annealng nverson and ts mplementaton. Chnese J. Geophys. (n Chnese), 2006,49
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
2002 Journal of Software /2002/13(08) Vol.13, No.8. , )
000-985/00/3(08)55-06 00 Journal of Software Vol3, No8, (,00084) E-mal: yong98@malstsnghuaeducn http://netlabcstsnghuaeducn :,,, (proportonal farness schedulng, PFS), QoS, : ; ;QoS; : TP393 : A,,,,, (
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
Anomaly Detection with Neighborhood Preservation Principle
27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly
Generalized Linear Model [GLM]
Generalzed Lnear Model [GLM]. ก. ก Emal: nkom@kku.ac.th A Lttle Hstory Multple lnear regresson normal dstrbuton & dentty lnk (Legendre, Guass: early 19th century). ANOVA normal dstrbuton & dentty lnk (Fsher:
{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
DEIM Forum 2012 D2-1 606 8501 150 0002 2-15-1 28F E-mail: {tsukuda,ohshima,tanaka}@dl.kuis.kyoto-u.ac.jp, {miyamamoto,hiwasaki}@d-itlab.co.jp 1 Wikipedia Wikipedia HITS 1. Web Web Web 1 3 Wikipedia 2 Web
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 2018-2019 Επιβλέπουσα: Μπίμπη Ματίνα Ανάλυση της πλατφόρμας ανοιχτού κώδικα Home Assistant Το Home Assistant είναι μία πλατφόρμα ανοιχτού
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
9 /393 / Downloaded from energy.kashanu.ac.r at 5:3 0330 on Saturday October 0th 08 * hajakbar@grad.kashanu.ac.r mohammad@kashanu.ac.r. (shunt-apf) :... PSIM. : * 3... Downloaded from energy.kashanu.ac.r
DEIM Forum 2014 A8-1, 606 8501 E-mail: {tsukuda,ohshima,kato,tanaka}@dl.kuis.kyoto-u.ac.jp 1 2,, 1. Google 1 Yahoo 2 Bing 3 Web Web BM25 [1] HITS [2] PageRank [3] Web 1 [4] 1http://www.google.com 2http://www.yahoo.com
ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια
Robust MCDA ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια Δ5 Βιβλιογραφική ανασκόπηση προσεγγίσεων τεχνικής νοημοσύνης
Research on model of early2warning of enterprise crisis based on entropy
24 1 Vol. 24 No. 1 ont rol an d Decision 2009 1 Jan. 2009 : 100120920 (2009) 0120113205 1, 1, 2 (1., 100083 ; 2., 100846) :. ;,,. 2.,,. : ; ; ; : F270. 5 : A Research on model of early2warning of enterprise
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Gradient Domain Metropolis Light Transport
08 Gradent Doman Metropols Lght Transport..:..:.... dspavlov_@edu.hse.ru vfrolov@graphcs.cs.msu.ru - -. - -.. - -.. : ( ϕr θr = L( ϕ θ R( ϕ θ ϕr θr cos( n lϕ θ ϕ θ dϕ dθ L R -. - - - - -. [Kaa 986]. (Path
CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital
C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal
Ανάλυση ευαισθησίας σε αναδρομικό νευρωνικό δίκτυο εκπαιδευμένο για αναγνώριση συναισθήματος
Ανάλυση ευαισθησίας σε αναδρομικό νευρωνικό δίκτυο εκπαιδευμένο για αναγνώριση συναισθήματος Σαρλίν Χονδρού, Μηνάς Περτσελάκης, Γιώργος Καρυδάκης, Κώστας Καρπούζης, Στέφανος Κόλλιας Εργαστήριο Επεξεργασίας
q norm regularizing least-square-support-vector-machine linear classifier algorithm via iterative reweighted conjugate gradient
31 3 2014 3 DOI: 10.7641/CTA.2014.30690 Control Theory & Applcatons Vol. 31 No. 3 Mar. 2014 q,,,, (, 102249) : L 2 (square support vector machne algorthm, LS SVM),, q = 2. q LS SVM, 0 < q
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Area Location and Recognition of Video Text Based on Depth Learning Method
21 6 2016 12 Vol 21 No 6 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Dec 2016 1 1 1 2 1 150080 2 130300 Gabor RBM OCR DOI 10 15938 /j jhust 2016 06 012 TP391 43 A 1007-2683 2016 06-0061- 06
Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin
2005 63 Vol. 63, 2005 23, 2169 2173 ACTA CHIMICA SINICA No. 23, 2169 2173 a,b a a a *,a ( a 130012) ( b 133002), 26 K A 1.98 10 4, 1.01 10 3, 1.38 10 3, 5.97 10 4 7.15 10 4 L mol 1, n 1.16, 0.86, 1.19,
Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis 1
50 17 2014 9 OURNAL OF MECHANICAL ENGINEERING Vol.50 No.17 Sep. 2014 DOI10.3901/ME.2014.17.077 * 1 2 2 2, 3 (1. 361005 2. 710049 3. 710049) -- () - TH17 Novel Ensemble Analytc Dscrete Framelet Expanson
Bayesian Discriminant Feature Selection
1,a) 2 1... DNA. Lasso. Bayesian Discriminant Feature Selection Tanaka Yusuke 1,a) Ueda Naonori 2 Tanaka Toshiyuki 1 Abstract: Focusing on categorical data, we propose a Bayesian feature selection method
DEIM Forum 2 D3-6 819 39 744 66 8 E-mail: kawamoto@inf.kyushu-u.ac.jp, tawara@db.soc.i.kyoto-u.ac.jp, {asano,yoshikawa}@i.kyoto-u.ac.jp 1.,, Amazon.com The Internet Movie Database (IMDb) 1 Social spammers
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Support Vector Machines. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Ενότητα 10: Support Vector Machnes Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών Support Vector Machnes Decson surface s a hyperplane (lne n 2D)
Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment
1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Stochastic Finite Element Analysis for Composite Pressure Vessel
* ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
Nonparametric Bayesian T-Process Algorithm for Heterogeneous Gene Regulatory Network
IPSJ SIG Tecncal Report Vol.-MPS-9 No.5 Vol.-BIO-3 No.5 //6 T,a,b,c,d,e T Drosopla melanogaster RJMCMC Nonparametrc Bayesan T-Process Algortm for Heterogeneous Gene Regulatory Network HIROKI MIYASHITA,a
Aerodynamic Design Optimization of Aeroengine Compressor Rotor
17 < > Aerodynamc Desgn Optmzaton of Aeroengne Compressor Rotor, NASA JAXA, Brook Park, Oho, U.S.A., oyama@flab.eng.sas.jaxa.jp Meng-Sng LIOU, NASA Glenn Research Center, Brook Park, Oho, U.S.A. meng-sng.lou-1@nasa.gov,,
HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
Robust Robot Monte Carlo Localization
XX X Vol. XX, No. X 200X X ACTA AUTOMATICA SINICA Month, 200X 1 1 1.,,, ; (MCMC, ;, MCMC, ;.,,, TP242.6 Robut Robot Monte Carlo Localzaton WU Er-Yong 1 XIANG Zh-Yu 1 LIU J-Ln 1 Abtract A robot localzaton
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ ΜΕ ΜΗΧΑΝΕΣ ΔΙΑΝΥΣΜΑΤΩΝ ΥΠΟΣΤΗΡΙΞΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ ΜΕ ΜΗΧΑΝΕΣ
A Survey of Recent Clustering Methods for Data Mining (part 2)
170 18 2 2003 3 2 A Survey of Recent Clustering Methods for Data Mining part 2) Challenges to Conquer Giga Data Sets and The Curse of Dimensionality Toshihiro Kamishima National Institue of Advanced Industrial
Nondeterministic Finite Automaton Event Detection in Focusing Region. Sequence Analysis. Sequence Analysis. Feature Extraction. Feature Extraction
y yy y Mult-Object Behavor Recognton by Selectve Attenton Toshkazu WADA y, Masayuk SATO yy,andtakash MATSUYAMA y ( ) (NFA) ( ), ( ) NFA,,. ( ) ( ),, ( ) ( ) ( ) y Department of Intellgence Scence and Technology,
[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)
1,a) 1,b) 2,c) 1,d) Gait motion descriptors 1. 12 1 Osaka University 2 Drexel University a) higashiyama@am.sanken.osaka-u.ac.jp b) makihara@am.sanken.osaka-u.ac.jp c) kon@drexel.edu d) yagi@am.sanken.osaka-u.ac.jp
DEIM Forum 2016 G7-5 152-8565 2-12-1 152-8565 2-12-1 889-1601 5200 E-mail: uragaki.k.aa@m.titech.ac.jp,,,.,,,,,,, 1. 1. 1,,,,,,.,,,,, 1. 2 [1],,,,, [2] (, SPM),,,,,,,. [3],, [4]. 2 A,B, A B, B A, B, 2,,,
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
Αυτόματη κατηγοριοποίηση στρατηγικών επίλυσης προβλημάτων από μαθητές με χρήση Δικτύων Bayes.
Αυτόματη κατηγοριοποίηση στρατηγικών επίλυσης προβλημάτων από μαθητές με χρήση Δικτύων Bayes. Ν. Τσέλιος 1, Μ. Μαραγκουδάκης 1, Ν. Αβούρης 1, Ν. Φακωτάκης 1, Μ. Κορδάκη 2 1 Πανεπιστήμιο Πατρών, Τμήμα Ηλεκτρολόγων
ΑΝΑΠΤΥΞΗ ΕΝΟΣ ΕΚΠΑΙΔΕΥΣΙΜΟΥ ΑΝΙΧΝΕΥΤΗ ΟΡΙΩΝ ΦΡΑΣΕΩΝ (TEXT CHUNKER) ΓΙΑ ΤΑ ΝΕΑ ΕΛΛΗΝΙΚΑ
ΑΝΑΠΤΥΞΗ ΕΝΟΣ ΕΚΠΑΙΔΕΥΣΙΜΟΥ ΑΝΙΧΝΕΥΤΗ ΟΡΙΩΝ ΦΡΑΣΕΩΝ (TEXT CHUNKER) ΓΙΑ ΤΑ ΝΕΑ ΕΛΛΗΝΙΚΑ Η Διπλωματική Εργασία παρουσιάστηκε ενώπιον του Διδακτικού Προσωπικού του Πανεπιστημίου Αιγαίου Σε Μερική Εκπλήρωση
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
Μέθοδοι εκμάθησης ταξινομητών από θετικά παραδείγματα με αριθμητικά χαρακτηριστικά ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ TΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδοι εκμάθησης ταξινομητών από θετικά παραδείγματα με αριθμητικά χαρακτηριστικά
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log
coupon effecs Fsher Cohen, Kramer and Waugh Ordnary Leas SquaresOLS 3 j τ = a0 a j m a4 log m a5c a6c a7 log C j= τ = a a a [ ] 0 m log m [ a, b] f Pn E f = max f x P x = f P n ( ) ( ) n ( ) a x b n ξ
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
!" #$ : ( )
.!" #$ : 02.21.07 ( ) 2008 1 .!!" #$ : 02.21.07 ( )! "#: :. - %&'.,... - %( 2008 2 #) *"'+'"!'+('', $! $ % #, & "' % "% %%( '. "#, #, %, % # ), %. # "%, " %&% ' '# #,, #, #% %. % # # "( "' %. ( - * %#,
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface Hiroya SAITO Kenji NAKAYAMA Akihiro HIRANO Graduate School of Natural Science and Technology,Kanazawa Univ. E-mail:
Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών
Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents
Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης
Ταξινόμηση και διαχρονική παρακολούθηση των βοσκόμενων δασικών εκτάσεων στη λεκάνη απορροής του χειμάρρου Μπογδάνα Ν. Θεσσαλονίκης Α. Αϊναλής 1, Ι. Μελιάδης 2, Π. Πλατής 3 και Κ. Τσιουβάρας 4 1 Διεύθυνση
A Non-Negative Sparse Neighbor Representation for Multi-Label Learning Algorithm
44 6 Vo.44 No.6 05 Journa of Unversty of Eectronc Scence and Technoogy of Chna Nov. 05 ( 3060) k-lasso k(ml-knn)(ml-src) ; ; LASSO; TP39.4 A do:0.3969/.ssn.00-0548.05.06.08 A Non-Negatve Sparse Neghbor
EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN
13 3 20095 EL ECTR ICMACH IN ESANDCON TROL Vol113 No13 May 2009 FPN,, (, 150001) :,,Petr( FPN ), BP, FPN,,,, : ; ; Petr; : U661 : A : 1007-449X (2009) 03-0464- 07 System s vulnerablty assessment of a rcraft
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN
78 Maude 1 Maude [1] UIUC J. Meseguer ( 1 ) ( ) Maude Maude SRI 90 UIUC SRI Maude SRI S. Eker C++ Maude 2 Maude Meseguer OBJ 1983-84 OBJ2[3] OBJ Maude OBJ 1 CafeOBJ 3 Maude 4 Maude CafeOBJ Maude: A Computer
(8) 017 У У θβ1.771...... ю E-mal: avk7777@mal.ru....... Р х х.. 93 % 6 % 166 %. М х х хх. : х х. ю. ю ( ). ю ю. ю. ю ю. - ю ю. ю [1 8] ю. [9 11] ю. [1]. 58 (8) 017 У ю μ (У) юю (. 1). u u+1 ЭС - ЭС (+1)-
Customized Pricing Recommender System Simple Implementation and Preliminary Experiments
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE., 305-8568 1 1 1 2 305 8571 1 1 1 102 8666 5 3,,, Customized Pricing Recommender System Simple Implementation
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
ΑΡΧΙΜΗ ΗΣ - ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ ΤΕΙ. Υποέργο: «Ανάκτηση και προστασία πνευµατικών δικαιωµάτων σε δεδοµένα
ΑΡΧΙΜΗ ΗΣ - ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ ΤΕΙ Υποέργο: «Ανάκτηση και προστασία πνευµατικών δικαιωµάτων σε δεδοµένα πολυδιάστατου ψηφιακού σήµατος (Εικόνες Εικονοσειρές)» Πακέτο Εργασίας 2: Ανάκτηση εικόνων
Διαχείριση ενεργειακών πόρων & συστημάτων Πρακτικά συνεδρίου(isbn: )
23 ο Εθνικό Συνέδριο Ελληνικής Εταιρείας Επιχειρησιακών Ερευνών Διαχείριση ενεργειακών πόρων & συστημάτων Πρακτικά συνεδρίου(isbn: 978-960-87277-8-6) Αθήνα, 12-14 Σεπτεμβρίου 2012 Αίθουσα Πολυμέσων Κεντρικής
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Ανάπτυξη πολυκριτήριας μεθοδολογίας υπολογισμού βαρών σε ensemble τεχνικές μηχανικής μάθησης ΔΙΠΛΩΜΑΤΙΚΉ ΕΡΓΑΣΙΑ Φλώκος Θεόδωρος Επιβλέπων : Ματσατσίνης
Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution
Journal of Statstcal Theory and Applcatons, Vol. 4, No. 3 September 5, 4-56 Concomtants of Dual Generalzed Order Statstcs from Bvarate Burr III Dstrbuton Haseeb Athar, Nayabuddn and Zuber Akhter Department
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
Περίληψη ιπλωµατικής Εργασίας
Περίληψη ιπλωµατικής Εργασίας Θέµα: Μέθοδοι αυτόµατου εντοπισµού σφαλµάτων και βελτίωσης wrappers µε χρήση επαυξητικών µεθόδων µάθησης (wrapper mantenance πρόβληµα) Όνοµα: Χαράλαµπος Τσουρακάκης Επιβλέπων:
th International Conference on Machine Learning and Applications. E d. h. U h h b w k. b b f d h b f. h w k by v y
212 11th International Conference on Machine Learning and Applications C b G E P fi d P P I f Id fy F M d D d W, M O h, E Z,T L C f C S, U v y f M, C G b, FL 33146, USA E : d.w 1@. d, h @.. d D f C S d
C3, I2, J2, J3 :JEL.
- / / / / : // : //: " ". ( ) ( ) ( ) ( :. ( (.. - - C3, I, J, J3 :JEL :. e-mal: anader@ut.ac.r ...... () -. ( ) -. " ".. - -. - - -. ). ( 1. Selectvt & Endogenet. (Expermental Research).. (Ex Post). "
Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.
SIG-SWO-041-05 SPAIDA: SPARQL Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- 1 2 Takuya Adachi 1 Naoki Fukuta 2 1 1 Faculty of Informatics, Shizuoka University
Security in the Cloud Era
Security in the Cloud Era Dimitris Gritzalis October 2011 Ασφάλεια στην εποχή του Cloud: Παράδοξο ή απλώς διαφορετικό; Δημήτρης Γκρίτζαλης Καθηγητής Ασφάλειας στις ΤΠΕ Οικονομικό Πανεπιστήμιο Αθηνών Πρόεδρος
α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η
# η &, ε ε 007, ιη Pearson r "η η ι ι ι η ι!ι ι ι η ι η!ηη ι ι!ηη. η ι ιηη ι" η ι!"ι 0 ι η ( α ι ι α η 9 ( ι ι / + -predctor varable). * ι ι ι ι η ι ι ι!ηη η "ι ι ι ι!ηη η ι ι η η ι 'ι ι ι (η ) ι η ( "
b,% SIR 2 MOTDPC (CDMA 6 ) Aein CDMA Journal of Nonlinear Systems in Elect. Eng., Vol. 1, No 2, Fall 2013
CDMA t< c&4 ;*E D&/ * 3 \ ^ K [ F 39 + @ M N 8 < - F" @ ' E J D K L H5 I CDMA ; A 5 b,% m_rezae_5@yahoocom 3 )* EQ / G* * /!" D" - hfarrokh@brjandacr 3 )* EQ / G* A*B C &* - (39/5/7 :H9 [ ge 39/3/ :H9
Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.
Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple
P rogresses in H azardou s M aterials L ogistics R esearch
2000 7 7 : 10002788 (2000) 072011220 ( 710049) : : 1) 2) 3) ( ) 4) 5) D SS G IS : ; ; : X32 α P rogresses n H azardou s M aterals L ogstcs R esearch W AN G Kan2lang (T he Schoo l of M anagem ent X an J
ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ
ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΛΟΓΙΣΤΙΚΗΣ ΤΟΥ ΤΕΙ ΚΑΒΑΛΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΙΑΝΟΥΑΡΙΟΣ 2008 ΒΙΟΓΡΑΦΙΚΟ
Performance of Charcoal Cookstoves for Haiti, Part 1: Results from the Water Boiling Test
LBNL 5021E Performance of Charcoal Cookstoves for Haiti, Part 1: Results from the Water Boiling Test Kayje Booker, Tae Won Han, Jessica Granderson, Jennifer Jones, Kathleen Lask, Nina Yang, Ashok Gadgil
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
EQUIVALENT MODEL OF HVDC-VSC AND ITS HYBRID SIMULATION TECHNIQUE
7 Vol. 7 No. 003 Power Sytem Technology Fe. 003 000-36730030-0004-05 T7. A 3007 EQIVALENT ODEL OF HVDC-VSC AND ITS HYBRID SILATION TECHNIQE WANG Guan, CAI Ye, ZHANG Gu-n, X Zheng Department of Electrcal
Lecture Notes for Chapter 8
Data Mnng Cluster Analyss Lecture otes for Chapter 8 Clusterng Target: Dvde data nto a set of groups (clusters) based on smlarty Smlar samples are grouped together, whle dssmlar samples are placed n dfferent