FRACTIONAL INTEGRATION OF THE PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND. Abstract
|
|
- Ἀριδαίος Στεφανόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 FRACTIONAL INTEGRATION OF THE PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND Anaoly A. Kilbas,1, Nicy Sebasian Dedicaed o 75h birhday of Prof. A.M. Mahai Absrac Two inegral ransforms involving he Gauss-hypergeomeric funcion in he kernels are considered. They generalize he classical Riemann-Liouville and Erdélyi-Kober fracional inegral operaors. Formulas for composiions of such generalized fracional inegrals wih he produc of Bessel funcions of he firs kind are proved. Special cases for he produc of cosine and sine funcions are given. The resuls are esablished in erms of generalized Lauricella funcion due o Srivasava and Daous. Corresponding asserions for he Riemann-Liouville and Erdélyi-Kober fracional inegrals are presened. Mahemaical Subec Classificaion 010: 6A33, 33C10, 33C0, 33C50, 33C60, 6A09 Key Words and Phrases: fracional inegrals, Bessel funcion of he firs kind, generalized hypergeomeric series, generalized Lauricella series in several variables, cosine and sine rigonomeric funcions 1. Inroducion This paper deals wih wo inegral ransforms defined for x > 0 and complex α, β, η C (R(α) > 0) by c 010, FCAA Diogenes Co. (Bulgaria). All righs reserved.
2 160 A.A. Kilbas, N. Sebasian and (I α,β,η xαβ 0+ f)(x) = Γ(α) x 0 ( (x ) α1 F 1 α + β, η; α; 1 ) f()d x (1.1) (I α,β,η f)(x) = 1 ( ( x) α1 αβ F 1 α + β, η; α; 1 x ) f()d. Γ(α) x (1.) Here Γ(α) is he Euler gamma funcion 1, Secion 1, R(α) denoes he real par of α, and F 1 (a, b; c; z) is he Gauss hypergeomeric funcion defined for complex a, b, c, C, c 0, 1,, by he hypergeomeric series 1,.1() F 1 (a, b; c; z) = k=0 (a) k (b) k (c) k z k k!, (1.3) where (z) k is he Pochhammer symbol defined for z C and k N 0 = N {0}, N = {1,,...} by (z) 0 = 1, (z) k = z(z + 1)...(z + k 1) (k N). (1.) The series in (1.3) is absoluely convergen for z < 1 and z = 1(z 1), R(c a b) > 0. (1.5) Operaors (1.1) and (1.) were inroduced by Saigo 5, and heir properies were invesigaed by many auhors; see bibliography and a shor survey of resuls in 3, Secion 7.1, For Secions 7.7 and 7.8. When β = α, (1.1) and (1.) coincide wih he classical lef and righ-hand sided Riemann- Liouville fracional inegrals of order α C, R(α) > 0, 6, Secion 5.1: (I α,α,η 0+ f)(x) = (I0+f)(x) α 1 Γ(α) (I α,α,η f)(x) = (I α f)(x) 1 Γ(α) x o x (x ) α1 f()d (x > 0), (1.6) ( x) α1 f()d (x > 0). (1.7) If β = 0, (1.1) and (1.) are he so-called Erdélyi-Kober fracional inegrals defined for complex α, η C (R(α) > 0) by 6, Secion 18.1: (I α,0,η 0+ f)(x) = (I+ η,αf)(x) xαη Γ(α) x o (x ) α1 η f()d (x > 0), (1.8)
3 FRACTIONAL INTEGRATION OF THE PRODUCT (I α,0,η f)(x) = (K η,αf)(x) xη Γ(α) x ( x) α1 αη f()d (x > 0). (1.9) We invesigae composiions of inegral ransforms (1.1) and (1.) wih he produc of Bessel funcion of he firs kind, J ν (z), which is defined for complex z C (z 0) and ν C (R(ν) > 1) by, 7.() J ν (z) = k=0 (1) k ( z )ν+k Γ(ν + k + 1)k!. (1.10) We prove ha such composiions are expressed in erms of he generalized Lauricella funcion due o Srivasava and Daous 7, which is defined by = F A: B ; ;B (n) C: D ; ;D (n) = F A: B ; ;B (n) (a): θ,, θ (n), (b ): φ ; ; (b) (n) : φ (n) ; C: D ; ;D (n) (c): ψ,, ψ (n), (d ): δ ; ; (d) (n) : δ (n) ; z 1,, z n k 1,,k n =0 A (a ) k1 θ + +knθ(n) C (c ) k1 ψ + +k nψ (n) he coefficiens { B z 1. z n B(n) (b ) k1 φ D(n) (d ) k1 δ D θ (m) ( = 1,..., A); φ (m) ( = 1,..., B (m) ) ψ (m) ( = 1,..., C); δ (m) (b (n) ) knφ (n) (d (n) ) kn δ (n) z k 1 1 k 1! zkn n k n!, (1.11) ( = 1,..., D (m) ); m {1,..., n} (1.1) are real and posiive, and (a) abbreviaes he array of A parameers a 1,..., a A, (b (m) ) abbreviaes he array of B (m) parameers b (m) } ( = 1,..., B (m) ); m {1,..., n}, wih similar inerpreaions for (c) and (d (m) ) (m = 1,..., n). (z) a is a generalizaion of he Pochhammer symbol (1.): (z) a = Γ(z + a) Γ(a) The muliple series (1.11) converges absoluely eiher (z, a C). (1.13) (i) i > 0 (i = 1,..., n), z 1,..., z n C,
4 16 A.A. Kilbas, N. Sebasian or (ii) i = 0 (i = 1,..., n), z 1,..., z n C, z i < ϱ i (i = 1,..., n), and divergen when i < 0 (i = 1,..., n); excep for he rivial case z 1 = z n = 0, where wih i 1 + E i = (µ i ) 1+ C D (i) ψ (i) D (i) + δ (i) ϱ i = δ (i) A θ (i) B (i) φ (i) (i = 1,..., n), (1.1) min {E i} (i = 1,..., n), (1.15) µ 1,...,µ n >0 B (i) φ (i) ( C n i=1 ( A n i=1 µ i ψ (i) µ i θ (i) ) ψ (i) ) θ (i) D (i) B (i) (δ (i) ) δ(i) (φ (i) )φ(i). (1.16) For more deails see 7. Special cases of (1.11) are esablished in erms of generalized hypergeomeric funcion of one and wo variables respecively, for he sake of compleeness we define hese funcions here. A generalized hypergeomeric funcion p F q (z) is defined for complex a i, b C, b 0, 1,... (i = 1,,... p; = 1,,... q) by he generalized hypergeomeric series 1,.1(1) pf q (a 1,..., a p ; b 1,..., b q ; z) = k=0 (a 1 ) k... (a p ) k z k (b 1 ) k... (b q ) k k!. (1.17) This series is absoluely convergen for all values of z C if p q; and i is an enire funcion of z. We define a generalizaion of he Kampé de Férie funcion by means of he double hypergeomeric series 7 F p:q;k l:m;n (ap):(bq);(c k); (α l ):(β m );(γ n ); x, y= r,s=0 { p (a ) r+s }{ q (b ) r }{ k (c ) s } { l (α ) r+s }{ m (β ) r }{ n x r y s (γ ) s } r! s!. (1.18)
5 FRACTIONAL INTEGRATION OF THE PRODUCT The above double series is absoluely convergen for all values of x and y, if p + q < l + m + 1 and p + k < l + n + 1. Also, if p + q = l + m + 1 and p + k = l + n + 1, we mus have any one of he following ses of condiions: p l, max{ x, y } < 1; p > l, x 1/(pl) + y 1/(pl) < 1. The paper is organized as follows. Formulas for composiions of inegral ransforms (1.1) and (1.) wih he produc of Bessel funcions (1.10) are proved in erms of generalized Lauricella funcion (1.11) in Secion and 3, respecively. The corresponding resuls for he Riemann-Liouville and Erdélyi-Kober fracional inegrals (1.6), (1.7) and (1.8), (1.9) are also presened in Secions and 3. Special cases giving composiions of fracional inegrals wih he produc of cosine and sine funcions are considered in Secions.. Lef-sided fracional inegraion of Bessel funcions Our resuls in Secions and 3 are based on he preliminary asserions giving composiion formulas of generalized fracional inegrals (1.1) and (1.) wih a power funcion. Lemma 1. (, Lemmas 1-) Le α, β, η C. (a) If R(α) > 0 and R(σ) > max 0, R(β η), hen (I α,β,η 0+ σ1 )(x) = Γ(σ)Γ(σ + η β) Γ(σ β)γ(σ + α + η) xσβ1. (.1) (b) If R(α) > 0 and R(σ) < 1 + min R(β), R(η), hen (I α,β,η σ1 )(x) = Γ(β σ + 1)Γ(η σ + 1) Γ(1 σ)γ(α + β + η σ + 1) xσβ1. (.) The generalized lef-sided fracional inegraion (1.1) of he produc of Bessel funcions(1.10) is given by he following resul. Theorem 1. Le n N, α, β, η, σ, ν C and a, ρ R + ( = 1,..., n) be such ha n R(α) > 0, R(ν ) > 1, R(σ + ρ ν ) > max0, R(β η). (.3)
6 16 A.A. Kilbas, N. Sebasian Then here holds he formula 0+ σ1 n J ν (a ρ ) (x) n = x σβ1 ( a x ρ ) ν Γ(u)Γ(v) Γ(ν + 1) Γ(w)Γ(z) F :0,...,0 u:ρ 1,...,ρ n,v:ρ 1,...,ρ n :1,...,1 w:ρ 1,...,ρ n,z:ρ 1,...,ρ n:ν 1 +1:1,...,ν ; n+1:1: a 1 xρ 1,..., a nx ρn (.) where u = σ + n ρ ν, v = σ + η β + n ρ ν, w = σ β + n ρ ν, z = σ + α + η + n ρ ν and F :0,...,0 :1,...,1 is given by (1.11). P r o o f. Firs of all we noe ha i in (1.1) is given by i = 1+n > 0 (i = 1,..., n N), and herefore F :0,...,0 :1,...,1 in he righ hand side of (.) is defined. Now we prove (.). Applying equaion (1.10), Using (1.1) and (1.11) and changing he orders of inegraion and summaion, we find = 0+ = σ1 k 1,...,k n=0 0+ k 1 =0 σ1 n J ν (a ρ ) (x) (1) k 1 ( a 1 ρ 1 ) ν 1+k 1 Γ(ν 1 + k 1 + 1) k 1! (1) k n ( a n ρ n ) ν n+k n (x) Γ(ν n + k n + 1) k n! k n =0 (1) k 1 ( a 1 ) ν 1+k 1 Γ(ν 1 + 1)(ν 1 + 1) k1 k 1! (1) kn ( an ) νn+kn Γ(ν n + 1)(ν n + 1) kn k n! (I α,β,η 0+ {σ+ν 1ρ 1 + +ν nρ n+ρ 1 k 1 + +ρ nk n1 })(x). By (.3), for any k N 0 ( = 1,..., n) R(σ + n ρ ν + n ρ k ) R(σ + n ρ ν ) > max0, R(β η). Applying Lemma 1(a) and using (.1) wih σ replaced by σ + n ρ ν + n ρ k ( = 1,..., n), we obain 0+ σ1 n J ν (a ρ ) (x),
