Program ΕΜΒΑ ΟΝ_ΚΥΚΛΟΥ Variables double: p, R, E Begin π 3.14 Print ώστε ακτίνα κύκλου Input R Print Εµβαδόν κύκλου Ε π*r*r Print Ε End program
|
|
- Μίδας Παχής
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Άσκηση 1.1 Το εµβαδόν ενός κύκλου δίνεται από τον τύπο Ε=π*R 2 ; όπου R η ακτίνα του κύκλου. Να δοθεί αλγόριθµος ο οποίος να κάνει τα παρακάτω: 1) Εµφανίζει το µήνυµα «ώστε ακτίνα κύκλου» και διαβάζει την ακτίνα του κύκλου. 2) Εµφανίζει το µήνυµα «Εµβαδόν κύκλου» και στη συνέχεια υπολογίζει και εµφανίζει το εµβαδόν του σύµφωνα µε τον παραπάνω τύπο ( ίνεται π=3,14). Αλγόριθµος ΕΜΒΑ ΟΝ_ΚΥΚΛΟΥ πραγµατικός π, R, E αρχή π:=3,14; εµφάνισε ώστε ακτίνα κύκλου ; διάβασε R; εµφάνισε Εµβαδόν κύκλου ; Ε:=π*R*R; εµφάνισε Ε; τέλος Program ΕΜΒΑ ΟΝ_ΚΥΚΛΟΥ Variables double: p, R, E Begin π 3.14 Print ώστε ακτίνα κύκλου Input R Print Εµβαδόν κύκλου Ε π*r*r Print Ε End program Αρχή π:=3,14; εµφάνισε ώστε ακτίνα διάβασε R; εµφάνισε Εµβαδόν κύκλου ; Ε:=π*R*R; εµφάνισε Ε; Τέλος
2 Private Sub cmd_calc_click() Dim r As Double r = Val(txt_value.Text) txt_result.text = Str(r * r * 3.14) Private Sub cmd_exit_click() Unload Me Private Sub Form_Load() Private Sub txt_result_change() Άσκηση 1.2 Στο διαστηµικό κέντρο της ΝΑSA υπάρχει ένα ηλεκτρονικό ρόλοι που εµφανίζει το χρόνο σε δευτερόλεπτα που αποµένουν για την εκτόξευση του διαστηµικού λεωφορείου. ώστε ένα αλγόριθµο ο οποίος να διαβάζει τα δευτερόλεπτα που αναγράφονται στο ηλεκτρονικό ρολόι εµφανίζοντας το µήνυµα «ώστε τα δευτερόλεπτα που γράφει το ρολόι» και να εµφανίζει πόσες ώρες, λεπτά, και δευτερόλεπτα αποµένουν για την εκτόξευση, χρησιµοποιώντας την µορφή «ώρες:λεπτά:δευτερόλεπτα». Αλγόριθµος Μορφή_ώρες_λεπτά_δευτερόλεπτα ακέραιος Α_δεύτερα, δεύτερα, λεπτά, ώρες αρχή εµφάνισε ώστε τα δευτερόλεπτα που γράφει το ρολόι ; διάβασε Α_δεύτερα; ώρες:= Α_δεύτερα div 3600; λεπτά:= (Α_δεύτερα mod 3600) div 60; δεύτερα:= (Α_δεύτερα mod 3600) mod 60; εµφάνισε ώρες, :,λεπτά, :,δευτερόλεπτα; τέλος Program ΕΜΒΑ ΟΝ_ΚΥΚΛΟΥ Variables integer Α_δεύτερα, δεύτερα, λεπτά, ώρες Begin Print ώστε τα δευτερόλεπτα που γράφει το ρολόι Input Α_δεύτερα; ώρες Α_δεύτερα div 3600 λεπτά (Α_δεύτερα mod 3600) div 60 δεύτερα (Α_δεύτερα mod 3600) mod 60 Print ώρες, :,λεπτά, :,δευτερόλεπτα End program
3 Αρχή εµφάνισε ώστε τα δευτερόλεπτα που γράφει το ρολόι ; διάβασε Α_δεύτερα; ώρες:=α_δεύτερα div 3600; λεπτά:= (Α_δεύτερα mod 3600) div 60; δεύτερα:= (Α_δεύτερα mod 3600) mod 60; εµφάνισε ώρες, :,λεπτά, :,δευτερόλεπτα; Τέλος
4 Άσκηση 1.3 ίνονται τα παρακάτω τµήµατα ενός αλγορύθµου. Να κάνετε έναν πίνακα τιµών για όλες τις µεταβλητές και για όλα τα βήµατα καθενός από τα ακόλουθα τµήµατα αλγορίθµων. α) Α 10 Β Α+2 Α Α*10 Α Β+Α+Α*Α Β 2 Α Β-Α β) Χ 5 Χ Χ*Χ Α Χ Β Α+Χ C B/A X A*C A A+B+C+X Βήµα Α Β 1 10 απροσδιόριστο Βήµα Χ Α Β C 1 5 απροσδιόριστο απροσδιόριστο απροσδιόριστο
5 Άσκηση 1.4 Να δοθεί αλγόριθµος ο οποίος να υπολογίζει τον αριθµό των δισκετών των οποίων τα περιεχόµενα µπορεί να αποθηκεύσει ένας σκληρός δίσκος. Ο αλγόριθµος θα πρέπει να διαβάζει την χωρητικότητα του δίσκου σε GB εµφανίζοντας το µήνυµα «ώστε την χωρητικότητα του δίσκου σε GB» και τέλος να εµφανίζει το µήνυµα «ο δίσκος χωράει Χ δισκέτες»,όπου Χ είναι ο αριθµός των δισκετών που υπολογίστηκε. Θεωρείστε ότι: 1GB=1024MB Χωρητικότητα δισκέτας = 1,44ΜΒ.
6 Άσκηση 1.5 Να δοθεί αλγόριθµος που: Α) Να διαβάζει δύο ακέραιους αριθµούς εµφανίζοντας το µήνυµα «ώστε τους δύο αριθµούς». Β) Να υπολογίζει το άθροισµα, το γινόµενο, τη διαφορά και το µέσο όρο των δύο αριθµών Γ) Να τα εµφανίζει χρησιµοποιώντας κατάλληλα µηνύµατα. Program ΥΟ_ΑΡΙΘΜΟΙ Variables Integer Α,B,Ath,Gin,Diaf,MO Begin Print ώστε τους δύο αριθµούς Input Α Input B Ath Α+B Gin Α*B Diaf Α-B MO Ath/2 Print Αθροισµα Α+Β:,Ath Print ιαφορα Α-Β:,Diaf Print Γινόµενο Α*Β:,Gin Print M.O. Α,Β:,MO End program Private Sub cmdenter_click() A = InputBox(" ώσε τον αριθµό A") B = InputBox(" ώσε τον αριθµό B") ath = Val(A) + Val(B) gin = Val(A) * Val(B) diaf = Val(A) - Val(B) mo = ath / 2 Print "Άθροισµα Α+Β: "; ath Print "Γινόµενο Α*Β: "; gin Print " ιαφορά Α-Β: "; diaf Print "Μ.Ο. Α,Β: "; mo Private Sub cmdexit_click() End
7 Άσκηση 1.6 Το µήκος της υποτείνουσας ενός ορθογωνίου τριγώνου υπολογίζεται από τον τύπο C 2 =A 2 +B 2 ;όπου Α,Β τα µήκη των καθέτων πλευρών και C το µήκος της υποτείνουσας. Να δοθεί αλγόριθµος ο οποίος: ιαβάζει τα µήκη των καθέτων πλευρών εµφανίζοντας το µήνυµα «ώσε µήκος πλευράς Α», «ώσε µήκος πλευράς Β». Υπολογίζει το µήκος της υποτείνουσας εµφανίζοντας το λεκτικό «Η υποτείνουσα έχει µήκος:» ακολουθούµενο από το µήκος που έχει υπολογιστεί. Private Sub cmdenter_click() A = InputBox("Dose mekos pleuras A") B = InputBox("Dose mekos pleuras B") C = (A ^ 2 + B ^ 2) ^ (1 / 2) Print "H ypoteinoysa exei mekos: "; C Private Sub cmdexit_click() End
8 Άσκηση 1.7 Να γραφεί αλγόριθµος ο οποίος: Να διαβάζει το αρχικό κεφάλαιο µιας κατάθεσης, το τρέχον επιτόκιο καταθέσεων µε µορφή δεκαδικού αριθµού, εµφανίζοντας τα µηνύµατα, «ώσε το αρχικό κεφάλαιο κατάθεσης», ώσε το επιτόκιο». Υπολογίζει τους τόκους καθώς και το συνολικό κεφάλαιο όπως αυτό έχει προσαυξηθεί µε τους τόκους, για χρονική περίοδο ενός έτους. Εµφανίζει το λεκτικό «Το σύνολο των τόκων είναι» ακολουθούµενο από τους τόκους και το λεκτικό «Το τελικό ποσό είναι:» ακολουθούµενο από το συνολικό κεφάλαιο. Private Sub cmd_enter_click() A_K = InputBox("Dose to arxiko kafalaio:") E = InputBox("Dose to epitokio:") tokos_a = A_K * (E / 2) / 100 tokos_b = (A_K + tokos_a) * (E / 2) / 100 s_tokos = tokos_a + tokos_b T_K = A_K + s_tokos Print "To synolo ton tokon einai: "; s_tokos Print "To teliko poso e;inai:"; T_K Private Sub cmd_exit_click() End
9 Άσκηση 1.8 Να υπολογιστούν οι παραστάσεις log(6) log( 6,2 + 1) e Private Sub cmd_enter_click() A = (1 + Abs(-10) ^ (1 / 2)) / (2 + Log(6)) b = (5 ^ (1 / 2) + Log(Abs(6.2 ^ 2 + 1))) / (Exp(4) + 1) Print "A= "; A Print "b=:"; b Private Sub cmd_exit_click() End
Άσκηση 2.1 Να σχεδιαστεί το διάγραµµα ροής πρωτοβάθµιας εξίσωσης της µορφής:
Άσκηση 2.1 Να σχεδιαστεί το διάγραµµα ροής πρωτοβάθµιας εξίσωσης της µορφής: y = bx+ c Αρχή εµφάνισε " ώσε τιµές στα b,cι διάβασε b,c b=0 c=0 x=-c/b εµφάνισε A ΥΝΑΤΗ εµφάνισε AOPIΣΤΗ εµφάνισε Λύση x=:,x
Διαβάστε περισσότερα4. Ποιος είναι ο τύπος και ποια η τιμή της μεταβλητής που χρησιμοποιείται παρακάτω;
ΑΕσΠΠ-Ακολουθιακή Δομή 1 ΑΚΟΛΟΥΘΙΑΚΗ ΔΟΜΗ 1. Ποια από τα παρακάτω ονόματα μεταβλητών είναι λάθος και γιατί; Α Ύψος Αριθμ.παιδιών ΑΑ ποσοστό Α-Α διάβασε Αξία ΦΠΑ Χ Α4 ΜΗΚΟΣ Αριθμ_παιδιών Β_ ποσοστό% Α/Α
Διαβάστε περισσότεραΜονοδιάστατοι Πίνακες
Μονοδιάστατοι Πίνακες Πίνακες (Arrays) Επιτρέπουν να αναφερόμαστε σε μια σειρά μεταβλητών με το ίδιο όνομα και να χρησιμοποιούμε ένα αριθμό (δείκτη) για να τις ξεχωρίζουμε. Βοηθούν στη δημιουργία μικρότερου
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ Ακολουθίας. Πίνακας τιµών µεταβλητών Χ Α Β α 5 20 8 10 23 15 15 23 8 β 3 18 4 8 17 13 13 17 4 γ
ΑΣΚΗΣΕΙΣ Ακολουθίας Η δοµή Ακολουθίας είναι η πιο απλή δοµή του δοµηµένου προγραµµατισµού. Η κάθε εντολή ακολουθεί κάποια άλλη. Οι εντολές εκτελούνται ακριβώς µε τη σειρά όπως θα δοθούν στον αλγόριθµο
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Α. ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΦΥΛΛΑΔΙΟ 2 ο ( Ενότητες 2.2.4-2.2.7.2 ) 1. Να δώσετε τους παρακάτω ορισμούς: α) σειριακός, β) παράλληλος, γ) επαναληπτικός και δ)
Διαβάστε περισσότερα2.2.3 Η εντολή Εκτύπωσε
2.2.3 Η εντολή Εκτύπωσε Η εντολή Εκτύπωσε χρησιµοποιείται προκειµένου να εµφανίσουµε κάτι στην οθόνη του υπολογιστή. Για τον λόγο αυτό ονοµάζεται και εντολή εξόδου. Ισοδύναµα µπορεί να χρησιµοποιηθεί και
Διαβάστε περισσότερα2.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
1.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΣΧΟΛΙΟ Για να λύσουµε ένα πρόβληµα, αφού το διαβάσουµε καλά, εντοπίζουµε τον άγνωστο και τον συµβολίζουµε µε µία µεταβλητή. Με βάση τα δεδοµένα του προβλήµατος καταστρώνουµε την
Διαβάστε περισσότεραΑνάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Εκχώρηση Τιμών
Εκχώρηση Τιμών 1. Σύνταξη Με την εντολή εκχώρησης: α) Ονομάζουμε μια θέση μνήμης, και β) προσδιορίζουμε το περιεχόμενό της Η σύνταξη της εντολής εκχώρησης είναι: ή
Διαβάστε περισσότεραΑλγόριθμος ασκηση1 a 3 b a+2 a a+b+1 b b+2 a a*b εμφάνισε a,b Τέλος ασκηση1
ΑΣΚΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΕΦ. 7 ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΑ ΠΕΡΙΒΑΛΛΟΝΤΑ (ΟΛΑ ΤΑ ΑΡΧΕΙΑ ΘΑ ΤΑ ΑΠΟΘΗΚΕΥΕΤΕ ΣΤΟΝ ΦΑΚΕΛΟ ΣΑΣ ΣΤΟΝ ΘΟΥΚΥ Ι Η ΣΤΟΝ ΦΑΚΕΛΟ ΚΕΦ7 ΜΕ ΟΝΟΜΑ «ΑΣΚ» ΑΚΟΛΟΥΘΟΥΜΕΝΟ ΑΠΟ ΤΟΝ ΑΡΙΘΜΟ
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ 1ο I) Να γράψετε στην παρένθεση καθεμιάς από τις παρακάτω προτάσεις 1-5 τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν είναι λανθασμένη. 1. Ένας αλγόριθμος
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου: ΑΛΓΟΡΙΘΜΟΣ Θέμα1 ΔΕΔΟΜΕΝΑ // Ν // Σ 0 π 0 ΓΙΑ ι ΑΠΟ -10 ΜΕΧΡΙ Ν ΔΙΑΒΑΣΕ α, β Σ Σ + α+ β π
Διαβάστε περισσότεραΕισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003)
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ () Ενότητα 3: Ο τελεστής ανάθεσης και οι εντολές εισόδου εξόδου Νίκος Καραμπετάκης Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 10 : Εντολές επιλογής και αποφάσεων
ΕΠΑΛ ΧΡΥΣΟΥΠΟΛΗΣ Γ Πληροφορική- 2015-2016 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 10 : Εντολές επιλογής και αποφάσεων 1 Εισαγωγή Η εντολή Στο 4 ο κεφάλαιο γνωρίσαµε την δοµή πολλαπλής επιλογής στην οποία
Διαβάστε περισσότεραΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008. Τµήµα ΓΤ2 Όνοµα:...
ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008 Τµήµα ΓΤ2 Όνοµα:... ΘΕΜΑ 1 ο. Α) Να γράψετε στο φύλλο απαντήσεών σας Σ εάν κρίνετε ότι η πρόταση είναι σωστή και
Διαβάστε περισσότεραΗ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εντολές Επανάληψης REPEAT UNTIL, FOR, WHILE
ΕΡΓΑΣΤΗΡΙΟ 7 Ο Η ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εντολές Επανάληψης REPEAT UNTIL, FOR, WHILE Βασικές Έννοιες: Δομή Επανάληψης, Εντολές Επανάληψης (For, While do, Repeat until), Αλγόριθμος, Αθροιστής, Μετρητής, Παράσταση
Διαβάστε περισσότεραΟ τελεστής ανάθεσης και οι εντολές εισόδουεξόδου
Ο τελεστής ανάθεσης και οι εντολές εισόδουεξόδου Ο τελεστής ανάθεσης = και η βασική του διαφορά από το σύµβολο ισότητας. Η εντολή ανάγνωσης µεταβλητών READ. Η εντολή εκτύπωσης µεταβλητών WRITE. οµή προβληµάτων
Διαβάστε περισσότεραΑλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) (PASCAL ) Μεταβλητές- Τύποι- Τελεστές
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) (PASCAL ) Μεταβλητές- Τύποι- Τελεστές Μεταβλητές 2 Δήλωση μεταβλητών Η δήλωση (declaration) πληροφορεί το μεταγλωττιστή για το όνομα και
Διαβάστε περισσότεραΣυναρτήσεις στη Visual Basic 6.0
Προγραμματισμός & Εφαρμογές Υπολογιστών Μάθημα 4ο Συναρτήσεις στη Visual Basic 6.0 Κ. Κωστοπούλου Σειρά εκτέλεσης των πράξεων Όταν ορίζετε μια ακολουθία αριθμητικών πράξεων είναι δυνατόν να προκύψει αμφισημία.
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για
Διαβάστε περισσότεραΑρχεία Ένα αρχείο αποτελείται από μία σειρά ομοειδών δεδομένων που ονομάζονται λογικές εγγραφές (logical record)
Διαχείριση Αρχείων Αρχεία Για να είναι δυνατή η επεξεργασία μεγάλου αριθμού δεδομένων τα δεδομένα είναι αποθηκευμένα σε ψηφιακά μέσα κατάλληλα οργανωμένα. Η αποθήκευση γίνεται σε αρχεία. Πολλά προγράμματα
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΣΧ... ΕΤΤΟΣΣ 22000099-22001100 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία
Διαβάστε περισσότερα1.5 Αξιοσημείωτες Ταυτότητες
1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος
Διαβάστε περισσότερα2. β. Συνθήκη ή επιλογή. 4. δ. Υποπρόγραμμα. 5. ε. ιαδικασία εισόδου ή εξόδου
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛHNIΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 28 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΟΜΗΜΕΝΟΣ
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
Διαβάστε περισσότερα1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ ΜΑΘΗΜΑ : Πληροφορική Κατεύθυνσης ΤΑΞΗ : Β Αρ. σελίδων : 11 Ηµεροµηνία : 10/6/2008 Ώρα Έναρξης : 7:45 π.µ ιάρκεια : 2 ώρες Ονοµατεπώνυµο :...Τµήµα : Αριθµός :...Βαθµός
Διαβάστε περισσότερα3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ
1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου
Διαβάστε περισσότεραΑ2. Δίνεται το επόμενο τμήμα προγράμματος σε ΓΛΩΣΣΑ:
ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό για καθεμία από τις παρακάτω προτάσεις 1-5 και, δίπλα τη λέξη
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ Καλλιόπη Μαγδαληνού ΕΠΙΚΕΦΑΛΙΔΑ ΠΡΟΓΡΑΜΜΑΤΟΣ ΔΗΛΩΣΕΙΣ ΣΤΑΘΕΡΩΝ ΔΗΛΩΣΕΙΣ ΜΕΤΑΒΛΗΤΩΝ ΕΝΤΟΛΕΣ πρόγραμμα τεστ σταθερές π = 3.14 μεταβλητές πραγματικές : εμβαδό, ακτίνα αρχή
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 5x + 14y -2z = 6
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Άσκηση_1 Να αναπτύξετε αλγόριθμο ο οποίος θα εκτυπώνει τις τιμές της συνάρτησης f( x) ΓΙΑ Χ ΑΠΟ -50 ΜΕΧΡΙ 50 ΑΝ Χ1 Η Χ2 ΤΟΤΕ ΤΙΜΗ Χ^2/(Χ^2-3*Χ+2) ΕΚΤΥΠΩΣΕ
Διαβάστε περισσότεραΚεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ
Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x
Διαβάστε περισσότερα1 Ο Λύκειο Ρόδου. Β ΓΕΛ ΕισΑρχΕπ Η/Υ. Γεωργαλλίδης Δημήτρης
1 Ο Λύκειο Ρόδου Β ΓΕΛ ΕισΑρχΕπ Η/Υ Γεωργαλλίδης Δημήτρης Μάθημα 1 Παράγραφοι: 2.2.1 ορισμός αλγορίθμου (σελ.19) 2.2.7 Εντολές και δομές αλγορίθμου (σελ.. 31-34) 34) ΑΛΓΟΡΙΘΜΟΣ Πεπερασμένη σειρά βημάτων
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος.
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. Τετριμμένο παράδειγμα: Κατασκευάστε πρόγραμμα που θα εμφανίζει
Διαβάστε περισσότεραΓραπτές εξετάσεις στο μάθημα: ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Θ) Εισηγητής: Γεωργίου Χρήστος ΘΕΜΑΤΑ & ΑΠΑΝΤΗΣΕΙΣ. Β. Χαρακτήρας(Αλφαριθμητικά)
Γραπτές εξετάσεις στο μάθημα: ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ (Θ) Εισηγητής: Γεωργίου Χρήστος ΘΕΜΑΤΑ & ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στην κόλλα σας τους αριθμούς της στήλης Α που αντιστοιχούν με τα γράμματα
Διαβάστε περισσότεραΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΤΙΤΛΟΣ: «O Προγραμματισμός στην πράξη Μέρος 2» ΤΑΞΗ: Γ Γυμνασίου ΚΕΦΑΛΑΙΟ: 2 Εμπλεκόμενες έννοιες: πρώτο πρόγραμμα, μεταβλητές, εντολές, γλώσσα εκμάθησης προγραμματισμού QBASIC Εκτιμώμενη
Διαβάστε περισσότεραΟΜΗ ΑΚΟΛΟΥΘΙΑΣ. 1. Να γραφεί αλγόριθµος ο οποίος να διαβάζει τρεις ακέραιες τιµές, να υπολογίζει και να
ΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 1. Να γραφεί αλγόριθµος ο οποίος να διαβάζει τρεις ακέραιες τιµές, να υπολογίζει και να εµφανίζει το µέσο όρο τους. 2. Να γράψετε αλγόριθµο που να διαβάζει θερµοκρασία σε βαθµούς Φαρενάιτ
Διαβάστε περισσότεραεπιστρέφει αριθµό που προκύπτει µε αντιστροφή των στοιχείων του πρώτου
ΑΕσΠΠ-Κεφ.10 Υποπρογράµµατα 1 1. Να γραφεί µία συνάρτηση για κάθε ένα από τα παρακάτω: i. Να δέχεται την ακτίνα ενός κύκλου και να επιστρέφει το εµβαδόν του. ii. Να δέχεται την ακτίνα ενός κύκλου και να
Διαβάστε περισσότεραΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου)
ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Κεφάλαιο 8 : H γλώσσα προγραµµατισµού Pascal 1 ο Μέρος σηµειώσεων (Ενότητες 8.1 & 8.2 σχολικού βιβλίου) 1. Εισαγωγή Χαρακτηριστικά της γλώσσας Τύποι δεδοµένων Γλώσσα προγραµµατισµού
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΠΟΦΟΙΤΟΙ) Κυριακή
ΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΠΟΦΟΙΤΟΙ) Κυριακή 16 Οκτωβρίου 2016 ΘΕΜΑ 1 ο ( Μονάδες 30 ) Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις
Διαβάστε περισσότεραΆσκηση 1 (κλιμακωτή χρέωση) Ένα γραφείο ενοικίασης αυτοκινήτων εφαρμόζει την παρακάτω τιμολογιακή πολιτική: Πάγιο 30 ευρώ
Α ν α κ ε φ α λ α ι ω τ ι κ έ ς α σ κ ή σ ε ι ς Άσκηση 1 (κλιμακωτή χρέωση) Ένα γραφείο ενοικίασης αυτοκινήτων εφαρμόζει την παρακάτω τιμολογιακή πολιτική: Πάγιο 30 ευρώ Αριθμός χλμ Χρέωση (ευρώ / χλμ)
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ Η/Υ ΟΜΗ ΑΚΟΛΟΥΘΙΑΣ
ΑΣΚΗΣΕΙΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ Η/Υ ΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 1 Ποιο θα είναι το περιεχόμενο της μεταβλητής Χ1 μετά την εκτέλεση των παρακάτω εντολών; Χ
Διαβάστε περισσότεραΕπαναληπτικές ασκήσεις για τα Χριστούγεννα.
Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για τα Χριστούγεννα. Μέρος Α Άλγεβρα. 1. Να γίνουν οι πράξεις: α. Α=(-3)(-4)+3[(-3).4+(-6) ] β. Β=--8.3+7[7(-3)+(-)(-1)] 8 γ. Γ= 3 ( ) ( 8) 3 9 3 δ. Δ=(-3+9-)(3-9)+(9-0)(4:+).
Διαβάστε περισσότεραΣτοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1
Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις
Διαβάστε περισσότεραΑσκήσεις Προγραμματισμού για το Μάθημα : Εφαρμογές Πληροφορικής. Π=3.14 Μεταβλητές Πραγματικές: X,A,B,Y Αρχή
Ασκήσεις Προγραμματισμού για το Μάθημα : Εφαρμογές Πληροφορικής Τίτλος σχόλια εισαγωγή δεδομένων εντολές εκχώρησης & πράξεις δηλ. εκφράσεις εμφάνιση αποτελεσμάτων Δομή Προγράμματος Πρόγραμμα υπολογισμός_παράστασης!
Διαβάστε περισσότεραΛΥΚΕΙΟ ΑΓΙΟΥ ΝΕΟΦΥΤΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010 2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011
ΛΥΚΕΙΟ ΑΓΙΟΥ ΝΕΟΦΥΤΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010 2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΟΜΗΝΙΑ: 07/06/2011 ΤΑΞΗ: Β ΛΥΚΕΙΟΥ ΩΡΑ: 11:00 ΑΡ. ΣΕΛΙΔΩΝ: 14 ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ 1. Έστω ότι ο καθηγητής σας δίνει δύο αριθμούς και σας ζητάει να του πείτε πόσο είναι το άθροισμά τους. Διατυπώστε
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL
8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Δομή Ακολουθίας
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Δομή Ακολουθίας Θέμα Α Α1. Να απαντήσετε με Σ ή Λ στα παρακάτω: 1. Όλες οι εντολές σε μία δομή ακολουθίας εκτελούνται υποχρεωτικά. 2. Η Δευτέρα αποτελεί
Διαβάστε περισσότεραΕξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 /
Εξισώσεις Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 7 / 8 / 8 A ΛΥΚΕΙΟΥ κεφάλαιο 5 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο Επιλεγμένες
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ
1. Να λύσετε τις εξισώσεις ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 3 50 3 5 0 0 ή 3 5 0 0 ή 3 5 0 ή 8 50 8 5 αδύνατη 3 60 3 6 6 3 3 4 510, α = 4, β = -5 και γ = 1 Δ = 4 5 4 4 15169 5 9 4 53 8 1 ή 4 410
Διαβάστε περισσότεραΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΧΡΙΣΤΟΥΓΕΝΝΩΝ
1. Αλγόριθμος Ασκ_1 Διάβασε Χ ΒΥ Χ DIV 8 ΒΙ Χ MOD 8 ΚΒ ΒΥ DIV 1024 ΒΥ ΒΥ MOD 1024 ΜΒ ΚΒ DIV 1024 ΚΒ ΚΒ MOD 1024 GB MB DIV 1024 MB MB MOD 1024 Εμφάνισε "Χωρητικότητα",GB,"GΒ",ΜΒ,"ΜΒ",ΚΒ,"ΚΒ",ΒΥ,"ΒΥΤΕS",ΒΙ,"BITS"
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότεραÁÎÉÁ ÅÊÐÁÉÄÅÕÔÉÊÏÓ ÏÌÉËÏÓ
ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) 27 ΜΑΪΟΥ 2016 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και, δίπλα,
Διαβάστε περισσότεραΚεφάλαιο 7 Βασικά Θέματα Προγραμματισμού. Εφαρμογές Πληροφορικής Κεφ. 7 Καραμαούνας Πολύκαρπος 1
Κεφάλαιο 7 Βασικά Θέματα Προγραμματισμού Καραμαούνας Πολύκαρπος 1 1. Τύποι και Μεταβλητές Τύποι δεδομένων: 1. Ακέραιος π.χ. 3, -9, 2004 2. Πραγματικός π.χ. 3.14 3. Χαρακτήρας π.χ. 3ο Ενιαίο Λύκειο 4. Λογικός
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 2 ΙΟΥΝΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΟΜΗΜΕΝΟΣ
Διαβάστε περισσότεραΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ
ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΣΕ ΟΛΕΣ ΤΙΣ ΕΡΩΤΗΣΕΙΣ. Το εξεταστικό δοκίμιο αποτελείται από δύο Ενότητες Α και Β. ΕΝΟΤΗΤΑ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ορθή απάντηση
Διαβάστε περισσότεραΕξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο
Εξισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 3 445 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 0 / 0 6 εκδόσεις Καλό
Διαβάστε περισσότεραβ =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3
Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει
ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ Η ΕΞΙΣΩΣΗ αχ +βχ+γ=0, α ¹ 0 ΠΑΡΑΤΗΡΗΣΕΙΣ v Εξίσωση δευτέρου βαθμού καλείται η εξίσωση της μορφής : αχ + βχ + γ = 0, α ¹ 0 () v Για την επίλυση της εξίσωσης
Διαβάστε περισσότεραΕισαγωγή στη γλώσσα προγραμματισμού C++
Εισαγωγή στη γλώσσα προγραμματισμού C++ Ακολουθιακή Δομή Παράδειγμα 1 ex05 2 Να δημιουργήσετε ένα πρόγραμμα το οποίο να διαβάζει την θερμοκρασία σε βαθμούς Φαρενάϊτ και να εμφανίζει την αντίστοιχη θερμοκρασία
Διαβάστε περισσότεραΆσκηση 1. Ποια από τα κάτω αλφαριθμητικά είναι αποδεκτά ως ονόματα μεταβλητών σε έναν αλγόριθμο i. Τιμή
Θεωρία επισκόπηση 1 Η μεταβλητή είναι ένα συμβολικό όνομα κάτω από το οποίο βρίσκεται μια τιμή, η οποία μπορεί να μεταβάλλεται κατά την εκτέλεση του αλγορίθμου 1. Τύποι Δεδομένων (Μεταβλητών και Σταθερών)
Διαβάστε περισσότερα! ΘΕΜΑ A Α2. ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΛΥΚΕΙΟΥ. Ονοµατεπώνυµο:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ Ονοµατεπώνυµο: Καθηγητής: ΒΛΙΣΙΔΗΣ Γ.! ΘΕΜΑ A Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη
Διαβάστε περισσότεραΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Ερωτήσεις πολλαπλής επιλογής. 4. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ είναι
ΓΕΩΜΕΤΡΙΑ 90 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Ερωτήσεις πολλαπλής επιλογής 1. Στο διπλανό σχήµα το τρίγωνο ΑΒΓ έχει Α = 90, β = 9 cm, γ = 1 cm και την ΑΜ διάµεσο. Το µήκος του ΑΜ ισούται µε: Α. 9. 9 Ε. 1 15 Β. 6 Γ..
Διαβάστε περισσότεραΓ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι
Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο
Διαβάστε περισσότεραΑσκή σεις στή δομή επανα λήψής
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 1 Ασκή σεις στή δομή επανα λήψής Ανάγνωση Στοιχείων Εύρεση Πλήθους 1. Να γραφεί αλγόριθμος ο οποίος να διαβάζει Ν πραγματικούς αριθμούς. Αλγόριθμος Άσκηση1
Διαβάστε περισσότεραΑναφέρατε τις ιδιότητες που πρέπει να διακρίνουν τα υποπρογράμματα. Μονάδες 3
ΘΕΩΡΙΑ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Αναφέρατε τις ιδιότητες που πρέπει να διακρίνουν τα υποπρογράμματα. Μονάδες 3 Να αναφέρετε τους κανόνες που πρέπει να ακολουθούν οι λίστες των παραμέτρων κατά την κλήση ενός υποπρογράμματος.
Διαβάστε περισσότερα3. Να γραφεί πρόγραμμα που θα διαβάζει 100 ακεραίους αριθμούς από το πληκτρολόγιο και θα υπολογίζει το άθροισμά τους.
ΑΕσΠΠ-Δομή Επανάληψης 9 ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1. Να γραφεί πρόγραμμα που να υπολογίζει το άθροισμα των πρώτων 100 φυσικών αριθμών. 2. Να τροποποιηθεί ο παραπάνω πρόγραμμα ώστε να υπολογίζει το άθροισμα των πρώτων
Διαβάστε περισσότεραΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ 4-11-07 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ Γ Γενικού Λυκείου (τεχνολογική κατεύθυνση) ΚΕΦ. 2 ο -7 ο : ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ Λ.Τ. ΒΙΛΙΩΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡ. ΠΕΡΙΒΑΛΛΟΝ ΣΧ. ΕΤΟΣ
ΓΥΜΝΑΣΙΟ Λ.Τ. ΒΙΛΙΩΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡ. ΠΕΡΙΒΑΛΛΟΝ ΣΧ. ΕΤΟΣ 216-217 4 ο Φύλλο Εργασίας - Ασκήσεις στη Δ. Ακολουθίας & Δ. Επιλογής, από τις «Οδηγίες Μελέτης» Φ4-1. Να γραφεί πρόγραμμα σε ΓΛΩΣΣΑ,
Διαβάστε περισσότεραΑσκήσεις στη δομή επιλογής
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 1 Ασκήσεις στη δομή επιλογής Εμφάνιση μηνυμάτων Έλεγχος περιπτώσεων 1. Να γραφεί αλγόριθμος ο οποίος να διαβάζει τρεις αριθμούς και να εμφανίζει το μεγαλύτερο
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΔιαγώνισμα Δομή Επιλογής και Λογικές εκφράσεις
Διαγώνισμα Δομή Επιλογής και Λογικές εκφράσεις ΘΕΜΑ Α Α1. Να χαρακτηρίσετε Σωστή ή Λάθος τις παρακάτω προτάσεις: 1. Η συνθήκη που ελέγχεται σε μια δομή επιλογής μπορεί να πάρει περισσότερες από δύο διαφορετικές
Διαβάστε περισσότεραTO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
Διαβάστε περισσότεραÑÏÕËÁ ÌÁÊÑÇ. Β. Να αναφέρετε τις κυριότερες τυποποιηµένες τεχνικές σχεδίασης αλγορίθµων. ΜΟΝΑ ΕΣ 3
1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 Ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό
Διαβάστε περισσότεραιαφάνειες παρουσίασης #4
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης #4!Λοιπές εντολές!
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: Πληροφορική Ημερομηνία και ώρα εξέτασης:
Διαβάστε περισσότεραElectronics μαζί με τα συνοδευτικά καλώδια και το αισθητήριο θερμοκρασίας LM335 που περιέχονται
Τομέας: Ηλεκτρονικός Εκπαιδευτικός: Μπουλταδάκης Στέλιος Μάθημα: Συλλογή και μεταφορά δεδομένων μέσω Η/Υ, Αισθητήρες-Ενεργοποιητές Αντικείμενο: α) Μέτρηση θερμοκρασίας με το αισθητήριο LM335 και μεταφορά
Διαβάστε περισσότεραΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ )
ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ) Έχουμε δύο κάθετους άξονες x x και y y με κοινή αρχή 0. Από ένα σημείο Μ του επιπέδου φέρνουμε τις κάθετες στους δύο άξονες x x και y y. Ονομάζουμε τετμημένη του σημείου
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
Διαβάστε περισσότεραΆσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:
Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =
Διαβάστε περισσότερα! Δεν μπορούν να λυθούν όλα τα προβλήματα κάνοντας χρήση του παρ/λου προγ/σμου ΑΡΧΗ ΝΑΙ Διάβα σε a Εκτύπ ωσε a > a 0 ΟΧΙ ΤΕΛΟΣ Σύμβολα διαγράμματος ροής 1 Ακέραιος τύπος 14 0-67 2 Πραγματικός τύπος
Διαβάστε περισσότεραΚεφάλαιο 10. Ερωτήσεις ανάπτυξης
Κεφάλαιο 10 Ερωτήσεις ανάπτυξης 1. Τι ονομάζουμε τμηματικό προγραμματισμό; 2. Τι ονομάζουμε υποπρόγραμμα; 3. Ποια τα χαρακτηριστικά των υποπρογραμμάτων; 4. Ποια τα πλεονεκτήματα του τμηματικού προγραμματισμού;
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 Α.Ε.Π.Π. Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Θέματα και Απαντήσεις
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 Α.Ε.Π.Π. Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέματα και Απαντήσεις Επιμέλεια: Ομάδα Πληροφορικής www.othisi.gr 2 Παρασκευή, 27 Μα ου 2016 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ
Διαβάστε περισσότεραΦάσµα & group. μαθητικό φροντιστήριο. σύγχρονo. προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.
σύγχρονo Φάσµα & group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ 50.51.557 50.56.296 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 50.27.990 50.20.990 25ης Μαρτίου 74 ΠΕΤΡΟΥΠΟΛΗ 50.50.658
Διαβάστε περισσότερα1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Διαβάστε περισσότεραΛΥΚΕΙΟ ΣΟΛΕΑΣ Σχολική χρονιά 2008-2009
ΛΥΚΕΙΟ ΣΟΛΕΑΣ Σχολική χρονιά 2008-2009 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2009 ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΤΑΞΗ : Β ΗΜΕΡΟΜΗΝΙΑ: Τετάρτη, 3 Ιουνίου 2009 ΩΡΑ: 07:45 10:15 ΟΔΗΓΙΕΣ: Το εξεταστικό δοκίμιο αυτό αποτελείται
Διαβάστε περισσότεραιαφάνειες παρουσίασης #2
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ
Διαβάστε περισσότεραΓ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1
Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.
Διαβάστε περισσότεραΑλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) (PASCAL )Βασικά στοιχεία Αναγνωριστικά (Identifiers) Τα αναγνωριστικά είναι ονόματα με τα οποία μπορούμε να αναφερόμαστε σε αποθηκευμένες
Διαβάστε περισσότεραΕρωτήσεις επί των ρητών αριθµών
Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ομή Επανάληψης
ΕΠ.27 Να αναπτυχθεί αλγόριθμος που θα εμφανίζει όλους τους τέλειους αριθμούς στο διάστημα [2,100]. Τέλειος είναι ο ακέραιος που ισούται με το άθροισμα των γνήσιων διαιρετών του. Oι τέλειοι Ο Πυθαγόρας
Διαβάστε περισσότεραβ = (9, x) να είναι ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ...Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΣΗΣ...
Αµυραδάκη 0, Νίκαια (104903576) ΝΟΕΜΒΡΙΟΣ 01 ΘΕΜΑ 1 ο i) Αν Α( x 1, y 1 ) και Β(x, y ) δυο σηµεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγµένες του µέσου Μ του ΑΒ, να αποδείξετε ότι : x 1 + x x
Διαβάστε περισσότερα1o ΕΠΑΛ- Ε.Κ. Συκεών -Τομέας: Ηλεκτρονικής, Ηλεκτρολογίας και Αυτοματισμού Εκπαιδευτικοί: Μπουλταδάκης Στέλιος Μαυρίδης Κώστας
1o ΕΠΑΛ- Ε.Κ. Συκεών -Τομέας: Ηλεκτρονικής, Ηλεκτρολογίας και Αυτοματισμού Εκπαιδευτικοί: Μπουλταδάκης Στέλιος Μαυρίδης Κώστας Μάθημα: Ρομποτική, Μεταφορά και Έλεγχος Δεδομένων Αντικείμενο : Μεταφορά δεδομένων
Διαβάστε περισσότερα