α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η"

Transcript

1 # η &, ε ε 007, ιη Pearson r "η η ι ι ι η ι!ι ι ι η ι η!ηη ι ι!ηη. η ι ιηη ι" η ι!"ι 0 ι η ( α ι ι α η 9 ( ι ι / + -predctor varable). * ι ι ι ι η ι ι ι!ηη η "ι ι ι ι!ηη η ι ι η η ι 'ι ι ι (η ) ι η ( " ι ι η!ηη η 9. η ιηη η R.A. Fsher η 90 ι, η John Aldrch, η ι η η 9 ι, η Gauss ι η η ιη Pearson. ηι!η "ι ι ι ιι η η η ι η η: α + α+ α! (=+9 [] - ι η!ηη η ι 3 η!ηη η, ι η η η (ntercept) ι "ι η ι ι η!ηη η ( η ι η!ηη η 9 ι 0, η η η (slope) ι "ι η η ι η!ηη η ( η ιηη ι η η ι η!ηη η 9 ι ηη η 9.!η ι ι ι η. ι ι ι!ιι ι ιι ι,! ι ι η ι ι ι η ι η η ι η ι η η. ι ι η!η (=+9 (. η ιη ), η η =0 ι η η =3.!η "ι η ιι η ι!ηη ι ι!ηη η η.,ι ι η!ηη η 9 ι ι 5. 6 ι ι ι ι X, η!ηη η ι η 4. η η η ι η!ηη Y = 0+3*4=. SPSS ι η η ι ιηη ι η ι «Analyze-Regresson-Lnear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. John Aldrch, «Fsher and Regresson, Statstcal Scence, 0(4), 005,

2 η &, ε ε 007 /ι : ι ι ιη η η, ι ι ι ι ι ιη, " ι ι 9 η!ηη η 9 ' η ι η ι η (. ι ιι ι ι ιιι ι η ηη ιι. # ι ι ι ι ηη ι ιι ι η, ι η ηη ι η!ηη η ι ι ι!ηη «ηι» η!η η ι ιηη, ι ι ι. / ι ι ι ι ι ι η" η ηη ι η!ηη η ι ι ιι ι ι ηη. η!η (=+9 [] ι ι ιι ι ι "ι η ηη ι η!ηη η ι η ιι η η η!ηη ( ι η ιη resdual varance): (=+9+ [] η!η (=+9+ [] "ι η ηη η!ηη η ( ηι η η η η!ηη η 9., "ι = ( (+9) [3] 03

3 η &, ε ε 007 ι η ιηη ι ι ι ι ι. ι η ι "η ι η 9 ι (.,ι! η 9 η ιηη ι ι ι, η, "η ι η ι, ι ι ι ι ( ι ι ηι ι E.,ι ι ι ι ι η" η ιηη, ι η! η!ηη η ( " ι ι ι η ηη η η (, ι ι η ηη ι η ι η ι ηι. 6 "η ι ιι ι η η ι ι ι, ι. ιι ι η η (ι ι ι) ι ι η ιι η η ι " ιι η ι ιι ι ( ι) ι ι, ι η η η η. * ι ι η η ι ι η!η ι! ι η ι ι ι η ι., ι ι η ιι ι η/ι η ι ι η. & ι η η η ιι! ι ι ι ιι η ι ηι η ι ι η ιι η ι η ι η ι ι ι η ι ι ι a ι η η ι b ι η η η ιηη. * η " ι ι η ι η ιηη. /++3+η)η ι η, η ιηη ι ι η ιη η "η ι ι η 9 ι (. $ι ι ι ι "ι η. ι η ιηη "ι 04

4 η &, ε ε 007 (ordnary least squares) ι ι ι ι ι ι η!ηη η ( ι ι E ((( -E ) F ι). η η ι η b η ιηη "ι : + b α + α+ α! (X XX )(Y XY ) b (X X) [4] ιη "ι ι ι ι η 9 ι ( (SXY Sum of Cross-Products) ι ι ι ι η η 9 (SST X -Total Sum of Squares). # ι η ι η b η ηη η ι η η a : + α a α + α+ α! a XY bxx X Y ι ι η η (, ι X X ι ι η η 9. [5] * η ι ιι ι ι ι b (η) ι a (η) " η ι ι ι ι η η 9 η η ηι ι E η η (, η ι η η ιη ι η η ( ι. ηι ι η (expected) ι E ι ι ι Y η η ( "ι η!η η ι ιηη: E = a+bx [6], ηι ι η ιηη ι η " ι η" η ι η η 9 η ιη ηι ι ŷ ι (. # ι "ι. 6 ι ι η/ι "ι ι ι ι ιηη ι!ι η ιι η η, ι ι!ηη η ( ι ι, ι ηη, η η ι!ηη η 9. $ι! 0 ι, η ι ι ι ι η 9 ι ( /η ι. ι ι "η ι 9 ι Y ι ι ι ι η η!ηη η ( ι η!ηη 9, ι η ι ηη ι ι ι! ι ι ι η" "η ι η. 05

5 η &, ε ε 007 /ι : /ι ι η 9 ι (. 3 ι ι ι η b ι η a, ι ι η ( ι η η ι E ι η ι η ιηη ι "η ι 9 -E. $ι ι ι η b ι η a ι ι ιηη ηι : $ 3 - X XX Y X Y (X XX ) * (Y ) XY (X X X ) (Y X Y ) 06 - % ι E yˆ XY ( yˆ X Y ) Y ŷ (Y yˆ ) ,35 8,30,9 0, 68,89 66,74,04 4,5755 6,6 39, 7 75,35 0,30 4, 5,5 06,09 78,38 3,68 87,3-3,38, ,35 6,30, 0, 39,69 66,74,04 4,5755 4,6 8,7 44-3,65-0,70 75,56 3,3 48,49 43,45 -,5 45,6333 0,55 0,30 6 6,35-3,70-5,00,8 3,69 7,56 7,86 6,788 -,56 33, ,65-5,70 9,4,7 3,49 55,09-9,6 9,986 3,9 5, ,65-5,70 3,7 0,4 3,49 60,9-3,78 4,377 -,9 3, ,65-5,70 3,7 0,4 3,49 60,9-3,78 4,377 -,9 3, ,35 5,30 35,96 5,5 34,09 78,38 3,68 87,3,6, ,65-0,70 6,96 0,4 4,49 60,9-3,78 4,377-6,9 47, ,65 -,70 9,3,7 36,89 55,09-9,6 9,986 -,09 4, ,65-6,70,06,7 44,89 55,09-9,6 9,986,9 8, ,65-7,70 5,0 0,4 59,9 60,9-3,78 4,377-3,9 5, ,35 3,30,6 0, 0,89 66,74,04 4,5755,6, ,35 7,30,56 0, 53,9 66,74,04 4,5755 5,6 7, ,35 8,30,,8 68,89 7,56 7,86 6,788 0,44 0, ,35 0,30 0,0 0, 0,09 66,74,04 4,5755 -,74 3, ,35 3,30 78,06, 54,89 84,0 9,50 380,443 3,80 4, ,35 0,30 3,9,8 06,09 7,56 7,86 6,788,44 5, ,65-4,70 38,96 7,0 6,09 49,7-5,43 38,063 0,73 0, ,00 0,00 SXY =340,9 SST X =58,55 SST Y =34, SSr =984,847 SSE =357,357 XX 4,65 XY 64, 7 3 : ( ι ι b η ι a η ι ι E ι ι ι SST 9, SST Y, SSr ι SSE., η η ι ι E ηιη : ) η η η ι ι η η 9 0 ι, η ι. ) η η η ι ι ι η η ( ι, ηη η.,ι ι ι, -ι, ι ιι ι ιηη ι ιι.

6 η &, ε ε 007 ) η η η ( X XX ) " η ι ι η X ( XX 4,65 ). ) η η η ( Y XY ( X Y 64,7 ). ) ι (X X X ) ι ) " η ι ι η ( (Y X Y ) ι ' η ι ι η 9 ι ( ι. # ι ι ι Y X Y ι η. 07 X XX ι ) η η (X XX )(Y XY) ι" ι ι ι η 9 ι ( (SXY=340,9). ") 6 " η ι η b: b (X X (X X )(Y X XX ) Y ) 340,9 5,837 58,55 η) ι a η η ι η η: a XY bxx = 64,7-5,837 * 4,65= 64,7-7,07404= 37,6596 ι a,, η ι η!ηη η η!ηη ι 0 ι ι, ι ι, η ι η!ηη η 9 ι 0 η ι η!ηη ι 37,6. η η η b η ιηη "ι η η ι η!ηη η ( ι η η ι η!ηη η 9 ι ηη η 9., ι, η ι η b=5,837 η ι η ι η!ηη η 9!ι ι, η ι η!ηη (!ι 5,837. #, η ι η!ηη η 9 ιι ι, η ι η!ηη ( ιι 5,837. & ι ι η η η ι η η b ι ι ιηη!ι η η. ηι ι ι ιι ι ι (cross-sectonal data). *ι ι η ι ι ιι ι. & ι ιι ι ι η ι ι η!ηη (.. ι ι η)!η ι (.. ) ι ι η ι ι η!ηη (.. ιη)!η η ι b (.. ). # ι ι η η ηη η η b η ιηη η η ι η!ηη ι αα ι ι (ι, ιι,,...) ι α0α! ι η!ηη η. 5ηι, ι η ι ι ιηη ι ηι ιι ι ι ι ι ιη ηιι η!ηη η ι ιι ι η - η!ηη η η"ι η ηη ι η!ηη η ι η/ ι ιι η η. ) $" ι ι ι b ι a, ι ι ι 9 η η 9 η ιη ηι ι η (expected) ι E η η ( η!η η ι ιηη (. η E ). $ι ι, " ι 9=5 ι (=73, η η ι E =37,6596+5,837 * X = 37,6596+5,837 * 5= 37,6596+9,87=66, η ι η η ι E ι 9=5 ι ιη η ι ι ( 6 η ηη η ( (. η Y - E ). & ι ι η 9 ι (. ι) η ι η" ι η ιηη ι η 0 "η η ι η η 9 η ιη ηι ι E ι ι ( (. 9 ι E ):

7 η &, ε ε 007 ι ι ι η η 9 ι η η ι η ι"ι η ιη ηι ι E η η (. $ι 9=7, ι ι, η ι η ι"ι!ι η E =78,38! (, ι 9=8, E =84,... η η η η η ι 7 η η 9 ι η ι ι"ι!ι ι ι ι η η ( 75 ι 80 (. "η ι 9-( 7-75 ι 7-80 ).,ι ι ι ι ι ι ι ι η η ( η ιηη (. η Y -E ) ι η "ι «ι» ηι. uε/&ο-3ο)+ο/,ο(+ο,ο(3+η)η 6 η ι η η ι ιηη ι!ι η ιηη ιι η ιι η η!ηη η ι η!ηη. 3η ι ι. ι η ιηη ι ι η" "η ι 9 -Y ι ι ι ιι η ιι η η. #, ι ι η ιηη ι η ιι η η - ι ι ι η. 6 η ι ιι ι ηι η ι ιι R (coeffcent of determnaton). "ι η η ηη ι η!ηη η ηι η ιηη ι "ι : +! R SSr ( ŷ XY ) R SST Y ( Y XY ) [7] SSr ι ι ι E ι η η ( ( ( ŷ XY ) ) ι SST Y ι ι η ( ((Y XY ) ). ι ι η ιη, ι ( ŷ XY ) "ι η ι ηη ι η ( ηι η ιηη, η η ιι η η η η 9 (ι ι SSr Sum of Squares from regresson- η, ιι R ι ι ι η ι ιη Pearson r ι η 9 ι (. # ι ι ι ι ι ι η η. 08

8 η &, ε ε 007 ι η ιηη). ι (Y XY ) "ι η ι ηη ι ι (, η 'η η η η ( η!ηη η 9 (ι ι SS ( Total Sum of Squares- ι ι ). ι η η ηη ι η ( ηι, η η ιηη η ( η 9. $ι ι, η!η ιηη E =a+bx ι ι η η ηη η ι η η ( η ι η!ηη η 9=7 ι E =78,38 (78,38=37,6596+5,837 * 7= 37, ,7566). η η η ι E =78,38 X η η ( ι E - X Y =78,38-64,7=3,68. ι "ι η ι ηη ηι η ιηη η ( η 9 ι η ιη η, ηη. ι ι ι ι η 9 "ι, ι, η ι ηη ι η ( ηι η ιη η η 9. H ι ηη ι η ( ηι ( ŷ XY ) = 984,847. ι ηη ι ι ( ι ( Y XY ) =34,., ιι ι: (ŷ XY) 984,847 R 0,84749 (Y XY) 34, ι ιι R η ι 84,7% η ηη η!ηη η ( ηι η ιη η η!ηη η 9. & ι η ηη ηι ι 'η ι ι. ηη ι η ( ι ι η!ηη η 9! α ιι ι η ιη ι ι ( ι ι E ((Y ŷ) ) ι η ι η ιηη ι ι, η SST Y SSr. ι -α α, α (SSE -Sum of Squared Errors). η ηη ι η ( ηι, SST SSr SSE η η ιηη η ( η 9, ι Y R [8]. SST SST SSE 357,57 ι = 0,557. ι η η SST Y 34, ι 5,3% η ηη η!ηη η ( ηι η ιη η η!ηη η 9. ι ιη η ι ηη SST Y ι ι ( ι η η ηη SSr. ηι η ηη SSE ηι (SST Y = SSr+SSE). Y Y ε,4ε,)η,4(3οο.34,η3+η)η η, ι e =( -E η ηι.! ι ι ι ι ι η η η ιι η η!ηη η ( ι η!ηη 9, ι η ι ηη η.,ιι ι ι,, η ι ι η ι ιη ι. $ι ι, ι η ιηη ι -,56 6,6., ι 0 ι ι ((- E ) ι 0. ι ι 7 ι. 09

9 η &, ε ε 007 (Y y) ˆ [9] s SSE e N N ι s 357,357 e 8, ι ιη s e ι ι : s e SSE (Y y) ˆ N N [0] & η ι, s e 357,357 4, ι E ι ι ι η!ηη η 9 ηη ιι η. * η η!η η ι ιηη ι ι ιι ι η ι b η ι a η ' ι ι η!ηη η 9 η η ι E. η η ι ι 'η ι ι ι ηη η E η ι ι ι η!ηη η 9. 'η η ι η!ηη η ι ι ι X η!ηη η ι, αα+-α!α α "ι ι α α/+ 'η (nterpolaton). $ι ι, ι ιι ' ι ι η ι η!ηη η ( η!ηη η ι η ι 6, ( η ι ι, η η η 9 ι ι η ι 6,). ι ι ι ι η 9, ι ι η 9 ( -8) ηη ι ι ι ι ιη 'η η ι η!ηη (. η η E =a+bx =37,6596+5,837 * 6, =73,7468. 'η η ι η!ηη η ι ι ι η!ηη η ι, α /α α!α α "ι ι α α α α/+ 'η (extrapolaton). uε/&ο(3ο)ε4/3/++-3+η)η, ιι R ι ι!ιηη, η!ιηη ι. η ι! ι η ι η η ι η, η, η η ι b ι a ι. -ι ι ι% *ι η ηι η ι ι η η ιηη η!ηη η ( η!ηη η 9 ιι 0 ( :=0). *ι ι η ι ι η η ιηη ι 0 ( :>0). * η ι η η ηι ι ι η "ι η ι ιη ( 95%). η ι!! ι ηι η η η η η ιη ι ι ιι, ιη F ι ιη t. α + F $ι η η ι ι ιηη η ιι ι F ι η η ιη (ANOVA Analyss of Varance): α + F 0

10 η &, ε ε 007 SSr ( ŷ XY ) df F SSE (Y ŷ ) [] df N SSr ι ι η ιηη (. η -ι), df ι ι ιη, η ι!η η ( ι ι ιηη) ι η b. SSE ι ι ι df ι ι, η. ι a ι b η ιη. "ι (MSE- Mean Squared Error) ι ιη s ê. * α, α +!αα s e α SSE MSE= N [], ι MSE= s 357,357 e= = 9, η ιη F ι ι ι ι η ιη ηι η ιηη η ιη ηι (ιη N ι a ι b. ι df =0-=8. η ι F "ι ι η ιη ηι η ιηη η ιη ηι. ι η ι F (,8) ι SSr 984, ,847 F (,8) 99,97755 SSE 357,357 9,8593 N 8 η ι F ι ιι ιη ι. η ι η ι F ι η η: F (,8) =99, $ι η ηη η ιι ηιη η ι F (,8) =99,97755 ι η ι η η η ηι ι ι η ηιη 95% ι (!ι) η. ιη ι F (,8) ι ηιη 95% η ι 4,439 (. ι ). 0 ι ι F ' $ *' df =, df =8 5% % 0,5% 4,439 8,85 5,39 3 : # ι ι F ι df = ι df =8. # ηι ι η η ιη ι F ηι ι ι ι F (,8) C4,439 95% ι η ι F η ι η. ι F (,8) =99,97755 ι η 4,439, η ηι η ι η η ι η η η ιηη ι η η. *ι η ι F (,8) =99,97755 ι η ι η ιη ι F (,8) ι ιι ηιη 0,5%, ι ηι ι ι ιη 0,5% ι F (,8) =99,97755 η η ι ι η ιη η. ι ι ι η ιη η ι η b=5,37 ' η ιη' ι ιη 000 (ιι ηιη sg<0,00). / ι η ι η ι η η ιηη ι η. 6ι! ι η!ι ι ι η 9!ι ι ι ι η ( ι. 'ι ι η η ιη:

11 .ι "! (Sum of squares) 0 ' (df) η &, ε ε 007 $ ι! "! (Mean square) F Sg $ (Model) ι% (Regresson) 984, ,847 99, ,000 a -%ι (Resdual) 357, ,8593 * (Total) 34, 9 3 :, *η 9, &!ηη η: *η( 3 3: ι η ιη. ηι ι ' η ηι η, η ι =0 η η η ιηη ηη! η!ηη η, ι ι ι ι η 9 " ιι ι ι η!ηη η (. t + ιι F ηι ιι ι ι ι ι ι ι, η ι, "ι ι ι ι ιηη ι ι ιη t ηι ιι ιι ι ι. ιι t ηι ιι ι ι η η ι ιηη ι η ι (probablty b dstrbuton) η η t, sb ι α s b (standard error of the estmate) η ι η b. ι ηη η b ι η ηη ι" ι ι η b ι ι η. # ι ι ι «ηη» ι η ηη η ι η b ι η 9 ι (. T ι ηη η b "ι : α (standard error of the estmate) + b s b (Y ŷ ) MSE N SST (X X [3] X ) MSE ι (Mean Squared Error), η η ιη s e ι SST X ι η ι ηη ι η!ηη η 9, η ι ι ι η!ηη η X (X X) ). ( ι ηη η η b ι!" ι: MSE 9,8593 s b 0, ,58307 (X X) 58,55 η ι ιη t ι: b 5,837-0 t η = 9,9989 sb 0,58307 η η, ι, η ηι η ι ι η :=0 ιη η ι =0. * η η ι t=9,9989, ηιη 95% ι df=n-=8, ι ι t: ι t ι p $ *' 5%,5% % 0,5% 0,05% ι *' df 0% 5% % % 0,% 8,734,009,554,8784 3,96

12 3 4: # ι t ι ι df=8. η &, ε ε 007 3η ι ι df=8 η ι t ι η ι η ι 3,96 ι ιη 0,05% ι η. η ηι η :=0 ι ι η ι :>0. N ι ιη t ι ι ι Fsher t r r η ιι η ι ιη Pearson r: 6 η ι ι ιι r = 0, ι ι η η ι Pearson r 'η., η ι Pearson r = r t η 0, ,90559.& N r 0,90559 r 8 0, , ,557 0, ,9776 0,90559(0,8675) 9,9989 # ' η ι t ι ι ι ι η η ι F η (9,9989 =99,978), ι ι η ι ιη ι ι ιι. 6 η/ι, ηι ι, ι!ι ι ι ηι ι ι ι η η ι ι ιηη., ι ι,! η ι η b ι η ι ι ι a pror (.. η!η ι ι η ι η η) ιη ι t ιη ιι η ι η η ι ιι!. $ι η ιη ι η ι η ι "ι ιι, η ηι η ι η : - =0 (η ι = ) ι η ι : ι ι ι ι ιι η/ι ηι ι!η ι ι ι!ι ι. ι η η ιη ηι η ι η ι ι ι b ι b ι η ιι ηιη ιι t F ι η ι ι ι ι ι η ι ι ι ι ιι ηι η. η ιι ι η η : - =0 ι t ιι ι η : b b t s( b b ) [4], s(b -b ) ι α ι "ι : s(b - b ) SST Y SSTY (N - ) (N - ) SST X SST SST - ι SST - ι η ι ηη ι ι η!ηη ( η ι ηη ι ι η!ηη ( ( ( Y XY) ( Y XY ) ), / ι / ι η ι ι SST 3 ι SST 3 ι η ι ηη ι ι!η (X X ) ι 9 ( (X X ) ι. η 9 ( X) X ) X [5] 3

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Ονοματεπώνυμο: Όνομα Πατρός:... Σ ΑΜ:. Ημερομηνία: Παρακαλώ μη γράφετε στα παρακάτω

Διαβάστε περισσότερα

$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η.

$ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. η &, 7!# v # $ι ιι η ι ι!η ηι ι ANOVA. To ANOVA ι ι ι η η η ιη (Analysis of Variance). * ι! ι ι ι ι ι η ιη. ;, ι ι ι! η ιι ηιη ι ι!η ι η η ιη ι ι η ι η. - ι% ιι* ι' F ι ι ι% MS F MS between within MS MS

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το κλασικό Γραμμικό Υπόδειγμα ΔΙΑΛΕΞΗ 0 Μαρί-Νοέλ Ντυκέν, Μαρία

Διαβάστε περισσότερα

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Διακύμανσης

Εισαγωγή στην Ανάλυση Διακύμανσης Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ 7 ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ (Non Parametrc Regresson) Το κεφάλαιο αυτό συνδέεται άμεσα με το κεφάλαιο που αναφέρεται στην συσχέτιση τάξης μεγέθους με την έννοια υπό την οποία η κλασική παραμετρική

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΑΛΙΝΔΡΟΜΗΣΗ Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Δασολογίας και Διαχείρισης Περιβάλλοντος και Φυσικών Πόρων 4 0 εξάμηνο ΚΙΤΙΚΙΔΟΥ ΚΥΡΙΑΚΗ ΕΙΣΑΓΩΓΗ Σχέσεις εξάρτησης μεταξύ των μεταβλητών

Διαβάστε περισσότερα

7. Ανάλυση Διασποράς-ANOVA

7. Ανάλυση Διασποράς-ANOVA 7. Ανάλυση Διασποράς-ANOVA Παράδειγμα Μετρήσεις της συγκέντρωσης του strodum (mg/ml) σε πέντε υδάτινες περιοχές (Α,Β,C,D,Ε). Α Β C D Ε 8, 39,6 46,3 4,0 56,3 33, 40,8 4, 44, 54, 36,4 37,9 43,5 46,4 59,4

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις: Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος

Διαβάστε περισσότερα

EDUCAT &ι'ι% Measurement Level: Ordinal Value Label 1,00 7ι η 2,00 -ι 3,00 3 ιι 4,00 * ι. Measurement Level: Scale

EDUCAT &ι'ι% Measurement Level: Ordinal Value Label 1,00 7ι η 2,00 -ι 3,00 3 ιι 4,00 * ι. Measurement Level: Scale ## ι ι ι ι η ιι ι ηι ιι η ι η ι ι. ηι ι ι ι ηι ιη 474 " ι ( «work.sav» η ι ) η η ι ι. ι ι"ι ι ιι ι ι ι η ( ηιη ι ι: File Display Data File InformationWorking File). ID!ι% Measurement Level: Scale Column

Διαβάστε περισσότερα

Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή

Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή Πρακτικές Θετικής Οργανωσιακής Αλλαγής και οι στάσεις των εργαζομένων απέναντι στην αλλαγή Ονοματεπώνυμο : Ευανθία Καρακατσάνη Σειρά: 9 Επιβλέπων Καθηγητής: Ο. Κυριακίδου Δεκέμβριος 2012 ΣΤΟΧΟΣ/ ΣΚΟΠΟΣ

Διαβάστε περισσότερα

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα: ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),

Διαβάστε περισσότερα

Πλήρεις Οµάδες σε Ελεύθερη ιάταξη

Πλήρεις Οµάδες σε Ελεύθερη ιάταξη Πλήρεις Οµάδες σε Ελεύθερη ιάταξη ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Πλήρεις Οµάδες σε Ελεύθερη ιάταξη (Randomized Complete-block Design- RCBD) Παράδειγµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή

Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Δεκέμβριος 2011 Στόχος Έρευνας H βιτρίνα των καταστημάτων αποτελεί

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

Πολλαπλή Παλινδρόµηση µε Έµφαση στο Πρόβληµα της Ετεροσκεδαστικότητας

Πολλαπλή Παλινδρόµηση µε Έµφαση στο Πρόβληµα της Ετεροσκεδαστικότητας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Πολλαπλή Παλινδρόµηση µε Έµφαση στο Πρόβληµα της Ετεροσκεδαστικότητας

Διαβάστε περισσότερα

Άσκηση 2. i β. 1 ου έτους (Υ i )

Άσκηση 2. i β. 1 ου έτους (Υ i ) Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων

Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Σχολή Χημικών Μηχανικών ΕΜΠ Ανάλυση Συστημάτων Χημικής Μηχανικής, ο εξάμηνο Προσαρμογή καμπύλης με τη μέθοδο των ελαχίστων τετραγώνων Διδάσκοντες: Χ. Κυρανούδης, Γ. Μαυρωτάς Εισαγωγή Με βάση κάποιο δείγμα

Διαβάστε περισσότερα

Κεφάλαιο 15. Παραγοντική ανάλυση διακύµανσης. Παραγοντική

Κεφάλαιο 15. Παραγοντική ανάλυση διακύµανσης. Παραγοντική Κεφάλαιο 15 Παραγοντική ανάλυση διακύµανσης 1 Παραγοντική ανάλυση διακύµανσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη των επιδράσεων περισσότερων από µια ανεξάρτητων µεταβλητών στην εξαρτηµένη καθώς

Διαβάστε περισσότερα

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά 1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο

5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο 5. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ (GENERAL LINEAR MODEL) 5.1 Εναλλακτικά μοντέλα του απλού γραμμικού μοντέλου: Το εκθετικό μοντέλο Ένα εναλλακτικό μοντέλο της απλής γραμμικής παλινδρόμησης (που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

ΠΑΛΙΝ ΡΟΜΗΣΗ..Π.Μ.Σ. Μαθηµατικά των Υπολογιστών και των Αποφάσεων. Πάτρα, 27 Ιανουαρίου 2011

ΠΑΛΙΝ ΡΟΜΗΣΗ..Π.Μ.Σ. Μαθηµατικά των Υπολογιστών και των Αποφάσεων. Πάτρα, 27 Ιανουαρίου 2011 Πάτρα, 7 Ιανουαρίου 011 Γενικά Πολλές ϕορές µας ενδιαφέρει να µελετήσουµε τις σχέσεις που υπάρχουν ανάµεσα στις µεταβλητές. Παράδειγµα 1 OZON 300 80 60 40 0 00 180 150 00 50 300 350 400 450 CFC 1 Από το

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 16. Απλή Γραμμική Παλινδρόμηση και Συσχέτιση ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ (Analyss of Varance for two factor Experments) (Two-Way Analyss of Varance) Ο πειραματικός σχεδιασμός για τον οποίο θα μιλήσουμε είναι μια επέκταση της μεθοδολογίας

Διαβάστε περισσότερα

Κεφάλαιο 7. Γραμμική και λογιστική παλινδρόμηση. Σύνοψη. Προαπαιτούμενη γνώση. 7.1 Απλή και Πολλαπλή Γραμμική Παλινδρόμηση (Linear Regression)

Κεφάλαιο 7. Γραμμική και λογιστική παλινδρόμηση. Σύνοψη. Προαπαιτούμενη γνώση. 7.1 Απλή και Πολλαπλή Γραμμική Παλινδρόμηση (Linear Regression) Κεφάλαιο 7 Σύνοψη Γραμμική και λογιστική παλινδρόμηση Στο κεφάλαιο αυτό γίνεται ανάλυση της μεθοδολογίας της απλής και πολλαπλής γραμμικής παλινδρόμησης, και αναφορά στη μεθοδολογία της λογιστικής παλινδρόμησης.

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΔΙΚΕΥΣΗ: ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ «ΜΕΛΕΤΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ

Διαβάστε περισσότερα

Lampiran 1 Output SPSS MODEL I

Lampiran 1 Output SPSS MODEL I 67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables

Διαβάστε περισσότερα

α α α α α α α α α α α α α α α α α α α α α α α α α α α α β χ δ ε φ γ η ι ϕ κ λ µ ν ο π θ ρ σ τ υ ϖ ω ξ ψ ζ αα ββ χχ δδ εε φφ γγ ηη ιι ϕϕ κκ λλ µµ νν οο

Διαβάστε περισσότερα

Λυμένες Ασκήσεις για το μάθημα:

Λυμένες Ασκήσεις για το μάθημα: Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA)

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 8. Ανάλυση διασποράς (ANOVA) ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 8. Ανάλυση διασποράς (ANOVA) Γενικά Επέκταση της σύγκρισης µέσων τιµών µεταβλητής ανάµεσα σε 2 δείγµατα (οµάδες ήστάθµες): Σύγκριση πολλών δειγµάτων (K>2) µαζί Σχέση ανάµεσα σε µια ποσοτική

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΟΔΗΓΙΕΣ: Απαντήστε σε όλα τα θέματα. Απαντήστε με ακρίβεια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 5: ΠΡΟΥΠΟΛΟΓΙΣΜΟΙ ΚΑΙ ΠΡΟΒΛΕΨΕΙΣ ΠΩΛΗΣΕΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΛΟΓΙΣΜΙΚΟΥ ΣΕ ΠΕΡΙΒΑΛΛΟΝ C++ ΓΙΑ ΤΗΝ ΠΛΗΡΗ ΜΕΛΕΤΗ ΤΩΝ ΓΡΑΜΜΙΚΩΝ ΣΤΟΧΑΣΤΙΚΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ Διπλωματική

Διαβάστε περισσότερα

ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο

ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ Παιεάο Δπζηξάηηνο ΑΘΗΝΑ 2014 1 ΠΔΡΙΔΥΟΜΔΝΑ 1) Δηζαγσγή 2) Πεξηγξαθηθή Αλάιπζε 3) ρέζεηο Μεηαβιεηώλ αλά 2 4) Πξνβιεπηηθά / Δξκελεπηηθά Μνληέια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συνδιακύμανσης (Analysis of Covariance, ANCOVA)

Εισαγωγή στην Ανάλυση Συνδιακύμανσης (Analysis of Covariance, ANCOVA) Εισαγωγή στην Ανάλυση Συνδιακύμανσης (nalysis of Covariance, NCOV) Βασίλης Παυλόπουλος Λέκτορας Διαπολιτισμικής Ψυχολογίας Τομέας Ψυχολογίας, Πανεπιστήμιο Αθηνών vpavlop@psych.uoa.gr http://www.psych.uoa.gr/~vpavlop

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΑΣΚΗΣΗ, ΕΡΓΟΣΠΙΡΟΜΕΤΡΙΑ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΗ» ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Μεθοδολογία έρευνας και στατιστική 2. ΚΩΔ.

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

! # % & ( % # ) # + +, / / + % ) +

! # % & ( % # ) # + +, / / + % ) + ! # ! # % & ( % # ) # + +,,. / / + % ) + 0 1223 444444444444444444444444444 ( 6 3 99291 5 2?9=3 322 5 2?9=3 333 5 4 Α % 5 +++ 5 7 8 : ; 31 22 /0 ! # % & ( # )) +, +,+. / / 4 0 1 2 3 2 + ( 5 3 4,.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΜΕΤΑΒΛΗΤΩΝ ΑΠΟ ΤΗ ΔΙΑΔΙΚΤΥΑΚΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΕΝΙΚΗ ΚΟΙΝΩΝΙΚΗ ΕΡΕΥΝΑ - GSS

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΜΕΤΑΒΛΗΤΩΝ ΑΠΟ ΤΗ ΔΙΑΔΙΚΤΥΑΚΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΕΝΙΚΗ ΚΟΙΝΩΝΙΚΗ ΕΡΕΥΝΑ - GSS Τ.Ε.Ι ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΜΕΤΑΒΛΗΤΩΝ ΑΠΟ ΤΗ ΔΙΑΔΙΚΤΥΑΚΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΕΝΙΚΗ ΚΟΙΝΩΝΙΚΗ ΕΡΕΥΝΑ - GSS Γιακουμή

Διαβάστε περισσότερα

Viola adorata X ± 2s 1 344 320 2 348 316 3 224 232 4 372 364 5 336 308 6 372 328 7 292 296 8 316 264 AT1 AT2 1 344 320 342.25 272.25 2 348 316 506.25 156.25 3 224 232 10302.25 5112.25 4 372 364

Διαβάστε περισσότερα

Σύγκριση Συνδυασµένων Παραγόντων

Σύγκριση Συνδυασµένων Παραγόντων Σύγκριση Συνδυασµένων Παραγόντων Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Παραγοντικά Πειράµατα (Factorial Experiments)

Διαβάστε περισσότερα

Πλήρως Τυχαιοποιηµένο Σχέδιο

Πλήρως Τυχαιοποιηµένο Σχέδιο Πλήρως Τυχαιοποιηµένο Σχέδιο Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Πλήρως Τυχαιοποιηµένο Σχέδιο (Completely Randomized

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς

Διαβάστε περισσότερα

Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών

Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών Μελέτη Συμπεριφοράς Καταναλωτή στο Ηλεκτρονικό Εμπόριο: Η περίπτωση των Ιστοσελίδων Ηλεκτρονικών Κουπονιών Ονοματεπώνυμο: Βλαχάκη Παρασκευή- Ερασμία Σειρά: 9η Επιβλέπων Καθηγητής: Αδάμ Βρεχόπουλος Δεκέμβριος

Διαβάστε περισσότερα

ΠΡΟΒΛΕΨΗ ΑΦΕΡΕΓΓΥΟΤΗΤΑΣ Η ΝΟΡΜΑ ΤΟΥ ΑΣΦΑΛΙΣΤΙΚΟΥ ΚΛΑΔΟΥ ΓΙΑ ΥΓΙΕΙΣ ΕΤΑΙΡΙΕΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΦΕΡΕΓΓΥΟΤΗΤΑΣ ΙΙ

ΠΡΟΒΛΕΨΗ ΑΦΕΡΕΓΓΥΟΤΗΤΑΣ Η ΝΟΡΜΑ ΤΟΥ ΑΣΦΑΛΙΣΤΙΚΟΥ ΚΛΑΔΟΥ ΓΙΑ ΥΓΙΕΙΣ ΕΤΑΙΡΙΕΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΦΕΡΕΓΓΥΟΤΗΤΑΣ ΙΙ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 355-362 ΠΡΟΒΛΕΨΗ ΑΦΕΡΕΓΓΥΟΤΗΤΑΣ Η ΝΟΡΜΑ ΤΟΥ ΑΣΦΑΛΙΣΤΙΚΟΥ ΚΛΑΔΟΥ ΓΙΑ ΥΓΙΕΙΣ ΕΤΑΙΡΙΕΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΦΕΡΕΓΓΥΟΤΗΤΑΣ

Διαβάστε περισσότερα

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11 ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η

Διαβάστε περισσότερα

Βήματα για την επίλυση ενός προβλήματος

Βήματα για την επίλυση ενός προβλήματος ΜΑΘΗΜΑ 2ο Βήματα για την επίλυση ενός προβλήματος 1. Κατανόηση του προβλήματος με τη σχετική επιστήμη (όπως οικονομία, διοίκηση, γενικές επιστήμες) π.χ το πρόβλημα της κατανάλωσης κάποιας περιοχής σε σχέση

Διαβάστε περισσότερα

Γραμμική. Παλινδρόμηση. με την R

Γραμμική. Παλινδρόμηση. με την R Γραμμική Παλινδρόμηση με την R Δεδομένα των Sams και Shadman (1986) Για τη μελέτη απόδοσης σε φυσικό αέριο κοιτασμάτων άνθρακα έγινε ένα πείραμα στο οποίο μετρήθηκε η απόδοση (y) σε σχέση με την περιεκτικότητα

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο]

ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο] Ενότητα 2 ιαφάνειες Μαθήµατος: 2- Ενότητα 2 ιαφάνειες Μαθήµατος: 2-2 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο.6. είκτες µερικής συσχέτισης

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 7 η : Ανάλυση

Διαβάστε περισσότερα

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance) ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΔΡ. ΙΩΑΝΝΗΣ Σ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ -3 Ακαδημαϊκό Έτος -3 . ΕΙΣΑΓΩ ΓΗ ΣΤΟ SPSS ΒΑΣΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ..... Καταγραφή δεδομένων και

Διαβάστε περισσότερα

Λέξεις Κλειδιά: Γεωγραφικά Σταθμισμένη Παλινδρόμηση (GWR), Γονιμότητα

Λέξεις Κλειδιά: Γεωγραφικά Σταθμισμένη Παλινδρόμηση (GWR), Γονιμότητα Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 23 ου Πανελληνίου Συνεδρίου Στατιστικής (2010), σελ.321-328 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΧΩΡΙΚΩΝ ΔΙΑΦΟΡΟΠΟΙΗΣΕΩΝ ΤΩΝ ΕΠΙΔΡΑΣΕΩΝ ΚΟΙΝΩΝΙΚΟ ΟΙΚΟΝΟΜΙΚΩΝ ΠΑΡΑΓΟΝΤΩΝ ΣΤΗ ΓΟΝΙΜΟΤΗΤΑ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA)

ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA) ΑΝΑΛΥΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ (ΑΝOVA). Εισαγωγή Η ανάλυση της διακύμανσης (ANalysis Of VAriance ANOVA) είναι μια στατιστική μεθόδος με την οποία η μεταβλητότητα που υπάρχει σ ένα σύνολο δεδομένων διασπάται στις

Διαβάστε περισσότερα

Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις

Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις Η Σχέση Της Επιχειρηματικής Στρατηγικής Και Της Καινοτομικής Επίδοσης: Μια Εμπειρική Διερεύνηση Σε 2000 Ελληνικές Επιχειρήσεις Άγγελος Τσακανίκας, Επίκουρος Καθηγητής ΕΜΠ Γεώργιος Σιώκας, Υποψήφιος Διδάκτορας

Διαβάστε περισσότερα

Appendix A. Final IPO sample Date Stock Offering Price Closing Change Berry Index Ad Hoc-Berry index Indutrade AB 65 73,25 12,69% 0,8392

Appendix A. Final IPO sample Date Stock Offering Price Closing Change Berry Index Ad Hoc-Berry index Indutrade AB 65 73,25 12,69% 0,8392 Appendix A. Final IPO sample Date Stock Offering Price Closing Change Berry Index Ad Hoc-Berry index 2005-10-05 Indutrade AB 65 73,25 12,69% 0,8392 0,775887574 2005-10-06 Hemtex AB 56 61 8,93% 0 0 2005-11-08

Διαβάστε περισσότερα

Matrix Algebra Computation of a Correlation Matrix

Matrix Algebra Computation of a Correlation Matrix Suppose N = 5 subjects were measured on p = 3 variables. Matrix Algebra Computation of a Correlation Matrix The Data Matrix D is a matrix of deviation scores with N = 5 rows and p = 3 columns. D (Nxp)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 ο. Minerals (select) ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ Human Apple Mango Orange Water-

ΚΕΦΑΛΑΙΟ 11 ο. Minerals (select) ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ Human Apple Mango Orange Water- ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 11 ο 11.1 Παράθυρο εισαγωγής εντολών (SYNTAX) 11.2 Script γλώσσα προγραµµατισµού στο SPSS 11.3 Λήψη και εισαγωγή

Διαβάστε περισσότερα

Έλεγχος υποθέσεων ΙI ANOVA

Έλεγχος υποθέσεων ΙI ANOVA Έλεγχος υποθέσεων ΙI ANOVA Μοντέλα στην Επιστήμη Τροφίμων 532Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας ή ανάλυση

Διαβάστε περισσότερα

Completely Randomized Design

Completely Randomized Design Vio ar a t a d o l a Completely Randomized Design 21 (, 2008,. 103). 10,. 10,. =0,05. (Experimental Design): ( ) (Factors): 1 ( ) (Levels) ( ): 10. (Replications)) (n):( 10 ( ): 100 : (Balanced),. (Depended

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ ARIMA (p,d,q)

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ ARIMA (p,d,q) ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια 1 ΥΠΟΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

/ 12 # % &! (! & )! (+,.). / 0

/ 12 # % &! (! & )! (+,.). / 0 / 12! # % &! (! & )! (+,.). / 0 ! # % & % ( ) ( % + (, % #. # #. / 0 # 1, % # ) 2,# 3 3 % # # 0/4# (# 0, # % 3 5 6 ( 5 7 % 7 % 7 % # % 7 % 7 7 7 % 8 9 : # 7 # ; 7 % % 7 # 7 # % < 7 7 7 %. # 8 # 7 # % )

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 Γενικές οδηγίες για την εργασία Τέταρτη Γραπτή Εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

Forecasting Εισαγωγή στην Πρόγνωση

Forecasting Εισαγωγή στην Πρόγνωση Forecasting Εισαγωγή στην Πρόγνωση Πρόγνωση Ορισμός Αντί προλόγου Εφαρμογές Εφοδιαστική Ορισμός: [

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΟΥ ΥΠΟΒΑΛΛΕΤΑΙ ΣΤΟ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΙΑΣ ΘΕΜΑ: ΑΝΘΡΩΠΟΜΕΤΡΙΚΑ

Διαβάστε περισσότερα

Δείγμα πριν τις διορθώσεις

Δείγμα πριν τις διορθώσεις Εισαγωγή Α ΜΕΡΟΣ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Εισαγωγή 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or Αnalytical Statistics)

Διαβάστε περισσότερα

ά ς ά ς ώ ς ί ς ά ς ί ς ής ύ ή ς ί ί

ά ς ά ς ώ ς ί ς ά ς ί ς ής ύ ή ς ί ί ίςέςέςές άςάςώς ίς άςίς ήςύής ί ί άήύέςίί ύίίςόά ίά ίό έ ί ύίςίήό ύ ώήύ ήάί ί ήί ός ώςάώί όώύύςώςή άςύς ί όόόάί έό έώςίςάς έςάςέςίςές όςάί ςάςίςίςώ ός ς ής ίς ά ί όςάά Άς ίς ήάέ άςύήί ί ί ύ ή ίάς όήός

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows

Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φιλοσοφίας, Παιδαγωγικής και Ψυχολογίας Τομέας Ψυχολογίας Εισαγωγή στη Στατιστική Επεξεργασία Δεδομένων με το SPSS for Windows Επιμέλεια: Λέκτορας Βασίλης

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

Ανάλυση Παλινδρόμησης. Εργαστήριο. Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 252

Ανάλυση Παλινδρόμησης. Εργαστήριο. Μαθηματικών & Στατιστικής / Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) 252 Αάλυση Παλιδρόμησης Αάλυση Παλιδρόμησης Με τη αάλυση παλιδρόμησης (regresson analss) εξετάζουμε τη σχέση μεταξύ δύο ή περισσοτέρω μεταβλητώ με σκοπό τη πρόβλεψη τω τιμώ της μιας, μέσω τω τιμώ της άλλης

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 6 ο 6.1 Ερωτήσεις Πολλαπλών Απαντήσεων 6.2 Εντολή Case Summaries 6.3 Ο έλεγχος t : (correlate t-test) 6.3.1Σύγκριση

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης

Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το Γενικευμένο Γραμμικό Υπόδειγμα (Α) ΔΙΑΛΕΞΗ 05 Μαρί-Νοέλ Ντυκέν,

Διαβάστε περισσότερα

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x

Διαβάστε περισσότερα