7 FRACTIONAL INTEGRATION OF THE PRODUCT = k 1,...,k n=0 (1) k 1 ( a 1 ) ν 1+k 1 Γ(ν 1 + 1)(ν 1 + 1) k1 k 1! (1) kn ( an ) νn+kn Γ(ν n + 1)(ν n + 1) kn k n! Γ(σ + n (ν ρ + ρ k ))Γ(σ + η β + n (ν ρ + ρ k )) Γ(σ β + n (ν ρ + ρ k ))Γ(σ + α + η + n (ν ρ + ρ k )) n = x σβ1 ( a x ρ ) ν Γ(ν +1) k 1,...,k n=0 x σβ1+ n (ν ρ +ρ k ) Γ(σ + n ρ ν )Γ(σ + η β + n ρ ν ) Γ(σ β + n ρ ν )Γ(σ + α + η + n ρ ν ) (σ+ n ρ ν ) ρ1 k 1 + +ρ nk n (σ+ηβ+ n ρ ν ) ρ1 k 1 + +ρ nk n (σβ+ n ρ ν ) ρ1 k 1 + +ρ nk n (σ+α+η+ n ρ ν ) ρ1 k 1 + +ρ nk n 1 ( a (ν 1 + 1) k1 (ν n + 1) kn k 1! 1 xρ 1 ) k 1 ( a n xρn ) kn This, in accordance wih Equaion (1.11), gives he resul in (.). This complee he proof of he heorem. Corollary 1.1. Le α, σ, ν C and a, ρ R + ( = 1,..., n) be such ha R(α) > 0, R(ν ) > 1 and R(σ + n ρ ν ) > 0. Then n I 0+ α σ1 J ν (a ρ ) (x) n = x σ+α1 ( a x ρ ) ν Γ(σ + n ρ ν ) Γ(ν + 1) Γ(σ + α + n ρ ν ) F 1:0,...,0 σ+ n ρ ν :ρ 1,...,ρ n : 1:1,...,1 σ+α+ n ρ ν :ρ 1,...,ρ n:ν 1 +1:1,...,ν ; a 1 xρ1 n+1:1: k n!.,..., a nx ρn (.5) Corollary 1.. Le α, η, σ, ν C and a, ρ R + ( = 1,..., n) be such ha R(α) > 0, R(ν ) > 1 and R(σ + n ρ ν ) > R(η). Then n I η,α + σ1 J ν (a ρ ) (x).
8 166 A.A. Kilbas, N. Sebasian n = x σ1 ( a x ρ ) ν Γ(σ + η + n ρ ν ) Γ(ν + 1) Γ(σ + α + η + n ρ ν ) F 1:0,...,0 σ+η+ n ρ ν :ρ 1,...,ρ n : 1:1,...,1 σ+α+η+ n ρ ν :ρ 1,...,ρ n:ν 1 +1:1,...,ν ; a 1 xρ1 n+1:1:,..., a nx ρn. (.6) Corollary 1.3. Le α, β, σ, ν 1, ν C and a 1, a, ρ 1, ρ R + be such ha R(α) > 0, R(ν 1 ) > 1, R(ν ) > 1 and R(σ + ρ 1 ν 1 + ρ ν ) > max0, R(β η). Then ( I α,β,η 0+ σ1 J ν1 ()J ν () ) (x) F :0,0 a a+1 :1,1, :1,1, b b+1 :1,1, :1,1 c = xc1 ν 1+ν Γ(a)Γ(b) Γ(c)Γ(d)Γ(ν 1 + 1)Γ(ν + 1) :1,1, c+1 :1,1, d :1,1: :1,1, d+1 :1,1:ν 1+1:1,...,ν n +1:1: ; x, x, (.7) where a = σ + ν 1 + ν, b = σ + η β + ν 1 + ν, c = σ β + ν 1 + ν, d = σ + α + η + ν 1 + ν and F :0,0 :1,1 is defined in (1.18). Corollaries 1.1 and 1. follow from Theorem 1 in respecive cases β = α and β = 0, if we ake (1.6) and (1.8) ino accoun. Corollary 1.3 follows from Theorem 1, if we pu n =, a 1 = 1, a = 1, ρ 1 = 1, ρ = 1, use (1.11) and ake ino accoun he relaion (z) k = k ( z ) k ( ) z + 1 where (z) k is he Pochhammer symbol (1.). k (z C, k N 0 ), (.8) Remark 1. When n = 1, a 1 = 1, ρ 1 = 1, ν 1 = ν equaion (.) is reduced o ( I α,β,η 0+ σ1 J ν () ) (x) = xσ+νβ1 Γ(σ + ν)γ(σ + ν + η β) ν Γ(σ + ν β)γ(σ + ν + α + η)γ(ν + 1) σ+ν F, σ+ν+1, σ+ν+ηβ, σ+ν+ηβ+1 5 ν+1, σ+νβ, σ+νβ+1, σ+ν+α+η, σ+ν+α+η+1 This resul was proved in, Theorem 3. ; x. (.9)
9 FRACTIONAL INTEGRATION OF THE PRODUCT Righ-sided fracional inegraion of Bessel funcions The following resul yields generalized righ-hand sided fracional inegraion (1.) of he produc of Bessel funcions. Theorem. Le α, β, η, σ, ν C and a, ρ R + ( = 1,..., n) be such ha n R(α) > 0, R(ν ) > 1, R(σ ρ ν ) < 1 + minr(β), R(η). (3.1) Then here holds he formula σ1 n J ν ( a ρ ) (x) n = x σβ1 ( a x ρ ) ν Γ(p)Γ(q) Γ(ν + 1) Γ(r)Γ(s) F :0,...,0 p:ρ 1,...,ρ n,q:ρ 1,...,ρ n : :1,...,1 r:ρ 1,...,ρ n,s:ρ 1,...,ρ n:ν 1 +1:1,...,ν ; a 1 n+1:1: x ρ,..., a n 1 x ρ, n (3.) where p = 1 + β σ + n ρ ν, q = 1 + η σ + n ρ ν, r = 1 σ + n ρ ν, s = α + β + η σ + n ρ ν + 1 and F :0,...,0 :1,...,1 is given by (1.11). P r o o f. Firs of all we noe ha i in (1.1) is given by i = 1+n > 0 (i = 1,..., n N), and herefore F :0,...,0 :1,...,1 in he righ hand side of (3.) is defined. Now we prove (3.). Using Equaions (1.) and (1.10) and changing he orders of inegraion and summaion, we have n ( σ1 a ) J ν ρ (x) = (I α,β,η = σ1 k 1,...,k n =0 k 1 =0 (1) k 1 ( a 1 ρ 1 )ν 1+k 1 Γ(ν 1 + k 1 + 1) k 1! k n=0 (1) k n ( an ρ n ) νn+kn Γ(ν n + k n + 1) k n! (x) (1) k 1 ( a 1 ) ν 1+k 1 Γ(ν 1 + 1)(ν 1 + 1) k1 k 1! (1) kn ( an ) νn+kn Γ(ν n + 1)(ν n + 1) kn k n!
10 168 A.A. Kilbas, N. Sebasian (I α,β,η { σν 1ρ 1 ν nρ nρ 1 k 1 ρ nk n1 })(x). By (3.1), for any k N 0 ( = 1,..., n) R(σ n ρ ν n ρ k ) R(σ n ρ ν ) < 1 + minr(β), R(η). Applying Lemma 1(b) and using (.) wih σ replaced by σ n ρ ν n ρ k ( = 1,..., n), we obain n ( σ1 a ) J ν ρ (x) = k 1,...,k n =0 (1) k 1 ( a 1 ) ν 1+k 1 Γ(ν 1 + 1)(ν 1 + 1) k1 k 1! (1) kn ( an ) νn+kn Γ(ν n + 1)(ν n + 1) kn k n! Γ(β σ n (ν ρ + ρ k ))Γ(η σ n (ν ρ + ρ k )) Γ(1σ+ n (ν ρ + ρ k ))Γ(1+α+β+ησ+ n (ν ρ + ρ k )) n = x σβ1 ( a x ρ ) ν Γ(ν + 1) x σβ1 n (ν ρ +ρ k ) Γ(p)Γ(q) Γ(r)Γ(s) k 1,...,k n =0 (p) ρ1 k 1 + +ρ n k n (q) ρ1 k 1 + +ρ n k n (r) ρ1 k 1 + +ρ n k n (s) ρ1 k 1 + +ρ n k n a 1 x ρ 1 )k 1 1 ( (ν 1 + 1) k1 (ν n + 1) kn k 1! By equaion (1.11), his yields he resul in (3.). ( a n x ρn )k n. k n! Corollary.1. Le α, σ, ν C and a, ρ R + ( = 1,..., n) be such ha R(ν ) > 1, and 0 < R(α) < 1 R(σ n ρ ν ). Then n ( I α σ1 a ) J ν ρ (x) ( n a ) ν = x σ+α1 x ρ Γ(1 σ α + n ρ ν ) Γ(ν + 1) Γ(1 σ + n ρ ν ) F 1:0,...,0 1σα+ n ρ ν :ρ 1,...,ρ n : 1:1,...,1 1σ+ n ρ ν :ρ 1,...,ρ n:ν 1 +1:1,...,ν ; a 1 n+1:1: x ρ,..., 1 a n x ρ n. (3.3)
11 FRACTIONAL INTEGRATION OF THE PRODUCT Corollary.. Le α, η, σ, ν C and a, ρ R + ( = 1,..., n) be such ha R(α) > 0, R(ν ) > 1, and R(σ n ρ ν ) < 1 + R(η). Then n ( K η,α σ1 a ) J ν ρ (x) n = x σ1 ( a x ρ ) ν Γ(1 + η σ + n ρ ν ) Γ(ν + 1) Γ(1 + η + α σ + n ρ ν ) F 1:0,...,0 1+ησ+ n ρ ν :ρ 1,...,ρ n : 1:1,...,1 1+α+ησ+ n ρ ν :ρ 1,...,ρ n:ν 1 +1:1,...,ν ; a 1 n+1:1: x ρ,..., 1 a n x ρ n (3.). Corollary.3. Le α, β, η, σ, ν 1, ν C, a 1, a and ρ 1, ρ R + be such ha R(α) > 0, R(ν 1 ) > 1, R(ν ) > 1, R(σ ρ 1 ν 1 ρ ν ) < 1+minR(β), R(η) and R(β σ +ν 1 +ν +1) > 0, R(η σ +ν 1 +ν +1) > 0. Then ( I α,β,η σ1 J ν1 ( 1 ) J ν ( 1 )) (x) = xσν 1ν β1 ν 1+ν Γ(c)Γ(f) Γ(g)Γ(h)Γ(ν 1 + 1)Γ(ν + 1) F :0,0 e e+1 :1,1, :1,1, f f+1 :1,1, :1,1 g :1,1, g+1 :1,1, h ; 1 :1,1:ν 1+1:1,...,ν n +1:1: x, 1 x, (3.5) :1,1: h+1 :1,1, where e = β σ + ν 1 + ν + 1, f = η σ + ν 1 + ν + 1, g = 1 σ + ν 1 + ν, h = α + β + η σ + ν 1 + ν + 1 and F :0,0 :1,1 is defined in (1.18). According o (1.7) and (1.9), Corollaries.1 and. follow from Theorem in respecive cases β = α and β = 0. Corollary 1.3 follows from Theorem 1, if we pu n =, a 1 = 1, a = 1, ρ 1 = 1, ρ = 1 and ake (.8) ino accoun. Remark. When n = 1, a 1 = 1, ρ 1 = 1, ν 1 = ν, equaion (3.9) is reduced o ( ( )) I α,β,η 1 σ1 J ν (x) = xσνβ1 ν Γ(β σ + ν + 1)Γ(η σ + ν + 1) Γ(1 σ + ν)γ(α + β + η σ + ν + 1)Γ(ν + 1)
12 170 A.A. Kilbas, N. Sebasian βσ+ν+1, F βσ+ν+, ησ+ν+1, ησ+ν+ 5 ν+1, 1σ+ν, σ+ν, α+β+ησ+ν+1, α+β+ησ+ν+ This formula was proved in, Theorem. ; 1 x. (3.6). Fracional inegraion of cosine and sine funcions For ν = 1 and ν = 1, he Bessel funcion J ν(z) in (1.10) coincides ( ) 1 wih cosine- and sine-funcions, apar from he muliplier πz : ( ) 1 ( ) 1 J 1 (z) = cos(z), J 1 (z) = sin(z). (.1) πz πz Seing ν 1 = = ν n = 1 and ρ 1 = = ρ n = 1, from Theorem 1 and Corollaries 1.1 and 1. we deduce he following resuls: Theorem 3. Le α, β, η, σ C, a R +, = 1,..., n be such ha R(α) > 0, R(σ) > 0, R(σ + η β) > 0, R(σ) > max0, R(β η) Then here holds he formula 0+ σ1 n cos(a ) (x) = x σβ1 Γ(σ)Γ(σ + η β) Γ(σ β)γ(σ + α + η) F :0,...,0 σ:,...,,σ+ηβ:,...,: :1,...,1 ; σβ:,...,,α+η+σ:,...,: 1 :1,..., 1 :1: a 1 x,..., nx a. (.) Corollary 3.1. Le α, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) > 0. Then n I 0+ α σ1 cos(a ) (x) = x σ+α1 Γ(σ) Γ(σ + α) F 1:0,...,0 σ:,...,: 1:1,...,1 ; σ+α:,...,: 1 :1,..., 1 :1: a 1 x,..., nx a. (.3)
13 FRACTIONAL INTEGRATION OF THE PRODUCT Corollary 3.. Le α, η, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) > R(η). Then n I η,α + σ1 cos(a ) (x) = x σ1 Γ(σ + η) Γ(σ + α + η) F 1:0,...,0 σ+η:,...,: 1:1,...,1 ; σ+α+η:,...,: 1 :1,..., 1 :1: a 1 x,..., nx a. (.) Theorem. Le α, β, η, σ C and a R + ( = 1,..., n) be such ha Then R(α) > 0, R(σ) > 0, R(σ + η β) > 0, R(σ) > max0, R(β η). = π n n 0+ n a σn1 n sin(a ) (x) x σβ1 Γ(σ)Γ(σ + η β) Γ(σ β)γ(σ + α + η) F :0,...,0 σ:,...,,σ+ηβ:,...,: :1,...,1 ; σβ:,...,,α+η+σ:,...,: 3 :1,..., 3 :1: a 1 x,..., nx a. (.5) Corollary.1. Le α, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) > 0. Then = π n n F 1:0,...,0 1:1,...,1 n I 0+ α σn1 sin(a ) (x) n a x σβ1 Γ(σ) Γ(σ + α) σ:,...,: ; σ+α:,...,,: 3 :1,..., 3 :1: a 1 x,..., nx a. (.6)
14 17 A.A. Kilbas, N. Sebasian Corollary.. Le α, η, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) > R(η). Then n I η,α + σn1 = π n n n a sin(a ) (x) x σ1 Γ(σ + η) Γ(σ + α + η) F 1:0,...,0 σ+η:,...,: 1:1,...,1 ; α+η+σ:,...,: 3 :1,..., 3 :1: a 1 x,..., nx a. (.7) Similarly, seing ν 1 = = ν n = 1 and ρ 1 = = ρ n = 1 and aking (.1) ino accoun, from Theorem and Corollaries.1 and., we obain he following resuls: Theorem 5. Le α, β, η, σ C and a R + ( = 1,..., n) be such ha Then R(α) > 0, R(β σ) > 0, R(η σ) > 0, R(σ) < minr(β), R(η). σ n cos ( a ) (x) = x σβ Γ(β σ)γ(η σ) Γ(σ)Γ(α + β + η σ) F :0,...,0 βσ:,...,,ησ:,...,: :1,...,1 ; a 1 σ:...,,α+β+ησ:,...,: 1 :1,..., 1 :1: x,..., a n x. (.8) Corollary 5.1. Le α, σ C and a R + ( = 1,..., n) be such ha 0 < R(α) < R(σ). Then n ( I α σ a ) cos (x) σ+α Γ(α σ) = x F 1:0,...,0 ασ:,...,: 1:1,...,1 Γ(σ) ; a 1 σ:,...,: 1 :1,..., 1 :1: x,..., a n x. (.9)
15 FRACTIONAL INTEGRATION OF THE PRODUCT Corollary 5.. Le α, η, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) < R(η). Then n ( K η,α σ a ) cos (x) = x σ Γ(η σ) Γ(α + η σ) F 1:0,...,0 ησ:,...,: 1:1,...,1 ; a 1 α+ησ:,...,: 1 :1,..., 1 :1: x,..., a n x. (.10) Theorem 6. Le α, β, η, σ C and a R + ( = 1,..., n) be such ha R(α) > 0, R(β σ > 1, R(η σ) > 1, R(σ) < 1 + minr(β), R(η). Then here holds he formula = π n n n a σ+n1 n sin ( a ) (x) x σβ1 Γ(β σ + 1)Γ(η σ + 1) Γ(1 σ)γ(α + β + η σ + 1) F :0,...,0 βσ:,...,,ησ+1:,...,: :1,...,1 ; a 1 1σ:,...,,α+β+ησ+1:,...,: 3 :1,..., 3 :1: x,..., a n x. (.11) Corollary 6.1. Le α, σ C and a R + ( = 1,..., n) be such ha 0 < R(α) < 1 R(σ). Then n ( I α σ+n1 a ) sin (x) = π n n n a x σ+α1 Γ(1 α σ) Γ(1 σ)
16 17 A.A. Kilbas, N. Sebasian F 1:0,...,0 1σα:,...,: 1:1,...,1 ; a 1 1σ:,...,: 3 :1,..., 3 :1: x,..., a n x. (.1) Corollary 6.. Le α, η, σ C and a R + ( = 1,..., n) be such ha R(α) > 0 and R(σ) < 1 + R(η). Then n ( K η,α σ+n1 a ) sin (x) = π n n n a x σ1 Γ(η σ + 1) Γ(α + η σ + 1) F 1:0,...,0 ησ+1:,...,: 1:1,...,1 ; a 1 α+ησ+1:,...,: 3 :1,..., 3 :1: x,..., a n x. (.13) Remark 3. When n = 1, a 1 = 1, hen all he resuls in Secion coincide wih ha proved in, Secions 5 and 6. Acknowledgemens The auhors would like o hank he Deparmen of Science and Technology, Governmen of India, New Delhi, for he financial assisance for his work under proec-number SR/S/MS:87/05, and he Cenre for Mahemaical Sciences for providing all faciliies. The firs co-auhor (A.A.K.) was suppored, in par, by he Belarusian Fundamenal Research Fund (Proec F08MC-08) and by Naional Science Fund - Minisry of Educaion, Youh and Science, Bulgaria (Proec D ID 0/5/009 Inegral Transform Mehods, Special Funcions and Applicaions ).
17 FRACTIONAL INTEGRATION OF THE PRODUCT References 1 A. Erdélyi, W. Magnus, F. Oberheinger, F.G. Tricomi, Higher Transcendenal Funcions, Vol. I. McGraw-Hill, New York - Torono - London (1953). A. Erdélyi, W. Magnus, F. Oberheinger, F.G. Tricomi, Higher Transcendenal Funcions, Vol. II. McGraw-Hill, New York - Torono - London (1953). 3 A.A. Kilbas, M. Saigo, H-Transforms. Theory and Applicaions. Chapman and Hall/CRC, Boca Raon, Florida (00). A.A. Kilbas, N. Sebasian, Generalized fracional inegraion of Bessel funcion of he firs kind. Inegral Transforms Spec. Func. 19, No 1 (008), M. Saigo, A remark on inegral operaors involving he Gauss hypergeomeric funcions. Mah. Rep. College of General Edu. Kyushu Universiy 11 (1978), S.G. Samko, A.A. Kilbas, O.I. Marichev, Fracional Inegrals and Derivaives. Theory and Applicaions. Gordon and Breach Sci. Publ., London - New York (1993). 7 H.M. Srivasava, M.C. Daous, A noe on he convergence of Kampé de Férie s double hypergeomeric series. Mah. Nachr. 53 (197), ,1 Dep. Mah. & Mechanics, Belarusian Sae Universiy Minsk 0030, BELARUS (Corresponding auhor) Cenre for Mahemaical Sciences Pala Campus Arunapuram P.O. Palai, Kerala , INDIA nicyseb@yahoo.com; Received: December 8, 009
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Generalized fractional calculus of the multiindex Bessel function
Available online at www.isr-publications.com/mns Math. Nat. Sci., 1 2017, 26 32 Research Article Journal Homepage:www.isr-publications.com/mns Generalized ractional calculus o the multiindex Bessel unction.
Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations
J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
On the k-bessel Functions
International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
On Strong Product of Two Fuzzy Graphs
Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko
M a t h e m a t i c a B a l k a n i c a New Series Vol. 26, 212, Fasc. 1-2 On Some Generalizations of Classical Integral Transforms Nina Virchenko Presented at 6 th International Conference TMSF 211 Using
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Approximation of the Lerch zeta-function
Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type
Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,
Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary
Riemann Hypothesis: a GGC representation
Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
The k-bessel Function of the First Kind
International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation
Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano
235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
The Student s t and F Distributions Page 1
The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales
Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Positive solutions for a multi-point eigenvalue. problem involving the one dimensional
Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =