arxiv: v1 [math.na] 15 Nov 2018
|
|
- Εὔα Σκλαβούνος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 STABLE DISCRETIZATIONS OF ELASTIC FLOW IN RIEMANNIAN MANIFOLDS JOHN W. BARRETT, HARALD GARCKE, AND ROBERT NÜRNBERG arxiv:8.0630v mat.na 5 Nov 08 Abtract. Te elatic flow, wic i te L -gradient flow of te elatic energy, a everal application in geometry and elaticity teory. We preent table dicretization for te elatic flow in two-dimenional Riemannian manifold tat are conformally flat, i.e. conformally equivalent to te Euclidean pace. Example include te yperbolic plane, te yperbolic dik, te elliptic plane a well a any conformal parameterization of a two-dimenional manifold in R d, d 3. Numerical reult ow te robutne of te metod, a well a quadratic convergence wit repect to te pace dicretization. Key word. Elatic flow, yperbolic plane, yperbolic dik, elliptic plane, Riemannian manifold, geodeic elatic flow, finite element approximation, tability, equiditribution AMS ubject claification. 65M60, 53C44, 53A30, 35K55. Introduction. Elatic flow of curve in a two-dimenional Riemannian manifold M, g i given a te L -gradient flow of te elatic energy κ g, were κ g i te geodeic curvature. It a been own, ee 6 for te general cae and for te yperbolic plane, tat te gradient flow of te elatic energy i given a. V g = κ g g g κ3 g S 0 κ g, were V g i te normal velocity of te curve wit repect to te metric g, g = g, denoting arclengt, and S 0 i te ectional curvature of g. Te evolution law. decreae te curvature energy κ g, and long term limit are expected to be critical point of ti energy. Tee critical point are called free elaticae, ee 6, and are of interet in geometry and mecanic. In particular, let u mention tat a curve i an abolute minimizer if and only if it i a geodeic. Recently te flow. wa tudied in,, for te cae of te yperbolic plane, relying on earlier reult in 4 for a flat background metric. Te yperbolic plane i a particular cae of a manifold wit non-poitive ectional curvature, wic i of particular interet a te et of free elaticae i muc ricer, ee 6. In ti paper, we allow for a general conformally flat metric. Example include te yperbolic plane, te yperbolic dik, te elliptic plane, a well a any conformal parameterization of a two-dimenional manifold in R d, d 3. For parameterized yperurface in R 3, earlier autor, ee e.g. 9, 7, 8,, 4, ued te urrounding pace in teir numerical approximation, wic lead to error in direction normal to te yperurface. Ti will be avoided by te intrinic approac ued in ti paper. In particular, our numerical metod lead to approximate olution wic remain on te yperurface after application of te parameterization map. In addition, in ti paper we will preent a firt numerical analyi for elatic flow in manifold not embedded in R 3. Ti in particular make it poible to compute elatic flow of curve in te yperbolic plane in a table way. For finite element approximation of. introduced in 6 it doe not appear poible to prove a tability reult. It i te aim of ti paper to introduce novel approximation for. tat can be own to be table. In particular, we will ow Department of Matematic, Imperial College London, London, SW7 AZ, UK Fakultät für Matematik, Univerität Regenburg, Regenburg, Germany
2 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG tat te emidicrete continuou-in-time approximation admit a gradient flow tructure. For relevant literature on conformal metric we refer to 9, 5. Curvature driven flow in yperbolic pace ave been tudied by 0,,,, 6, and related numerical approximation of elatic flow of curve can be found in 4, 3, 5, 8 for te Euclidean cae, and in 9, 7, 8,, 4 for te cae of curve on yperurface in R 3. Te outline of ti paper i a follow. After formulating te problem in detail in te next ection, we will derive in Section 3 weak formulation wic will be te bai for our finite element approximation. In Section 4 we introduce continuou-intime, dicrete-in-pace dicretization wic are baed on te weak formulation. For tee emidicrete formulation a tability reult will be own, wic i te main contribution of ti work. In Section 5 we ten formulate fully dicrete variant for wic we ow exitence and uniquene. In Section 6 we preent everal numerical computation wic ow convergence rate a well a te robutne of te approac. Finally, in te appendix we ow te conitency of te weak formulation preented in Section 3.. Matematical formulation. Let I = R/Z be te periodic interval 0,. Let x : I R be a parameterization of a cloed curve Γ R. On auming tat x ρ > 0 on I, we introduce te arclengt of te curve, i.e. = x ρ ρ, and et. τ = x and ν = τ, were denote a clockwie rotation by π. For te curvature κ of Γt it old tat. κ ν = κ = τ = x = xρ. x ρ x ρ ρ Let H R be an open et wit metric tenor.3 v, w g z = g z v. w v, w R for z H, were v. w = v T w i te tandard Euclidean inner product, and were g : H R >0 i a moot poitive weigt function. Te lengt induced by.3 i defined a.4 v g z = v, v g z = g z v v R for z H. For λ R, we define te generalized elatic energy a.5 W g,λ x = κg λ x ρ g dρ, were.6 κ g = g x κ ν. ln g x I i te curvature of te curve wit repect to te metric g, ee 6 for detail. Generalized elatic flow i defined a te L gradient flow of.5, and it wa etablied in 6 tat a trong formulation i given by.7 V g = g x xt. ν = κ g g g κ3 g S 0 κ g λ κ g,
3 were g = g x and ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 3.8 S 0 = ln g g i te ectional curvature of g. We refer to 6 for furter detail. Te two weak formulation of.7, for λ = 0, introduced in 6 are baed on te equivalent equation g x x t. ν = x ρ κ g ρ g x x ρ ρ g x κ 3 g g x S0 x κ g. Te firt ue κ a a variable, wile te econd ue κ g a a variable. U: Let x0 H I. For t 0, T find xt H I and κt H I uc tat g x x t. ν χ x ρ dρ = g x g x κ ν. ln g x χ ρ x ρ dρ I I ρ g x κ ν. ln g x 3 χ xρ dρ I.9a S 0 x κ ν. ln g x χ x ρ dρ χ H I, I.9b κ ν. η x ρ dρ x ρ. η ρ x ρ dρ = 0 η H I. I I W: Let x0 H I. For t 0, T find xt H I and κ g t H I uc tat g x x t. ν χ x ρ dρ = g x κg ρ χ ρ x ρ dρ g x κ 3 g χ x ρ dρ I.0a.0b g x κ g ν. η x ρ dρ I I I S 0 x g x κg χ x ρ dρ χ H I, I g x ρ. η ρ x. η g x x ρ x ρ dρ = 0 η H I. For te numerical approximation baed on U and W it doe not appear poible to prove tability reult tat ow tat dicrete analogue of.5, for λ = 0, decreae monotonically in time. Baed on te tecnique in 5, it i poible to introduce alternative weak formulation, for wic emidicrete continuou-in-time finite element approximation admit uc a tability reult. We end ti ection wit ome example metric tat are of particular interet in differential geometry. Two familie of metric are given by.a g z = z. e µ, µ R, wit H = H = { z R : z. e > 0}, and.b g z = 4 α z, wit H = { D α = { z R : z < α } α > 0, R α 0. I
4 4 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG Te cae.a wit µ = model te yperbolic plane, wile µ = 0 correpond to te Euclidean cae. Te cae.b wit α = give a model for te yperbolic dik, wile α = model te geometry of te elliptic plane. Of coure, α = 0 collape to te Euclidean cae. Furter metric of interet are induced by conformal parameterization Φ : H R d, d 3, of te two-dimenional Riemannian manifold M R d, i.e. M = ΦH and e Φ z = e Φ z and e Φ z. e Φ z = 0 for all z H. Here example include te Mercator projection of te unit pere witout te nort and te out pole, Φ z = co z. e co z. e, in z. e, in z. e T, o tat.c g z = co z. e, wit H = R, a well a te catenoid parameterization Φ z = co z. e co z. e, co z. e in z. e, z. e T, o tat.d g z = co z. e, wit H = R. Baed on 0, p. 593 we alo recall te following conformal parameterization of a toru wit large radiu R > and mall radiu r = from 6. In particular, we let = R and define Φ z = co z. e z. e z. e co, in, in z. e T, o tat.e g z = co z. e, wit H = R. 3. Weak formulation. We define te firt variation of a quantity depending in a differentiable way on x, in te direction χ a 3. x A x A x ε χ A x χ = lim, ε 0 ε and oberve tat, for x ufficiently moot, 3. x A x x t = d dt A x. For later ue, on noting 3.,. and.4, we oberve tat 3.3a x gβ x χ = β g β x χ. g x = β g β x χ. ln g x β R, 3.3b ln g x χ = D ln g x χ, x x x ρ χ = x ρ. χ ρ 3.3c = τ. χ ρ = τ. χ x ρ, x ρ 3.3d x x ρ g χ = τ. χ χ. ln g x x ρ g, x τ x ρ χ = χ = χ ρ x x ρ x ρ x ρ x ρ. χ ρ x ρ = χ τ χ. τ x ρ 3.3e 3.3f = χ. ν ν, x ν χ = x τ χ = χ. ν ν = χ. ν τ,
5 3.3g ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 5 x ν x ρ χ = x x ρ χ = χ ρ = χ x ρ, were we alway aume tat χ i ufficiently moot o tat all te quantitie are defined almot everywere. E.g. χ L I for 3.3a, 3.3b, and χ W, I for 3.3c 3.3g. In addition, on recalling., we ave for all a, b R tat 3.4a 3.4b a. b = a. b, a = a. τ τ a. ν ν = a. ν τ a. τ ν = a. ν τ a. τ ν. Let, denote te L inner product on I. In te following we will dicu te L gradient flow of te energy 3.5 W g,λ x = κ g λ, x ρ g = g x κ ν. ln g x λ g x, xρ, treating eiter κ or κ g formally a an independent variable tat a to atify te ide contraint.9b, or.0b, repectively. For te weak formulation of te L gradient flow obtained in ti way, it can be own tat tey are conitent wit te trong formulation.7, ee te appendix. Moreover, we will formally etabli tat olution to tee weak formulation are indeed olution to te L gradient flow of 3.5. Mimicking tee tability proof on te dicrete level will yield te main reult of ti paper Baed on κ. We define te Lagrangian L x, κ, y = g x κ ν. ln g x λ g x, xρ κ ν, y x ρ x, y x ρ, wic i obtained on combining 3.5 and te ide contraint 3.7 κ ν, η x ρ x, η x ρ = 0 η H I, recall.9b and.. Taking variation η H I in y, and etting y L η = 0 we obtain 3.7. Combining 3.7 and.9b yield, on recalling., tat κ = κ, and we are going to ue ti identity from now. Taking variation χ L I in κ and etting κ L χ = 0 lead to 3.8 g x κ ν. ln g x y. ν, χ x ρ = 0 χ L I, wic implie tat 3.9 y. ν = g x κ ν. ln g x κ = g x y. ν ν. ln g x. Taking variation χ H I in x, and ten etting V g, g x χ. ν x ρ g = g 3 x x t. ν, χ. ν x ρ = x L χ, were we ave noted.7 and.4, yield, on recalling., tat κ g 3 x xt. ν, χ. ν x ρ = ν. ln g x, x g x xρ χ g x κ ν. ln g x, ν. ln g x χ x ρ x
6 6 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG 3.0 κ y, x ν x ρ χ y ρ, x τ χ λ, x g x xρ χ, for all χ H I. On cooing χ = x t in 3.0 we obtain, on noting 3., tat κ g 3 x xt. ν, x ρ = ν. ln g x, g x xρ t g x κ ν. ln g x, ν. ln g x t x ρ 3. κ y, ν x ρ t yρ, τ t λ, g x xρ. Differentiating 3.7 wit repect to time, and ten cooing η = y yield, on recalling tat κ = κ, tat 3. κ t, y. ν x ρ κ y, ν x ρ t τ t, y ρ = 0. Combining 3., 3. and 3.9 give, on noting 3.5, tat κ g 3 x xt. ν, x ρ = ν. ln g x, g x xρ t g x κ ν. ln g x, ν. ln g x t x ρ κ t, g x κ ν. ln g x x ρ λ, g x xρ 3.3 = d dt W g,λ x. Te above yield te gradient flow property of te new weak formulation, on noting from.7 and.4 tat te left and ide of 3.3 can be equivalently written a Vg, x ρ g. In order to derive a uitable weak formulation, we now return to 3.0. Combining 3.0, 3.3 and 3.4a yield tat g 3 x xt. ν, χ. ν x ρ = g x κ ν. ln g x λ g x, χ. τ x ρ 4 g x κ ν. ln g x λ g x, χ. ln g x xρ g x κ ν. ln g x ν, D ln g x χ x ρ g x κ ν. ln g x ln g x, ν. χ x ρ y. ν, χ. ν x ρ 3.4 κ y, χ x ρ χ H I. Overall we obtain te following weak formulation. P: Let x0 H I. For t 0, T find xt, yt H I and κ L I uc tat 3.4, 3.8 and 3.5 κ ν, η x ρ x, η x ρ = 0 η H I old. We remark tat in te Euclidean cae 3.8 collape to κ = y. ν, and o on eliminating κ from 3.4 and 3.5, and on noting 3.4b, we obtain tat te formulation P collape to 5,.4a,b for te Euclidean elatic flow. t t
7 ELASTIC FLOW IN RIEMANNIAN MANIFOLDS Baed on κ g. We recall tat P wa inpired by te formulation U, wic i baed on κ acting a a variable. In order to derive an alternative formulation, we now tart from W, were te curvature κ g i a variable. We begin by equivalently rewriting te ide contraint.0b a 3.6 g x κg ν, η x ρ g x, η x ρ g ln g x, η x ρ g = 0 η H I, were we ave noted.,.4 and ln g x = g x g x. Combining.5 and 3.6 lead to te Lagrangian L g x, κg, y g = κ g λ, x ρ g g x κ g ν, y g x ρ g x, y g x ρ g 3.7 ln g x, y g x ρ g. Taking variation η H I in y g, and etting y g L g η = 0 we obtain 3.8 g x κ g ν, η x ρ g x, η x ρ g ln g x, η x ρ g = 0 η H I. Combining 3.8 and 3.6 yield tat κg = κ g, and we are going to ue ti identity from now. Taking variation χ L I in κg and etting L g χ = 0 yield tat 3.9 wic implie tat κ g κ g g x yg. ν, χ x ρ g = 0 χ L I, 3.0 κ g = g x yg. ν. Taking variation χ H I in x, and ten etting V g, g χ. ν x ρ g = g x x t. ν, χ. ν x ρ g = x L g χ, were we ave noted.7, yield, on recalling. and.4, tat g x x t. ν, χ. ν x ρ g = κg λ, x x ρ g χ κ g y g, x g x ν xρ g χ y g ρ, x g x τ χ 3. y g, x ln g x x ρ g χ χ H I. Cooing χ = x t in 3., and noting 3., yield tat 3. g x xt. ν, x ρ g = κg λ, x ρ g t κ g y g, g x ν xρ g t y g ρ, g x τt y g, ln g x x ρ g t. On differentiating 3.6 wit repect to time, and ten cooing η = y g, we obtain, on recalling. and.4, tat κ g t y g, g x ν xρ g κ g y g, g x ν xρ g t
8 8 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG 3.3 y g ρ, g x τt y g, ln g x x ρ g t = 0. Cooing χ = κ g t in 3.9, and combining wit 3. and 3.3, yield, on recalling 3.5, tat 3.4 g x xt. ν, x ρ g = d dt W g,λ x, wic once again reveal te gradient flow tructure, on noting from.7 tat te left and ide of 3.4 can be equivalently written a V g, x ρ g. In order to derive a uitable weak formulation, we now return to 3.. Subtituting 3.3 into 3. yield, on noting.4, tat g x x t. ν, χ. ν x ρ g = κg λ y g. ln g x, x x ρ g χ y g, ln g x χ x ρ g κ g y g. ν, x x g x χ x ρ g x κ g y g, x ν x ρ χ y g ρ. τ, x g x χ g x yg ρ, x τ χ = κ g λ y g. ln g x, τ. χ χ. ln g x x ρ g D ln g x y g, χ x ρ g g x κg y g. ν y g. τ, ln g x. χ x ρ g 3.5 g x κg y g, χ x ρ g y g. ν, χ. ν x ρ g χ H I. Ten, on recalling 3.4a, we obtain te following weak formulation. Q: Let x0 H I. For t 0, T find xt, y g t H I and κ g t L I uc tat g x x t. ν, χ. ν x ρ g = κ g λ y g. ln g x, χ. τ χ. ln g x x ρ g D ln g x y g, χ x ρ g g x κg y g. ν y g. τ, χ. ln g x x ρ g 3.6 g κg, χ. y g x ρ g y g. ν, χ. ν x ρ g χ H I, 3.9 and 3.6 old. We remark tat in te Euclidean cae 3.9 collape to κ g = y g. ν, and o on eliminating κ g from 3.6 and 3.6, and on noting 3.4b, we obtain tat te formulation Q collape to 5,.4a,b for te Euclidean elatic flow. 4. Semidicrete finite element approximation. Let 0, = J j= I j, J 3, be a decompoition of 0, into interval given by te node q j, I j = q j, q j. For implicity, and witout lo of generality, we aume tat te ubinterval form an equipartitioning of 0,, i.e. tat 4. q j = j, wit = J, j = 0,..., J.
9 ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 9 Clearly, a I = R/Z we identify 0 = q 0 = q J =. Te neceary finite element pace are defined a follow: V = {χ CI : χ Ij i linear j = J} and V = V. Let {χ j } J j= denote te tandard bai of V, and let π : CI V be te tandard interpolation operator at te node {q j } J j=. We require alo te local interpolation operator πj π Ij, j =,..., J. We define te ma lumped L inner product u, v, for two piecewie continuou function, wit poible jump at te node {q j } J j=, via 4. u, v = J j= I j π j u v dρ = J j= j u vq j u vq j, were we define uq ± j = lim 0 uq j ±. Te interpolation operator π, π j and te definition 4. naturally extend to vector valued function. Let X t t 0,T, wit X t V, be an approximation to xt t 0,T. Ten, imilarly to., we et 4.3 τ = X = X ρ X ρ and ν = τ. For later ue, we let ω V be te ma-lumped L projection of ν onto V, i.e. 4.4 ω, ϕ X ρ = ν, ϕ X ρ = ν, ϕ X ρ ϕ V. On noting 3., 4.3 and.4, we ave te following dicrete analogue of 3.3 for all χ V and for j =,..., J X gβ X χ = β g β X χ. g X 4.5a 4.5b 4.5c 4.5d 4.5e 4.5f 4.5g = β g β X χ. ln g X on I j, β R, X ln g X χ = D ln g X χ on I j, X X X ρ. χ ρ ρ χ = X = τ. χ ρ = τ. χ X ρ ρ on I j, X X ρ g χ = τ. χ χ. ln g X X ρ g on I j, X τ X ρ χ = X X χ = χ ρ X ρ X ρ ρ X ρ. χ ρ X ρ X ρ = χ τ χ. τ = χ. ν ν on I j, X ν χ = X τ χ = χ. ν τ on I j, X ν X ρ χ = X X ρ χ = χ ρ = χ X ρ on I j.
10 0 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG 4.. Baed on κ. In te following we will dicu te L gradient flow of te energy 4.6 W g,λ X, κ = g X ubject to te ide contraint 4.7 κ ω ω. ln g X λ g X, X ρ, κ ν, η X ρ X, η X ρ = 0 η V. On recalling 4.4, we ee tat 4.6 and 4.7 are dicrete analogue of 3.5 and.9b, repectively. We define te Lagrangian L X, κ, Y = 4.8 g X κ κ ν, Y X ρ ω ω. ln g X λ g X, X ρ X, Y X ρ, X π wic i te correponding dicrete analogue of 3.6. ω In addition to 4.5, we will require χ in order to compute variation of 4.8. We etabli ti along te line of 5, 3.a,b 3.7. To ti end, we introduce te following operator. On recalling 4. and 4.3, let D, D : V V be uc tat for any t 0, T D ηq j = X q j, t X q j, t η q j X q j, t X q j, t η q j X q j, t X q j, t X q j, t X q j, t 4.9a ηq j ηq j = X q j, t X q j, t X q j, t X q j, t, j =,..., J, 4.9b D ηq j = ω D ηq j D X tq j = ηq j ηq j X q j, t X q j, t, j =,..., J, were q J = q. Here, we make te following natural aumption C X q j, t X q j, t and X q j, t X q j, t, j =,..., J, for all t 0, T. Hence 4.9 i well-defined. A uual, D, D : V V are defined component-wie. It follow from 4.4, 4.3 and 4.9a tat, for all ϕ V, 4.0 ω, ϕ X ρ = τ, ϕ X ρ = X ρ, ϕ = D X, ϕ X ρ. Terefore, we ave from 4.0, C and 4.9b tat 4. ω = D X ω and π ω = D X.
11 ELASTIC FLOW IN RIEMANNIAN MANIFOLDS Ten it i a imple matter to compute, for any χ V, X D X χ = π Id D X D X D χ o tat 4. ω X π ω 4.3 χ = X = π ω D χ. ω ω, Similarly to 4.0, we ave for any η V tat D X χ = π ω D χ. ω ω. η, ϕ X ρ = D η, ϕ X ρ ϕ V, Hence, it follow from 4.3, 4.9b and 4. tat 4.4 ω η, ϕ X ρ = D η, ϕ X ρ η, ϕ V. Terefore, combining 4. and 4.4 yield for any ϕ, χ V tat ϕ, X 4.5 = ω ω χ X ρ = ω ϕ, D χ. ω ω X ρ ω 3 ϕ. ω ω, χ X ω ρ = ω ω ϕ. ω, ω. χ X ρ. Taking variation χ V in κ and etting L χ = 0 lead to κ 4.6 g X κ ω ω. ln g X Y. ν, χ X ρ = 0 χ V, wic, on recalling 4.4, implie te dicrete analogue of 3.9 π Y. ω = π g X κ ω ω. ln g X 4.7 κ = π g X Y. ω ω ω. ln g X Taking variation η V in Y, and etting Y L η = 0 we obtain 4.7. Setting g 3 X X t. ω, χ. ω X ρ = χ, for variation χ V in X yield, a a dicrete analogue to 3.0, g 3 X X t. ω, χ. ω X ρ = κ X L ω ω. ln g X, X g X X ρ χ.
12 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG λ, X g g X X X ρ χ κ ω ω. ln g X, X 4.8 κ Y, X ν X ρ χ Y ρ, X τ χ. Cooing χ = X t ω ω. ln g X χ X ρ in 4.8, were we oberve a dicrete variant of 3., yield tat g 3 X X t. ω, X ρ = κ λ, g X X ρ ω ω. ln g X, g X X ρ t t g X κ ω κ Y, ν X ρ Y ρ, τ t t ω. ln g X. ω, ω. ln g X X ρ t Differentiating 4.7 wit repect to time, and ten cooing η = Y yield tat κ t, Y. ν X ρ κ Y, ν X ρ t τ t, Y ρ = 0. Combining 4.9, 4.0 and 4.6 wit χ = κ t give, on noting 4.6, tat g 3 X X t. ω, X ρ = κ 4. g X κ κ t, g X κ = d dt W g,λ X, κ. ω ω. ln g X ω ω. ln g X ω ω. ln g X, g X X ρ ω, ω. ln g X X ρ t X ρ λ, g X X ρ In order to derive a uitable approximation of P, we now return to 4.8. Combining 4.8, 4.5 and 4.5, on noting 3.4a, yield g 3 X X t. ω, χ. ω X ρ = Y. ν, χ. ν X ρ g X κ ω ω. ln g X λ g X, χ. τ X ρ t t
13 4 g X ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 3 κ g X κ g X κ ω ω. ln g X λ g X, χ. ln g X X ρ ω ω. ln g X ω ω. ln g X 4. κ Y, χ X ρ χ V, ω ω, D ln g X χ X ρ ln g X ω ω. ω, ω ω. χ X ρ wic i te dicrete analogue of 3.4, on noting tat ν = τ. Hence we obtain te following approximation of P. P : Let X 0 V. For t 0, T find X t, κ t, Y t V V V uc tat 4., 4.6 and 4.7 old. We note tat in te Euclidean cae it follow from 4.7 tat κ = π Y. ω, and o on eliminating κ, and on noting 4.4, te approximation P collape to te iotropic cloed curve verion of 3.36a,b, wit β = 0, in 5. Teorem 4.. Let te aumption C be atified and let X t, Y t V V, for t 0, T, be a olution to P. Ten te olution atifie te tability bound 4.. Proof. Te proof i given in 4.9, 4.0 and 4.. Remark 4.. We note wy we cooe ω ω in 4.6 a oppoed to ν or ω. In te cae of ν, 4.7 and 4.8 till old wit ω replaced by ω and ν, repectively. ω However, ten te elimination of κ from te modified 4.8 via te modified 4.7 now lead to a far more complicated verion of 4.. In te cae of ω, one need to compute X ω ω a oppoed to X ω ω it i eaier to compute te latter. Hence, te coice of in 4.6. ω. However, on noting 4. and 4.9, Remark 4.3. Due to 4.7, te approximation P atifie te equiditribution property, i.e. any two neigbouring element are eiter parallel or of te ame lengt, at every t > 0. For ti property to old, it i crucial to employ ma lumping in 4.7. We refer to 3, Rem..4 for more detail. 4.. Baed on κ g. Let, denote a dicrete L inner product baed on ome numerical quadrature rule. In particular, for two piecewie continuou function, wit poible jump at te node {q j } J j=, we let u, v = I u v, were 4.3 J K I f = w k fα k q j α k q j, w k > 0, α k 0,, k =,..., K, j= j k= wit K, K k= w k =, and wit ditinct α k, k =,..., K. A pecial cae i, =,, recall 4., but we alo allow for more accurate quadrature rule. We define te Lagrangian L g X, κ g, Y g = κ g λ, X ρ g g X κ g ν, Y g X ρ g
14 4 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG 4.4 X, Y g X ρ g ln g X, Y g X ρ g, wic i te correponding dicrete analogue of 3.7. Taking variation χ V in κ g and etting χ = 0 yield tat 4.5 κ g L g κ g g X Y Taking variation η V in Y g, and etting 4.6 g. ν, χ X ρ g = 0 χ V. Y g L g η = 0 we obtain g X κ g ν, η X ρ g X, η X ρ g ln g X, η X ρ g = 0, for all η V, a a dicrete analogue of 3.6. Taking variation χ V in X, and ten etting g X X t. ω, χ. ω X ρ g = χ, we obtain g X X t. ω, χ. ω X ρ g = 4.7 X L g κ g λ, X X ρ g χ κ g Yg, X g X ν X ρ χ Y g ρ, X g X τ χ Y g, X ln g X X ρ g χ, for all χ V. Cooing χ = X t in 4.7, and noting a dicrete variant of 3., a well a.4, yield tat g X X t. ω, X ρ g 4.8 = κ g λ, X ρ g t κ g Y g, g X ν X ρ g t Y g ρ, g X τ t Y g, ln g X X ρ g t. On differentiating 4.6 wit repect to time, and ten cooing η = Y g, we obtain, on recalling 4.3 and.4, tat κ g t Y g, g X ν X ρ g κ g Y 4.9 Y g ρ, g X τ t g, g X ν X ρ g t Y g, ln g X X ρ g t = 0. Cooing χ = κ g t in 4.5, and combining wit 4.8 and 4.9, yield tat 4.30 g X X t. ω, X ρ g d κ g λ, X dt ρ g = 0, wic reveal te dicrete gradient flow tructure. Alo note tat are te dicrete analogue of In order to derive a uitable finite element approximation, we now return to 4.7. Subtituting 4.5 into 4.7 yield, on noting 4.3 and.4, tat g X X t. ω, χ. ω X ρ g = Y g, X ln g X χ X ρ g
15 ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 5 κ g λ Y g. ln g X, κ g Yg. ν X g X χ X ρ Y g ρ. τ, X g X = κ g λ Y g. ln g X, 4.3 D ln g X Y g, χ X ρ g χ X X ρ g g X κ g Yg, X ν X ρ g ρ, X τ χ τ. χ χ. ln g X X ρ g χ g X Y g X κ g Y g. ν Y g. τ, ln g X. χ X ρ g g X κ g Y g, χ X ρ g Y g. ν, χ. ν X ρ g χ V. χ Ten 4.3, 4.5 and 4.6, on recalling 3.4a, give rie to te following approximation of Q. Q : Let X 0 V. For t 0, T find X t, κ g t, Y g t V V V uc tat 4.3 g X X t. ω, χ. ω X ρ g Y g. ν, χ. ν X ρ g = κ g λ Y g. ln g X, χ. τ χ. ln g X D ln g X Y g, χ X ρ g g X κ g, χ. Y g X ρ g X ρ g g X κ g Yg. ν Yg. τ, χ. ln g X X ρ g χ V, 4.5 and 4.6 old. Teorem 4.4. Let X ρ > 0 almot everywere in I 0, T. Let X t, κ g t, Y g t V V V, for t 0, T, be a olution to Q. Ten te olution atifie te tability bound Proof. We ave already own tat a olution to Q atifie 4.8 and 4.9. Hence cooing χ = κ g t in 4.5, and combining wit 4.8 and 4.9, yield 4.30 a before. Remark 4.5. We tre tat unlike for P, recall Remark 4.3, it i not poible to prove an equiditribution property for Q, even if we employ ma lumping in 4.6. It i for ti reaon tat we alo conider iger order quadrature rule. Te motivation beind conidering Q a an alternative to P i twofold. Firtly, from a variational point of view, it i more natural to work wit κ g a a variable, ince.5 i naturally defined in term of κ g. Secondly, te tecnique introduced for Q will be exploited in 7 for table approximation of Willmore flow for axiymmetric yperurface in R Fully dicrete finite element approximation. Let 0 = t 0 < t <... < t M < t M = T be a partitioning of 0, T into poibly variable time tep t m = t m t m, m = 0 M. We et t = max m=0 M t m. For a given X m V
16 6 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG Table Expreion for term tat are relevant for te implementation of te preented finite element approximation. g ln g x D ln g x.a µ x. e e µ x. e e e.b 4 α α x x 4 α 8 α α x Id α x x x.c tan x. e e co x. e e e.d tan x. e e co x. e e e.e co x. e in x. e e e co x. e e co x. e we et ν m = X m ρ X m ρ, a te dicrete analogue to.. We alo let ωm V be te natural fully dicrete analogue of ω V, recall 4.4. Given X m V, te fully dicrete approximation we propoe in ti ection will alway eek a parameterization X m V at te new time level, togeter wit a uitable approximation of curvature. For te metric we conider in ti paper, we ummarize in Table te quantitie tat are neceary in order to implement te numerical ceme preented below. 5.. Baed on κ m. We propoe te following fully dicrete approximation of P. P m : Let X 0, κ 0, Y 0 V V V. For m = 0,..., M, we define κ m g = π g X m κ m ω m ω m. ln g X m, and ten find X m, κ m, Y m V V V uc tat g 3 X m X m X m. ω m, χ. ω m X t ρ m Y m, χ Xρ m m Y m. τ m, χ. τ m X ρ m = g X m κ m g λ, χ. τ m X ρ m 4 g X m κ m g λ, χ. ln g X m X ρ m κ m ω m g ω m, D ln g X m χ X ρ m κ m Y m, χ X ρ m 5.a 5.b κ m g ω m ln g X m. ω m ω m, χ. ω m g X m Y m. ω m, η. ω m X m ρ ω m ω m X ρ m χ V, ω m. ln g X m, η. ω m X ρ m = 0 η V X m, η X ρ m and 5. κ m = π g X m Y m. ω m ω m ω m. ln g X m.
17 ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 7 Notice tat 5.b wa obtained on combining 5. wit a fully dicrete variant of 4.7, and noting 4.4, in order to obtain a lower dimenional linear ytem to olve for te unknown X m and Y m tat i decoupled from 5.. Moreover, 5.a i a fully dicrete approximation of 4., on noting te definition of κ m g. We make te following mild aumption. A Let X m ρ > 0 for almot all ρ I, let dim pan{ ω m q j : j =,..., J} =, and let ω m q j 0, j =,..., J. Lemma 5.. Let te aumption A old. Ten tere exit a unique olution X m, κ m, Y m V V V to P m. Proof. A 5. i linear, exitence follow from uniquene. To invetigate te latter, we conider te ytem: Find X, Y V V uc tat g 3 X m X m. ω m, χ. ω m X ρ m tm Y, χ X 5.3a ρ m = 0 χ V, g X m Y. ω m, η. ω m X ρ m X, η X 5.3b ρ m = 0 η V. Cooing χ = X in 5.3a and η = Y in 5.3b, and combining, yield tat 5.4 π X. ω m = π Y. ω m = 0 V. A a conequence, it follow from cooing χ = Y in 5.3a and η = X in 5.3b tat X and Y are contant vector. Combining 5.4 and te aumption A ten yield tat X = Y = 0 V. Hence we ave own te exitence of a unique X m, Y m V V olving 5., wic via 5. yield exitence and uniquene of κ m V. 5.. Baed on κ m g. We propoe te following fully dicrete approximation of Q. Q m : Let X 0, κ 0 g, Y g 0 V V V. For m = 0,..., M, find X m, κ m g, V V V uc tat Y m g g X m X m X m. ω m, χ. ω m X t ρ m g m Y g m. τ m, χ. τ m X ρ m g = 5.5a 5.5b κ m g λ Y g m. ln g X m, D ln g X m Y g m, χ X ρ m g g X m κ m g Y m g Y m g, χ X m ρ g χ. τ m χ. ln g X m X ρ m g. ν m Yg m. τ m, χ. ln g X m X ρ m g g X m κ m g, χ. Y g m X ρ m g χ V, κ m g g X m Y m g. ν m, χ X ρ m g = 0 χ V, ln g X m, η X ρ m g g X m κ m g ν m, η X m ρ g X m, η X m ρ g
18 8 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG 5.5c = 0 η V. Of coure, in te cae, =,, 5.5b give rie to κ m g = π g X m Y g m. ω m, on noting 4.4, and o κ m g can be eliminated from 5.5a to give rie to a coupled linear ytem involving only X m and Y g m, imilarly to 5.. We make te following mild aumption. B Let X ρ m > 0 for almot all ρ I, and let dim pan Z =, were { Z = g X m ν m, χ X } ρ m g : χ V R. Lemma 5.. Let te aumption A and B old. Ten tere exit a unique olution X m, κ m g, Y g m V V V to Q m. Proof. A 5.5 i linear, exitence follow from uniquene. To invetigate te latter, we conider te ytem: Find X, κ g, Y g V V V uc tat 5.6a g X m X. ω m, χ. ω m X ρ m g tm Y g, χ X ρ m g = 0 χ V, 5.6b κ g g X m Y g. ν m, χ X ρ m g = 0 χ V, 5.6c g X m κ g ν m, η X ρ m g X, η X ρ m g = 0 η V. Cooing χ = X in 5.6a, χ = κ g in 5.6b and η = Y g in 5.6c yield tat g X m X. ω m, X m ρ g tm κ g, X m ρ g = 0, and o it follow from 4.3, recall K, and te poitivitie of g X m and X ρ m, tat 5.7 κ g = 0 V and g X m X. ω m, η X ρ m g = 0 η CI. A a conequence, it follow from cooing χ = Y g in 5.6a and η = X in 5.6c tat X and Y g are contant vector. Combining 5.6b, κ g = 0 and te aumption B ten yield tat Y g = 0 V. Moreover, it follow from 5.7, 4.3, recall K, and X being a contant tat X. ω m = 0 V. Combining ti wit te aumption A yield tat X = 0 V. Hence tere exit a unique olution X m, κ m g, Y g m V V V to Q m. 6. Numerical reult. Unle oterwie tated, in all our computation we et λ = 0. For te ceme Q m we eiter conider Q m, recall 4., or Q m, were, denote a quadrature tat i exact for polynomial of degree up to five. On recalling 4., for olution of te ceme P m we define W m g,λ = Y m. ω m λ, g X m X ρ m a te natural dicrete analogue of 3.5. Similarly, on recalling 4.4, we define te dicrete energy X m ρ g for olution of te ceme Q m. We alo conider te ratio W m g,λ 6. r m = max j= J X m q j X m q j min j= J X m q j X m q j = κm g λ,
19 ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 9 Table Error for te convergence tet for 6. wit 6.3 for α =, wit r0 =.5, over te time interval 0,. P m Q m Q m Γ 0 Γ Γ L EOC Γ Γ L EOC Γ Γ L EOC.544e e e-0.58e-0.079e e e e e e e e e-0.089e e e e e e e between te longet and ortet element of Γ m, and are often intereted in te evolution of ti ratio over time. In order to define te initial data for te ceme P m and Q m we define, given Γ 0 = X 0 I, te dicrete curvature vector κ 0 V uc tat recall.. Ten we et κ 0 = π κ 0 κ 0 g = π g X 0 κ 0, η X ρ 0 X 0, η X ρ 0 = 0 η V, κ 0. ω 0 ω 0 ω 0 ω 0. ln g X 0 and, a a dicrete analogue to.6, we let. Finally, on recalling 4.7 and 4.5, we et Y 0 = π ω 0 κ 0 g ω 0 and Y 0 g = π g X 0 ω 0 κ 0 g ω Elliptic plane:.b wit α =. For te elliptic plane, we recall te true olution 6. xρ, t = at e rt co π ρ e in π ρ e ρ I, wit 6.3 at = 0 and d dt r4 t = 8 α r 4 t 6 α r t α r 4 t, for α =, from Appendix A. in 6. We ue ti true olution for a convergence tet. To ti end, we tart wit te initial data 6.4 X 0 co π qj 0. in π q q j = a0 e r0 j, j =,..., J, in π q j 0. in π q j recall 4., wit r0 =.5 and a0 = 0, for J {3, 64, 8, 56, 5}. We compute te error Γ Γ L = max m=,...,m max j=,...,j X m q j at m e rt m over te time interval 0, between te true olution 6. and te dicrete olution for te ceme P m, Q m and Q m. We note tat te circle i rinking, and reace a radiu rt =.48 at time T =. Here, and in te convergence experiment tat follow, we ue te time tep ize t = 0. Γ, were 0 Γ 0 i te maximal edge lengt of Γ 0. Te computed error are reported in Table. 6.. Hyperbolic dik:.b wit α =. For te yperbolic dik, we recall te true olution 6., 6.3 for α =, from Appendix A. in 6. Similarly to Table we tart wit te initial data 6.4 wit r0 = 0. and a0 = 0. We compute te error Γ Γ L over te time interval 0, between te true olution 6. and te
20 0 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG Table 3 Error for te convergence tet for 6. wit 6.3 for α =, wit r0 = 0., over te time interval 0,. P m Q m Q m Γ 0 Γ Γ L EOC Γ Γ L EOC Γ Γ L EOC.544e e e e e e e e e-0.70e e e e-0.85e e e e e e e Table 4 Error for te convergence tet for 6. wit 6.5, wit r0 =, a0 =, over te time interval 0,. P m Q m Q m Γ 0 Γ Γ L EOC Γ Γ L EOC Γ Γ L EOC.544e-0.690e e e-0.079e e e e e e e e e e e e e e e e dicrete olution for te ceme P m, Q m and Q m. We note tat te circle i expanding, and reace a radiu rt = at time T =. Te computed error are reported in Table Hyperbolic plane:.a wit µ =. For te yperbolic plane, we recall te true olution 6. wit 6.5 at = a0 exp t t 0 σ u du and rt = at σt, were σ atifie te ODE σ t = σt σ t σ t, from Appendix A. in 6. A initial data we ue 6.4 wit r0 = and a0 =. We recall from Appendix A. in 6 tat te circle will raie and expand. In fact, at time T = it old tat rt =.677 and at =.4. Te computed error are reported in Table 4, and tey ould be compared wit te correponding number in 6, Tab. 5. We repeat te convergence tet wit te initial data r0 = and a0 =., o tat te circle will now ink and rink. In fact, at time T = it old tat rt = and at = Te computed error are reported in Table 5, and tey ould be compared wit te correponding number in 6, Tab. 4. We oberve tat te approximation Q m exibit non-optimal convergence rate for ti experiment. We conjecture tat ti i caued by te cloene to te e axi, and te aociated ingularity of g, compared to te experiment in Table 4. All te oter experiment, and all te oter ceme, alway ow te expected quadratic convergence rate. We recall tat in Figure 0, and 3 of 6, te autor ow ome curve evolution for elatic flow in te yperbolic plane. Repeating tee imulation, for te ame dicretization parameter, for te newly introduced ceme P m, Q m and Q m yield very imilar curve evolution. A expected, te main difference i
21 ELASTIC FLOW IN RIEMANNIAN MANIFOLDS Table 5 Error for te convergence tet for 6. wit 6.5, wit r0 =, a0 =., over te time interval 0,. P m Q m Q m Γ 0 Γ Γ L EOC Γ Γ L EOC Γ Γ L EOC.544e e e-0.530e-0.079e e e e e-0.653e e e e e e e e e e e Fig.. A plot of te ratio 6. for te ceme P m, Q m and Q m. in te evolution of te ratio 6.. A an example, we ow te evolution of 6. for te experiment in 6, Fig. 0 in Figure Geodeic elatic flow. We preent two computation for geodeic elatic flow on a Clifford toru. To ti end, we employ te metric induced by.e wit =, o tat te toru a radii r = and R =. A initial data we cooe a circle in H wit radiu 3 and centre 0, T. For te imulation in Figure we ue te ceme P m wit te dicretization parameter J = 56 and t = 0 3. Te ceme Q m wa not able to compute ti evolution, due to a blow-up in te tangential part of Y m. Hence we only preent a comparion wit Q m, wic give nearly identical reult to P m. However, te ratio 6. at time t = 50 i. for Q m, wile it i only. for P m. Repeating te experiment wit λ = give te evolution own in Figure 3. In te cae λ = 0, te flow reduce te elatic energy and te abolute minimizer i given by geodeic wic ave geodeic curvature zero. However, in Figure te elatic energy doe not ettle down to zero, and te curve intead eem to converge to a non-trivial critical point of te elatic energy. Ti i in accordance wit te analyi in 6, wic owed tat in cae of yperurface for wic te Gauian curvature i not non-negative at all point, te et of free elaticae, i.e., te et of critical point, i muc ricer. Appendix A. Conitency of weak formulation. In ti appendix we prove tat olution to P and Q indeed atify te trong form.7. Trougout ti appendix we uppre te dependence of g on x. For later ue we note, on recalling.,. and.8, tat A.a A.b A.c A.d ν = κ τ, g g = g g = ln g, ln g = τ. ln g, ln g = τ. ln g τ. ln g = τ. D ln g τ κ ν. ln g,
22 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG Fig.. P m Geodeic elatic flow on a Clifford toru. Te olution X m at time t = 0,, 0, 50. On te rigt we viualize Φ X m at time t = 0, 50, for.e wit =. Below a plot of te dicrete energy W m g,λ, a well a of te ratio 6. for Pm and Q m. A.e A.f A.g ν. ln g = ν. ln g ν. ln g = ν. D ln g τ κ ln g, g κg = g g κg g = g κg g g g g κ g g = g κg g g ln g κ g g, g S 0 x = ln g = ν. D ln g ν τ. D ln g τ. A.. P. We note from 3.9,.6 and A.a tat A. y. ν = κ g = g x κ ν. ln g x and y. ν = κ g κ y. τ, and o it follow from 3.4,.7,.4,. and 3.4b tat g Vg, χ. ν x ρ g = g κ g λ, τ. χ ρ 4 g κ g λ, ln g. χ x ρ κg D ln g ν, χ x ρ κ g ln g, ν. χ ρ κ g κ y. τ ν, χ ρ g κg ν. ln g y, χ ρ κ g λ κ g ν. ln g τ, χ ρ A.3 = = g κ g κ y. τ κ g ln g y. τ g κg ν. ln g ν, χ ρ 4 g κ g λ, ln g. χ x ρ κg D ln g ν, χ x ρ 4 S i χ χ H I. i=
23 ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 3 Fig. 3. P m Generalized geodeic elatic flow, wit λ =, on a Clifford toru. Te olution X m at time t = 0,, 0, 30, 50. On te rigt we viualize Φ X m at time t = 0, 0, 50, for.e wit =. Below a plot of te dicrete energy W m g,λ, a well a of te ratio 6. for Pm and Q m. Combining A.3,. and.4 yield tat S χ = g κ g λ g κ κg τ, χ ρ = κ κ g λ g κ κg ν, χ x ρ g A.4 g g κ g λ g κ κg τ, χ x ρ g. Combining A.3 and A., on noting.6, A.a, A.f and.4, yield tat S χ = κ g κ g ln g ν, χρ = g κg ln g κ g ν, χ xρ g g κ κg ln g κ g τ, χ xρ g = g κg g g g ln g κ g, χ. ν x ρ g A.5 κ κ g g g ln g κ g, χ. τ x ρ g. Combining A.3 and.6, on noting.4 and A.c, yield tat S 3 χ = 4 κ g λ, ln g. χ x ρ g A.6 κg λ, κ g κg χ. ν ln g χ. τ x ρ g. = 4 It follow from A.3 and.4 tat A.7 S 4 χ = g κg D ln g ν, χ. ν ν χ. τ τ x ρ g.
24 4 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG Cooing χ = χ τ, for χ H I, in A.3, and noting A.4, A.5, A.6 and A.7, we obtain for te rigt and ide of A.3 te value 4 S i χ τ = g g κ g λ g κ κg, χ x ρ g i= κ κ g g g ln g κ g, χ x ρ g 4 κ g λ, ln g χ x ρ g g κg τ. D ln g ν, χ x ρ g = = = A.8 = 0, g g κg λ g κ κg κ g g κ κg, χ x ρ g κ κ g g g ln g κ g 4 κ g λ ln g, χ x ρ g g κg ν. ln g κ ln g, χ x ρ g ln g κ g g κ κg κ g g κ κg g κ κg, χ x ρ g g κg κ g κg, χ x ρ g ln g κg g κ κg g κ κg κg, χ x ρ g κ g κ g g κ κg κ κ g κ g κ κ g κ g, χ x ρ g a required, were we ave recalled A.b and.6. Cooing χ = χ ν, for χ H I, in A.3, and noting A.4, A.5, A.6 and A.7, we obtain 4 g Vg, χ x ρ g = S i χ ν = κ κ g λ g κ κg, χ x ρ g i= g κg g g g ln g κ g, χ x ρ g κ g λ, κ g κg χ x ρ g g κg ν. D ln g ν, χ x ρ g = g κg g g g λ κg g τ. D ln g τ ν. D ln g ν κ g, χ x ρ g κ κg g κ κ g g κg κ ν. ln g κg κ g κg, χ x ρ g = g A.9 = κg g g κ3 g S 0 x λ κ g, χ xρ g g κ κg g κg κ ν. ln g, χ x ρ g g κg g g κ3 g S 0 x λ κ g, χ xρ g χ H I, were we ave recalled A.d, A.g and.6. Clearly, it follow from A.9 tat.7 old. A.. Q. It follow from 3.6,.7, 3.0,.,.4 and 3.4b tat g Vg, χ. ν x ρ g = κ g λ y g. ln g, τ. χ χ. ln g x ρ g
25 ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 5 D ln g y g, χ x ρ g κ g y g. τ, ln g. χ x ρ g g κg y g, χ ρ g yg. ν, χ ρ. ν = g κ g λ y g. ln g τ, χ ρ D ln g y g, χ x ρ g 4 3 κ g λ y g. ln g y g. τ, ln g. χ x ρ g g κ g y g, χ ρ g yg. ν, χ ρ. ν = g κ g λ y g. ln g τ, χ ρ g yg. ν ν g κ g y g. τ ν, χ ρ 4 3 κ g λ y g. ln g y g. τ, ln g. χ x ρ g A.0 D 4 ln g y g, χ x ρ g = T i χ χ H I. i= It follow from.6, 3.0 and A.c tat y g. ln g = y g. ν ν. ln g y g. τ τ. ln g A. = g κg κ g κg y g. τ ln g = g κ κg κ g y g. τ ln g. Combining A.0, A., A.4,. and.4 yield tat T χ = g κ g λ g κ κg y g. τ ln g τ, χ ρ = S χ g yg. τ ln g τ, χ ρ A. = S χ κ y g. τ ln g ν, χ x ρ g g g yg. τ ln g τ, χ x ρ g. It follow from 3.0, A.a and A.c tat g yg. ν = g yg. ν y g. g ν = κ g y g. ν g g κ yg. τ A.3 = κ g κ g g g g κ yg. τ = κ g ln g κ g g κ yg. τ. Combining A.0 and A.3, on noting A.a, A.f and.4, yield tat T χ = g g yg. ν ν g κ g y g. τ ν, χ x ρ g κ y g. ν ν g κg y g. τ τ, χ x ρ g = g κ g ln g κ g y g. τ g κ g κg ν, χ x ρ g κ y g. ν ν g κg y g. τ τ, χ x ρ g = g κg g g g ln g κ g g y g. τ g κ g κg, χ. ν x ρ g κ κ g g g ln g κ g y g. τ κ g κg, χ. τ x ρ g = S χ g y g. τ g κ g κg, χ. ν x ρ g
26 6 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG A.4 κ y g. τ κ g κg, χ. τ x ρ g. It follow from. and 3.0 tat A.5 y g. τ = y g. τ y g. τ = y g. τ κ y g. ν = y g. τ g κ κg. Combining A.0, A., A.5 and.6 yield tat T 3 χ = 4 3 κ g λ y g. ln g y g. τ, ln g. χ x ρ g κ g λ y g. τ ln g y g. τ, ln g. χ x ρ g = 4 = 4 = 4 A.6 κ g λ y g. τ ln g y g. τ, ν. ln g χ. ν τ. ln g χ. τ x ρ g κg λ y g. τ ln g y g. τ, κ g κg χ. ν ln g χ. τ x ρ g = S 3 χ 4 It follow from 3.0 tat y g. τ ln g y g. τ, κ g κg χ. ν ln g χ. τ x ρ g. A.7 D ln g y g = y g. ν D ln g ν y g. τ D ln g τ = g κg D ln g ν y g. τ D ln g τ. Combining A.0 and A.7 yield tat T 4 χ = g κg D ln g ν y g. τ D ln g τ, χ x ρ g g κg D ln g ν y g. τ D ln g τ, χ. ν ν χ. τ τ x ρ g = A.8 = S 4 χ yg. τ D ln g τ, χ. ν ν χ. τ τ x ρ g. Cooing χ = χ τ, for χ H I, in A.0, and noting A., A.4, A.6, A.8 and A.8, we obtain for te rigt and ide of A.0 te value 4 4 T i χ τ = S i χ τ g g ln g ln g, y g. τ χ x ρ g i= κ κ g κg ln g τ. D ln g τ, y g. τ χ x ρ g i= = κ κ g κg ν. ln g, y g. τ χ x ρ g = 0, a required, were we ave recalled A.b, A.d and.6. Cooing χ = χ ν, for χ H I, in A.0, and noting A., A.4, A.6, A.8 and A.9, we obtain g Vg, χ x ρ g = = 4 S i χ ν i= 4 T i χ ν i= κ ln g g g κ g κg, y g. τ χ x ρ g
27 A.9 = g ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 7 ln g κ g κg ν. ln g κ ln g, y g. τ χ x ρ g κg g g κ3 g S 0 x λ κ g, χ xρ g χ H I, were we ave recalled A.b and.6. Clearly, it follow from A.9 tat.7 old. Acknowledgement. Te autor gratefully acknowledge te upport of te Regenburger Univeritättiftung Han Vielbert. REFERENCES B. Andrew and X. Cen, Curvature flow in yperbolic pace, J. Reine Angew. Mat., 79 07, pp J. Arroyo, O. J. Garay, and J. Mencía, Elatic circle in -pere, J. Py. A, , pp J. W. Barrett, H. Garcke, and R. Nürnberg, A parametric finite element metod for fourt order geometric evolution equation, J. Comput. Py., 007, pp , Numerical approximation of gradient flow for cloed curve in R d, IMA J. Numer. Anal., 30 00, pp , Parametric approximation of iotropic and aniotropic elatic flow for cloed and open curve, Numer. Mat., 0 0, pp , Numerical approximation of curve evolution in Riemannian manifold, 08. ttp: //arxiv.org/ab/ , Stable approximation for axiymmetric Willmore flow for cloed and open urface, 08. in preparation. 8 S. Bartel, A imple ceme for te approximation of te elatic flow of inextenible curve, IMA J. Numer. Anal., G. Brunnett and P. E. Crouc, Elatic curve on te pere, Adv. Comput. Mat., 994, pp E. Cabeza-Riva and V. Miquel, Volume preerving mean curvature flow in te yperbolic pace, Indiana Univ. Mat. J., , pp A. Dall Acqua and A. Spener, Te elatic flow of curve in te yperbolic plane, 07. ttp://arxiv.org/ab/ , Circular olution to te elatic flow in yperbolic pace, 08. preprint. 3 K. Deckelnick and G. Dziuk, Error analyi for te elatic flow of parametrized curve, Mat. Comp., , pp G. Dziuk, E. Kuwert, and R. Scätzle, Evolution of elatic curve in R n : exitence and computation, SIAM J. Mat. Anal., 33 00, pp D. Krau and O. Rot, Conformal metric, in Topic in Modern Function Teory, vol. 9 of Ramanujan Mat. Soc. Lect. Note Ser., Ramanujan Mat. Soc., Myore, 03, pp ee alo ttp://arxiv.org/ab/ J. Langer and D. A. Singer, Te total quared curvature of cloed curve, J. Differential Geom., 0 984, pp.. 7 A. Linnér, Periodic geodeic generator, Experiment. Mat., 3 004, pp A. Linnér and R. Renka, Dicrete periodic geodeic in a urface, Experiment. Mat., 4 005, pp E. Scipper, Te calculu of conformal metric, Ann. Acad. Sci. Fenn. Mat., 3 007, pp J. M. Sullivan, Conformal tiling on a toru, in Bridge Proceeding, Coimbra, Portugal, 0, pp
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Deterministic Policy Gradient Algorithms: Supplementary Material
Determinitic Policy Gradient lgorithm: upplementary Material. Regularity Condition Within the text we have referred to regularity condition on the MDP: Regularity condition.1: p(, a), a p(, a), µ θ (),
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION
Journal of Fractional Calculu and Application, Vol. 3, July 212, No. 6, pp. 1 9. ISSN: 29-5858. http://www.fcaj.web.com/ EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations
P4 Stre and Strain Dr. A.B. Zavatk HT08 Lecture 5 Plane Stre Tranformation Equation Stre element and lane tre. Stree on inclined ection. Tranformation equation. Princial tree, angle, and lane. Maimum hear
Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems
Hindawi Publihing Corporation Boundary Value Problem Volume 27, Article ID 68758, 1 page doi:1.1155/27/68758 Reearch Article Exitence of Poitive Solution for Fourth-Order Three-Point Boundary Value Problem
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det
Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
On mean-field stochastic maximum principle for near-optimal controls for Poisson jump diffusion with applications
Int. J. Dynam. Control 04) :6 84 DOI 0.007/40435-03-0040-y On mean-field tochatic maximum principle for near-optimal control for Poion jump diffuion with application Mokhtar Hafayed Abdelmadjid Abba Syed
Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
Mellin transforms and asymptotics: Harmonic sums
Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13
ENGR 69/69 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework : Bayesian Decision Theory (solutions) Due: Septemer 3 Prolem : ( pts) Let the conditional densities for a two-category one-dimensional
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Approximate System Reliability Evaluation
Appoximate Sytem Reliability Evaluation Up MTTF Down 0 MTBF MTTR () Time Fo many engineeing ytem component, MTTF MTBF i.e. failue ate, failue fequency, f Fequency, Duation and Pobability Indice: failue
Symmetric Stress-Energy Tensor
Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Parallel transport and geodesics
Parallel transport and geodesics February 4, 3 Parallel transport Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors at different positions on
Chapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Continuous Distribution Arising from the Three Gap Theorem
Continuous Distribution Arising from the Three Gap Theorem Geremías Polanco Encarnación Elementary Analytic and Algorithmic Number Theory Athens, Georgia June 8, 2015 Hampshire college, MA 1 / 24 Happy
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
Turkish Journal of I N E Q U A L I T I E S
Turkih J Ineq, ) 7), Page 6 37 Turkih Journal of I N E Q U A L I T I E S Available online at wwwtjinequalitycom PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS M ADIL KHAN AND
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
SURVEY AND NEW RESULTS ON BOUNDARY-VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS
Electronic Journal of Differential Equation, Vol. 26 26, No. 296, pp. 77. ISSN: 72-669. URL: http://ejde.math.txtate.edu or http://ejde.math.unt.edu SURVEY AND NEW RESULTS ON BOUNDARY-VALUE PROBLEMS OF
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Phase-Field Force Convergence
Phase-Field Force Convergence Bo Li Department of Mathematics and Quantitative Biology Graduate Program UC San Diego Collaborators: Shibin Dai and Jianfeng Lu Funding: NSF School of Mathematical Sciences
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:
Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness