A Non-Negative Sparse Neighbor Representation for Multi-Label Learning Algorithm
|
|
- Σπύρος Ζαΐμης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 44 6 Vo.44 No.6 05 Journa of Unversty of Eectronc Scence and Technoogy of Chna Nov. 05 ( 3060) k-lasso k(ml-knn)(ml-src) ; ; LASSO; TP39.4 A do:0.3969/.ssn A Non-Negatve Sparse Neghbor Representaton for Mut-Le Learnng Agorthm CHEN S-bao, XU Dan-yang, and LUO Bn (Schoo of Computer Scence and Technoogy, Anhu Unversty Hefe 3060) Abstract In order to avod the nfuence of the nonnear manfod structure n tranng data and preserve more dscrmnant nformaton n the sparse representaton based mut-e earnng, a new mut-e earnng agorthm based on non-negatve sparse neghbor representaton s proposed. Frst of a, the k-nearest neghbors among each cass are found for the test sampe. Secondy, based on non-negatve the east soute shrnkage and seectonator operator (LASSO)-type sparse mnmzaton, the test sampe s non-negatve neary reconstructed by the k-nearest neghbors. Then, the membershp of each cass for the test sampe s cacuated by usng the reconstructon errors. Fnay, the cassfcaton s performed by rankng these membershps. A fast teratve agorthm and ts correspondng anayss of convergng to goba mnmum are provded. Expermenta resuts of mut-e cassfcaton on severa pubc mut-e datases show that the proposed method acheves better performances than cassca ML-SRC and ML-KNN. Key words LASSO sparse mnmzaton; mut-e earnng; non-negatve reconstructon; sparse neghbor representaton [-] [3] ML-KNNk- [4] [5] Rank-SVM [6] [7] (SRC) [8] (non-negatve SRC, NSRC)[9] (sparse neghbor representaton dassfcaton, SNRC) (04AA0504)( )(KJ0A004) (979 ).
2 [0]SRC, (ML-SRC) ML-SRC LASSO [] (ML-NSNRC). n y R,,, n T {,,, L} D[ y, y,, yn ] d n R d n y b y b b 0 D L n B [ b, b,, bn ] R h : y L, y ML-SRC D y sˆ arg mn yds s () s s 0 ML-SRC [0] f ( y, ) : n f ( y, ) ( b sˆ ) sˆ,,, L () n s, s 0 sˆ,,,, n f ( y, ) 0, s 0 y h( y). (SNRC) [9] d k- k- k- SNRC s y s argmn yψ s s (3) s ψ y D k-,,, cc 0 SNRC, SNRC [8] (NSNRC). NSNRC NSNRCKNN y D k- ψ ψ y ψ sˆ arg mn yψs s s s.t.,,, c (4) k s s, s 0,,, k 0 D ψ. NSNRC NSNRC(4) [](4) : ( t) ( t) ψ y s s (5) ( ψ ψ s )
3 6 : 90 s s (5).3 NSNRC G( s, s ) F( s ) G( s, s ) F( s) G( s, s) F( s ) (6) ( K s ) T ( t) ( ψψs ) a K ( s ) (7) s F( s ) G( s, s ) F( s ) ( s s ) F( s ) ( ) ( )( s s K s s s ) (8) G( s, s) F( s) G( s, s ) F( s) F( s) F( s ) ( s s ) F( s ) ( ) ( )( s s ψψ s s ) (9) (8) () () () 0 ( s s t ) [ K( s t ) ψψ]( s s t ) (0) (0) () () () () M ( s t ) s t ( K( s t ) ψψ) s t () a b M K ψψ x Mx x M x s ( ψψ) s x x s ( ψψ) s x a b a a a b b ( ψψ) s s a b a b a b a a b x x x x ψψ s s x x () ( ) a b ( a b ) 0 ()M(0) G( s, s ) F( s) G F ( t) ( t) s arg mn G( s, s ) (3) s ( t) ( t) (3) G( s, s ) G( s, s ) G( s, s ) F() s ( t) ( t) ( s ) ( s, s ) ( s, s ) ( s ) F G G F (4) s G( s, s ) ( t ( ) ) ( ( t F s ) F s ) F( s ) s (3) ( t) ( t) 0 F( smn ) F( s ) F( s ) F( s ) (5) 0 G( s, s ) s ψ ( ψs y) K( s )( s s ) 0 (6) () () s ( t )( t s k s ψψs ψ y ) () () T () T () T s t ( t /( t ) )( t s ψψs ψψs ψ y ) s ( ψ y)/( ψψs ) (7) (5).4 NSNRC (5) ( ψ ) y ( ψ ) ψ ( kd) ( kd ) d k y ( k k k) NSNRC O( kd+k d+t(3 k+k )) t (fast teratve shrnkage-threshodng agorthm, FISTA)SRC [3] O( tn d) n D 3 ) ML-SRC 0 ) ML- SRC y D k-
4 d kl Ψ [ φ, φ, φ, φ,, φl, φl] R d kl φ KNNyD k- 0 φ y φ sˆ arg mn yφ s s s s. t. s 0,,,, k, 0,,,,, L (8) k s s 0 NSNRC ( t) ( t) () t s s (( φ ) y) (( φ ) φ s ) (9) t 0 y ( x) φ s y (0) 3. y g( y, ) y ( y) e g( y, ) 0 ( y) ( y) e e () y h( y) { g( y, )> p( y), T} p( y) 3. ML-NSNRC ML-NSNRC y k- y y d n ) D [ y, y,, yn ] R L n B R d y R ) y g( y, ) 3 ) D KNN y K-Ψ ) (0) y φ s s /n 3) (0) () y 4 4. ML-NSNRC 3 [3] Yeastscene [4] ) 000 %.4± ) Yeast Yeast YeastYeast Yeast4 [5] ) scene scene [4] ML-NSNRC ML-NSNRC /n N(0,) (0,) ML-NSNRC5
5 6 : 903 ML-NSNRC s /n /n (0,) ML-NSNRC 4.3 ML-NSNRCk k- k kml-nsnrck n,n n <<n k n k ML-NSNRCk5 scene ML-NSNRCML-KNN k ML-SRCML-NSRC k0ml-nsnrc k5ml-knn ML-KNN ML-NSNRC ML-SRC ML-NSRC k kml-nsnrcml-knn 4.4 [3] -5 4 ML-SRC (ML-NSRC) ML-NSNRC3 3k- ML-KNN ML-SRC ML-NSRCML-KNN ML-SRC ML-NSNRC 00k400Yeast k5scenek0 4-3 ML-KNN9.4%ML-KNN4.7% ML-KNN4.3% 4 - ML-KNN ML-SRC ML-NSRC ML-NSNRC Yeast ML-SRCML-NSRC Yeast 4 3 ML-KNN8.5%ML-KNN 9%ML-KNNML-SRC.6% 4Yeast - ML-KNN ML-SRC ML-NSRC ML-NSNRC
6 scene 3 ML-KNN ML-SRC8.%.4%ML- KNN3.6%ML-KNNML-SRC 4.3%5.6% 3 4scene - ML-KNN ML-SRC ML-NSRC ML-NSNRC Yeast scene ML-NSNRCML-KNN ML-SRCML-NSRC4 k- 5 (NSNRC) ML-NSNRC k- Yeastscene3 [] SCHAPIRE R E, SINGER Y. Boostexter: a boostng-based system for text categorzaton[j]. Machne Learnng, 000, 39(-3): [] UEDA N, SAITO K. Parametrc mxture modes for mut-e text[j]. Advances n Neura Informaton Processng, 003(5): [3] ZHANG M L, ZHOU Z H. ML-KNN: a azy earnng approach to mut-e earnng[j]. Pattern Recognton, 007, 40(7): [4] SANDEN C, ZHANG J Z. Enhancng mut-e musc genre cassfcaton through ensembe technques[c] //Proceedngs of the 34th nternatona ACM SIGIR Conference on Research and deveopment n Informaton Retreva. New York: ACM, 0: [5] ELISSEEFF A, WESTON J. A kerne method for muteed cassfcaton[j]. Advances n Neura Informaton Processng, 00(4): [6] CANDÈS E J, ROMBERG J, TAO T. Robust uncertanty prncpes: Exact sgna reconstructon from hghy ncompete frequency nformaton[j]. IEEE Transactons on Informaton Theory, 006, 5(): [7] WRIGHT J, YANG A Y, GANESH A, et a. Robust face recognton va sparse representaton[j]. IEEE Transactons on Pattern Anayss and Machne Integence, 009, 3(): 0-7. [8] JI Y, LIN T, ZHA H. Mahaanobs dstance based nonnegatve sparse representaton for face recognton[c]// Internatona Conference on Machne Learnng and Appcatons. Mam, FL: IEEE, 009: [9] HUI K, LI C, ZHANG L. Sparse neghbor representaton for cassfcaton[j]. Pattern Recognton Letters, 0, 33(5): [0],. [J]., 0, 5(): 4-9. SONG Xang-fa, JIAO L-cheng. A mut-e earnng agorthm based on sparse representaton[j]. Pattern Recognton and Artfca Integence, 0, 5(): 4-9. [] TIBSHIRANI R. Regresson shrnkage and seecton va the asso[j]. Journa of the Roya Statstca Socety (Seres B, Methodoogca), 996, 58(): [] LEE D D, SEUNG H S. Agorthms for non-negatve matrx factorzaton[j]. Advances n Neura Informaton Processng, 00(): [3] BECK A, TEBOULLE M. A fast teratve shrnkagethreshodng agorthm for near nverse probems[j]. SIAM Journa on Imagng Scences, 009, (): [4] BOUTELL M R, LUO J, SHEN X, et a. Learnng mut-e scene cassfcaton[j]. Pattern Recognton, 004, 37(9):
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF
100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]
Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm
32 7 Vol 32 7 2011 7 Journal of Harbn Engneerng Unversty Jul 2011 do 10 3969 /j ssn 1006-7043 2011 07 018 150001 2 Yale PIE TE2 TP391 4 1006-7043 2011 07-0938-05 Kernel orthogonal and uncorrelated neghborhood
Discriminative Language Modeling Based on Risk Minimization Training
1,a) 1 1 1 2 Bayes Dscrmnatve Language Modelng Based on Rsk Mnmzaton Tranng Kobayash Ako 1,a) Oku Takahro 1 Fujta Yuya 1 Sato Shoe 1 Nakagawa Sech 2 Abstract: Ths paper descrbes dscrmnatve language models
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble
A Method for Determining Service Level of Road Network Based on Improved Capacity Model
30 4 2013 4 Journal of Hghway and Transportaton Research and Development Vol. 30 No. 4 Apr. 2013 do10. 3969 /j. ssn. 1002-0268. 2013. 04. 018 1 1 2 1. 4000742. 201804 2 U491. 1 + 3 A 1002-0268 201304-0101
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Power allocation under per-antenna power constraints in multiuser MIMO systems
33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Robust resource allocation algorithm for cognitive radio system
35 4 Vol.35 No. 4 2014 4 Journal on Communcatons Arl 2014 o:10.3969/j.ssn.1000-436x.2014.04.014 ( 130012) SINR QoS SOCP QoS N929 A 1000-436X(2014)04-0124-06 Robust resource allocaton algorm for cogntve
A Multi2commodity Flow Supply Chain Network Equilibrium Model with Stochastic Choice
2007 3 3 100026788 (2007) 0320082209 1,2 2, (11, 330047 ;21, 200433),, ogt, Nah,, ;Nah ; ; F22411 ;C93111 A A Mut2commodty Fow uppy Chan Network Equbrum Mode wth tochatc Choce XU Bng 1,2, ZHU Dao2 2 (11Management
CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital
C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal
Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment
1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor
Quantum annealing inversion and its implementation
49 2 2006 3 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 2 Mar., 2006,,..,2006,49 (2) :577 583 We C, Zhu P M, Wang J Y. Quantum annealng nverson and ts mplementaton. Chnese J. Geophys. (n Chnese), 2006,49
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 740Ä744 ˆ Œˆ ƒ Š Œ ˆ Œˆ ˆŸ ˆ ˆ ˆŸ ˆˆ ƒ ˆ Šˆ ˆ.. Œμ Ìμ ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö ±μ³ ² ± ÒÌ ³μ ʲÖÌ Ð É Ò³ ² ³ в ËËμ Î É μ - ³ μ É Ò Ë ³ μ Ò ³ Ò Å ²μ ÉÉ. Ì
2002 Journal of Software /2002/13(08) Vol.13, No.8. , )
000-985/00/3(08)55-06 00 Journal of Software Vol3, No8, (,00084) E-mal: yong98@malstsnghuaeducn http://netlabcstsnghuaeducn :,,, (proportonal farness schedulng, PFS), QoS, : ; ;QoS; : TP393 : A,,,,, (
Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006
ΗΥ-464: Συστήματα Ανάκτησης Πληροφορίας Informaton Retreval Systems Πανεπιστήμιο Κρήτης Άνοιξη 2006 Φροντιστήριο 2 Θέμα : Retreval Models Ημερομηνία : 9 Μαρτίου 2006 Outlne Prevous Semester Exercses Set
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.
36 2010 8 8 Vol 36 No 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Aug 2010 Ⅰ 100124 TB 534 + 2TP 273 A 0254-0037201008 - 1091-08 20 Hz 2 ~ 8 Hz 1988 Blondet 1 Trombetti 2-4 Symans 5 2 2 1 1 1b 6 M p
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
Adaptive grouping difference variation wolf pack algorithm
3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008
Anomaly Detection with Neighborhood Preservation Principle
27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ
ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervsed cassfcaton) Μη-κατευθυνόμενη ταξινόμηση (unsupervsed cassfcaton) Γραμμική: Lnear Dscrmnant Anayss Μη- Γραμμική: Νευρωνικά δίκτυα κλπ. Ιεραρχική
Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού
ΜΟΥΡΑΤΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού Μεταπτυχιακή Εργασία Ειδίκευσης που υποβλήθηκε στο πλαίσιο του Προγράμματος
Supporting Information
Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University
9 /393 / Downloaded from energy.kashanu.ac.r at 5:3 0330 on Saturday October 0th 08 * hajakbar@grad.kashanu.ac.r mohammad@kashanu.ac.r. (shunt-apf) :... PSIM. : * 3... Downloaded from energy.kashanu.ac.r
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
Bayesian Discriminant Feature Selection
1,a) 2 1... DNA. Lasso. Bayesian Discriminant Feature Selection Tanaka Yusuke 1,a) Ueda Naonori 2 Tanaka Toshiyuki 1 Abstract: Focusing on categorical data, we propose a Bayesian feature selection method
35 90% 30 35 85% 2000 2008 + 2 2008 22-37 1997 26 1953- 2000 556 888 0.63 2001 0.58 2002 0.60 0.55 2004 0.51 2005 0.47 0.45 0.43 2009 0.
184 C913.7 A 1672-616221 2-21- 7 Vol.7 No.2 Apr., 21 1 26 1997 26 25 38 35 9% 8% 3 35 85% 2% 3 8% 21 1 2 28 + 2 1% + + 2 556 888.63 21 572 986.58 22 657 1 97 23 674 1 229.55 24 711 1 48.51 25 771 1 649.47
DEIM Forum 2 D3-6 819 39 744 66 8 E-mail: kawamoto@inf.kyushu-u.ac.jp, tawara@db.soc.i.kyoto-u.ac.jp, {asano,yoshikawa}@i.kyoto-u.ac.jp 1.,, Amazon.com The Internet Movie Database (IMDb) 1 Social spammers
Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities
Evaluaton of Expressng Uncertan Causaltes as Condtonal Causal ossbltes Koch Yamada Department of lannng & Management Scence, agaoa Unversty of Technology eng & Regga (v u u u v v u (v u ) 0 u v V [1] [1]
OLS. University of New South Wales, Australia
1997 2007 5 OLS Abstract An understanding of the macro-level relationship between fertility and female employment is relevant and important to current policy-making. The objective of this study is to empirically
The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling
5 7 008 7 Statistical Research Vol. 5, No7 Jul. 008 :,,, : ; ; ; :O :A :00 4565 (008) 07 0070 04 The Research on Sapling Estiation of Seasonal Index Based on Stratified Rando Sapling Deng Ming Abstract
Arbitrage Analysis of Futures Market with Frictions
2007 1 1 :100026788 (2007) 0120033206, (, 200052) : Vignola2Dale (1980) Kawaller2Koch(1984) (cost of carry),.,, ;,, : ;,;,. : ;;; : F83019 : A Arbitrage Analysis of Futures Market with Frictions LIU Hai2long,
Η ανάπτυξη της μορφολογικής επίγνωσης στα Ελληνικά: μία διερευνητική μελέτη
Η ανάπτυξη της μορφολογικής επίγνωσης στα Ελληνικά: μία διερευνητική μελέτη Σ. Παντελιάδου και Κ. Μ. Ρόθου ΠΤΕΑ, Πανεπιστήμιο Θεσσαλίας spadel@uth.gr και rothou@uth.gr Abstract: The present study explores
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
DEIM Forum 2014 A8-1, 606 8501 E-mail: {tsukuda,ohshima,kato,tanaka}@dl.kuis.kyoto-u.ac.jp 1 2,, 1. Google 1 Yahoo 2 Bing 3 Web Web BM25 [1] HITS [2] PageRank [3] Web 1 [4] 1http://www.google.com 2http://www.yahoo.com
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan
3 2015 12 GLOBAL GEOLOGY Vol. 3 No. Dec. 2015 100 5589 2015 0 1106 07 L BFGS Q 130026 Q 2D L BFGS Marmousi Q L BFGS P631. 3 A doi 10. 3969 /j. issn. 1005589. 2015. 0. 02 Method of Q through full waveform
46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []
2 Chinese Journal of Alied Probability and Statistics Vol.26 No.5 Oct. 2 Coula,2 (,, 372; 2,, 342) Coula Coula,, Coula,. Coula, Coula. : Coula, Coula,,. : F83.7..,., Coula,,. Coula Sklar [],,, Coula.,
ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ Νικόλαος Κυριακούλης *, Ευάγγελος Καρακάσης, Αντώνιος Γαστεράτος, Δημήτριος Κουλουριώτης, Σπυρίδων Γ. Μουρούτσος Δημοκρίτειο
GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ Διδακτορική Διατριβή του Νείρου Αντωνίου ΑΝΑΠΤΥΞΗ ΜΕΘΟΔΩΝ ΑΣΑΦΟΥΣ ΣΥΣΤΑΔΟΠΟΙΗΣΗΣ ΓΙΑ ΤΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΝΕΥΡΩΝΙΚΩΝ
Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα
Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα Γιώργος Γιαννής, Παναγιώτης Παπαντωνίου, Ελεονώρα Παπαδημητρίου, Αθηνά Τσολάκη Τομέας Μεταφορών και Συγκοινωνιακής Υποδομής,
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
Georgian Electronic Scientific Journal: Computer Sciences and Telecommunication #1-2002
& y u & ] Georgan Eectronc Scentfc Journa Computer Scences and Teecommuncaton #-00! " $ # UML %& ' $ $+!$- % & ' $0 % & ' $ $ ' - 4 5 %$6 % & ' $ $ 3 7 8 9$ < = > "?@ A = B$8 A C D C < = @ 8 E E FG H C
Reading Order Detection for Text Layout Excluded by Image
19 5 JOURNAL OF CHINESE INFORMATION PROCESSING Vol119 No15 :1003-0077 - (2005) 05-0067 - 09 1, 1, 2 (11, 100871 ; 21IBM, 100027) :,,, PMRegion,, : ; ; ; ; :TP391112 :A Reading Order Detection for Text
Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3
DEWS2007 D3-6 y yy y y y y yy / DC 7313194 341 E-mail: yfktamura,mori,kuroki,kitakamig@its.hiroshima-cu.ac.jp, yymakoto@db.its.hiroshima-cu.ac.jp Newman Newman Newman Newman Newman A Clustering Algorithm
ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.
Α.Τ.Ε.Ι. ΚΡΗΤΗΣ Σ.Ε.Υ.Π. ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΕΡΓΑΣΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τίτλος: «Χρήση ψυχοτρόπων ουσιών από μαθητές Α Λυκείου της Δευτεροβάθμιας Εκπαίδευσης του Νομού Ηρακλείου και ο ρόλος του Κοινωνικού
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
q norm regularizing least-square-support-vector-machine linear classifier algorithm via iterative reweighted conjugate gradient
31 3 2014 3 DOI: 10.7641/CTA.2014.30690 Control Theory & Applcatons Vol. 31 No. 3 Mar. 2014 q,,,, (, 102249) : L 2 (square support vector machne algorthm, LS SVM),, q = 2. q LS SVM, 0 < q
Experimental Study of Dielectric Properties on Human Lung Tissue
32 2 2013 4 Chinese Journal of Biomedical Engineering Vol. 32 No. 2 April 2013 1 1* 2 1 300072 2 300052 Agilent 4294A 100 Hz ~ 100 MHz Cole-Cole 3 ~ 5 1. 6 ~ 3. 3 R α τ f c P < 0. 05 EIT R318 A 0258-8021
Sparse Modeling and Model Selection
15 Sparse Modeling and Model Selection L L L β β δ>0 limp(β β>δ)=0 n (β β)n (0, ) n p =(,, ) n {(, )i=1,, n} =(,, ) X = (,, ) =(,, ) X X n X =0, j=1,, p. =0, 1 n =1, X =Xβ+ε. β=(β, β ) ε ε N (0, σ I )
[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect
NMF 1 1,a) 1 AED NMF DNN IEEE D-CASE 2012 20% DNN NMF 1. Computational Auditory Scene Analysis: CASA [1] [2] [3] [4] [5] Non-negative Matrxi Factorization (NMF) NMF 2. CASA IEEE 1 Dept. Computer Science
Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler
EΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler Συντάκτης: ΜΑΡΗΣ
Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin
2005 63 Vol. 63, 2005 23, 2169 2173 ACTA CHIMICA SINICA No. 23, 2169 2173 a,b a a a *,a ( a 130012) ( b 133002), 26 K A 1.98 10 4, 1.01 10 3, 1.38 10 3, 5.97 10 4 7.15 10 4 L mol 1, n 1.16, 0.86, 1.19,
Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών
Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
Approximation Expressions for the Temperature Integral
20 7Π8 2008 8 PROGRSS IN CHMISRY Vol. 20 No. 7Π8 Aug., 2008 3 3 3 3 3 ( 230026),,,, : O64311 ; O64213 : A : 10052281X(2008) 07Π821015206 Approimation pressions for the emperature Integral Chen Haiiang
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Control Theory & Applications PID (, )
26 12 2009 12 : 1000 8152(2009)12 1317 08 Control Theory & Applications Vol. 26 No. 12 Dec. 2009 PID,, (, 200240) : PID (PIDNN), PID,, (BP).,, PIDNN PIDNN (MPIDNN), (CPSO) BP, MPIDNN CPSO MPIDNN CRPSO
Conductivity Logging for Thermal Spring Well
/.,**. 25 +,1- **-- 0/2,,,1- **-- 0/2, +,, +/., +0 /,* Conductivity Logging for Thermal Spring Well Koji SATO +, Tadashi TAKAYA,, Tadashi CHIBA, + Nihon Chika Kenkyuusho Co. Ltd., 0/2,, Hongo, Funabashi,
EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN
13 3 20095 EL ECTR ICMACH IN ESANDCON TROL Vol113 No13 May 2009 FPN,, (, 150001) :,,Petr( FPN ), BP, FPN,,,, : ; ; Petr; : U661 : A : 1007-449X (2009) 03-0464- 07 System s vulnerablty assessment of a rcraft
LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
ΟΙ ΤΟΠΙΚΕΣ ΟΙΚΟΝΟΜΙΕΣ ΚΑΙ Η ΔΙΑΣΤΑΣΗ ΤΟΥ ΦΥΛΟΥ ΣΤΗΝ ΑΓΟΡΑ ΕΡΓΑΣΙΑΣ: Η ΠΕΡΙΠΤΩΣΗ ΤΟΥ ΝΟΜΟΥ ΜΕΣΣΗΝΙΑΣ
ΕΠΙΘΕΩΡΗΣΗ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ -Τεύχος 16 (2009), 61-76 ΟΙ ΤΟΠΙΚΕΣ ΟΙΚΟΝΟΜΙΕΣ ΚΑΙ Η ΔΙΑΣΤΑΣΗ ΤΟΥ ΦΥΛΟΥ ΣΤΗΝ ΑΓΟΡΑ ΕΡΓΑΣΙΑΣ: Η ΠΕΡΙΠΤΩΣΗ ΤΟΥ ΝΟΜΟΥ ΜΕΣΣΗΝΙΑΣ Περίληψη Σκοπός της παρούσας εργασίας είναι
Antimicrobial Ability of Limonene, a Natural and Active Monoterpene
2010,32 (1) :24 28 http :/ / xuebao. jlau. edu. cn Journal of Jilin Agricultural University E2mail : jlndxb @vip. sina. com Ξ,,,, ΞΞ, 200062 : : 320 mg/ L,; ph 4 9, ; 80, 100,121 : : ; ; : TS20213 : A
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση
Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
Nondeterministic Finite Automaton Event Detection in Focusing Region. Sequence Analysis. Sequence Analysis. Feature Extraction. Feature Extraction
y yy y Mult-Object Behavor Recognton by Selectve Attenton Toshkazu WADA y, Masayuk SATO yy,andtakash MATSUYAMA y ( ) (NFA) ( ), ( ) NFA,,. ( ) ( ),, ( ) ( ) ( ) y Department of Intellgence Scence and Technology,
A Formal Method for Analyzing Electronic Commerce Protocols
1000-9825/2005/16(10)1757 2005 Journl of Softwre Vol16, No10 1,2+ 1 (, 100080) 2 (, 100080) A Forml Method for Anlyzng Electronc Commerce Protocols QING S-Hn 1,2+ 1 (Engneerng Reserch Center for Informton
PACS: Pj, Gg
* 1)2) 2) 3) 2) 1) 1) (, 310023 ) 2) (, 315211 ) 3) (, 510006 ) ( 2011 6 16 ; 2011 10 31 ),..,,.,.,. :,,, PACS: 07.05.Pj, 05.45.Gg 1,.,, [1,2].,,, [3,4].,, [5,6].,. [7 9]., [10 17].,.,, [10]., [18 20],
Aerodynamics & Aeroelasticity: Eigenvalue analysis
Εθνικό Μετσόβιο Πολυτεχνείο Natonal Techncal Unversty of Athens Aerodynamcs & Aeroelastcty: Egenvalue analyss Σπύρος Βουτσινάς / Spyros Voutsnas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ
Σχολή Διοίκησης και Οικονομίας Κρίστια Κυριάκου ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΜΠΟΡΙΟΥ,ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΝΑΥΤΙΛΙΑΣ Της Κρίστιας Κυριάκου ii Έντυπο έγκρισης Παρουσιάστηκε
«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΕΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ: ΕΔΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ «ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