Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 /
|
|
- Κῆρες Ζάχος
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Εξισώσεις Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα Kgllykos..gr 7 / 8 / 8 A ΛΥΚΕΙΟΥ κεφάλαιο 5 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο
2 Επιλεγμένες ασκήσεις στις εξισώσεις Ασκήσεις εξισώσεων για Α Λυκείου Εξισώσεις ου βαθμού Να λυθούν οι εξισώσεις :
3 Να λυθούν οι πολυωνυμικές εξισώσεις :
4 Να λυθούν οι κλασματικές εξισώσεις :
5
6 Να λύσεις τις παραμετρικές εξισώσεις : 69. Δίνεται η εξίσωση : a 5 a να βρεις το α αν έχει για λύση το χ= Δίνεται η εξίσωση : a να βρεις το α αν έχει για λύση το a a 6. Δίνονται οι εξισώσεις με κοινή λύση να βρεις το α. & 7 6. a aa 6. a a a a a 6. a a a a a 67. a a a a 5
7 68. a a 6a a 69. a 5 6. a a a a a a a 6. a 6. a 5 aa 65. a a 66. a a a a a 67. a a a a a a a a a a 6 a a a a b a a a a a a a a a 6aa a a 66. a a a a b a a a b a b a a b 6. a a a b Έστω εξίσωση aa a Έχει λύση το - Έχει μοναδική λύση το - Είναι αδύνατη Έχει άπειρες λύσεις 6. Έστω εξίσωση a a a Έχει λύση το Έχει μοναδική λύση το Είναι αδύνατη να βρεις για ποιες τιμές του α η εξίσωση : να βρεις για ποιες τιμές του α η εξίσωση : 6 Διερεύνηση a+b= : Φέρνεις την εξίσωση στη μορφή a b Διακρίνεις τις περιπτώσεις : b a M.. a b : ύ a b : ό
8 Έχει άπειρες λύσεις 6. Έστω εξίσωση a a a Έχει λύση το - Έχει μοναδική λύση το - Είναι αδύνατη Έχει άπειρες λύσεις 65. Έστω εξίσωση 5 5 να βρεις για ποιες τιμές του α η εξίσωση : a a a 9a να βρεις για ποιες τιμές του α η εξίσωση : Έχει λύση το Έχει μοναδική λύση το Είναι αδύνατη Έχει άπειρες λύσεις 66. Έστω εξίσωση a a a Έχει λύση το - Έχει μοναδική λύση το - Είναι αδύνατη Έχει άπειρες λύσεις 67. Έστω εξίσωση a 5 b Έχει λύση το Έχει μοναδική λύση το Είναι αδύνατη Έχει άπειρες λύσεις 68. Έστω εξίσωση aa Έχει λύση το Έχει μοναδική λύση το Είναι αδύνατη Έχει άπειρες λύσεις 69. Έστω εξίσωση a b να βρεις για ποιες τιμές του α η εξίσωση : να βρεις για ποιες τιμές του α η εξίσωση : να βρεις για ποιες τιμές του α η εξίσωση : 6 να βρεις για ποιες τιμές των αβ η εξίσωση : Έχει ακριβώς μία λύση Είναι αδύνατη Έχει άπειρες λύσεις 65. Δίνεται η εξίσωση : a 6 a a a η οποία είναι ταυτότητα να αποδείξεις ότι το ίδιο συμβαίνει για την εξίσωση : a a5 65. Να βρεις τα αβ ώστε να είναι αδύνατες οι εξισώσεις : & a b b a a b ab b 65. Να αποδείξεις ότι οι παρακάτω εξισώσεις για οποιαδήποτε τιμή των αβ έχουν τουλάχιστον μία λύση: a a 8a a a b ba 7
9 a a a a a ab b 65. Να λυθεί η εξίσωση : a 65. Να λύσεις την εξίσωση : a a a Εξισώσεις με απόλυτα Να λύσεις τις εξισώσεις : Το νου σου : (απόλυτα) a a a a ύ a a
10
11 y y y y 77. d5 78. d 79. d d 5 7. d d 7. d5 7. d 5 7. d
12
13 d d d d d d Σε ορθογώνιο τρίγωνο ΑΒΓ (Α=9) η μία κάθετη πλευρά είναι cm ενώ η υποτείνουσα είναι μεγαλύτερη από την άλλη κάθετη κατά 8cm. Να βρεις τις πλευρές του τριγώνου 769. Σε τετράγωνο ΑΒΓΔ μ πλευρά cm. Να βρεις αν υπάρχει σημείο Μ της πλευράς ΑΒ ώστε : (ΑΔΜ)=(ΒΜΓ) (ΒΜΓ)-(ΑΔΜ)=(ΜΔΓ) 77. Αν η εξίσωση 7 a a 9 έχει διαφορετικές ρίζες μεταξύ τους να βρεις το α 77. Αν η εξίσωση a 5 a είναι αδύνατη ν.δ.ο. η εξίσωση aa άπειρες λύσεις 77. Να λυθεί η εξίσωση : 77. Δίνεται η εξίσωση Αδύνατη Ταυτότητα 77. Να λύσεις τις εξισώσεις : a b a b a b 5 a έχει a b ab να βρεις τις τιμές των α β ώστε η εξίσωση να είναι : 6 6
14 775. Σύρμα μήκους μέτρων κόβεται σε κομμάτια. Με το πρώτο κομμάτι σχηματίζεις ορθογώνιο όπου η μία διάστασή του είναι διπλάσια από την άλλη. Με το δεύτερο κομμάτι σχηματίζεις τετράγωνο. Ποιες οι πλευρές των σχημάτων αν E E ώ ί 9 8 Η εξίσωση v a Να λυθούν οι εξισώσεις : a 6a Το νου σου : v v : ά a a v : ό a v a a v : ά ύ a : ό v a Εξισώσεις ου βαθμού Να λυθούν οι εξισώσεις ου βαθμού : b D D a b D a D ύ a b c
15 a a
16 Να λύσεις τις παραμετρικές : 88. a a a a a a a a a ab b a a b a b 8. a b aa b 85. a b 6ab 86. a aa 87. a a a Να βρεις πλήθος ριζών των εξισώσεων : a a a a b a b 8. a a a 8. a a a Να λύσεις τις εξισώσεις :
17 Να βρεις το α ώστε η εξίσωση 866. Αν η εξίσωση ρίζες 867. Αν η εξίσωση a b a 9 a να έχει μία διπλή ρίζα a έχει μία διπλή ρίζα ν.δ.ο. η εξίσωση b έχει πραγματικές έχει δύο ρίζες πραγματικές και άνισες ν.δ.ο. η εξίσωση a a δεν έχει πραγματικές ρίζες. b a a b a b a b 868. Να βρει το πλήθος ριζών της εξίσωσης : 869. Ν.δ.ο. αν υπάρχει τουλάχιστο ένα χ ώστε a a 87. Δίνεται η εξίσωση : Να αποδείξεις ότι έχει πάντα λύση Ποιο το α ώστε να έχει ρίζες αντίθετες Ποιο το α ώστε να έχει ρίζες αντίστροφες 87. Να βρεις εξισώσεις που έχουν για ρίζες τους αριθμούς y y 6
18 5 87. Αν η εξίσωση a b a c ac b έχει ρίζες άνισες ν.δ.ο. τι ίδιο ισχύει και για την εξίσωση 87. Να βρεις τις τιμές του α ώστε η εξίσωση τετράγωνο της άλλης Να λυθεί η εξίσωση : a 7 να έχει ρίζες όπου η μία να είναι το 875. Δίνεται η εξίσωση : Να έχει μία ρίζα Να έχει μία ρίζα διπλή Να είναι ου βαθμού Να έχει ρίζες άνισες 876. Δίνεται η εξίσωση : a να βρεις το α ώστε : a να βρεις το α ώστε : Να έχει μία ρίζα Να έχει μία ρίζα διπλή Να είναι ου βαθμού Να έχει ρίζες άνισες a να βρεις το α ώστε : Να έχει μία ρίζα Να έχει μία ρίζα διπλή Να είναι ου βαθμού Να έχει ρίζες άνισες 877. Δίνεται η εξίσωση : 878. Δίνεται η εξίσωση : Να έχει ρίζα τον αριθμό a a να βρεις το α ώστε : Να έχει μία ρίζα διπλή τον αριθμό 879. Δίνεται η εξίσωση : a a να βρεις το α ώστε : Να έχει ρίζα τον αριθμό Δίνεται η εξίσωση : a να βρεις το α ώστε : Να έχει μία ρίζα Να έχει μία ρίζα διπλή Να μην έχει ρίζες Να έχει ρίζες άνισες 88. Δίνεται η εξίσωση : a a a να βρεις το α ώστε : Να έχει λύση Να έχει μία ρίζα διπλή Να είναι αδύνατη 7
19 Να έχει ρίζες άνισες a να βρεις το α ώστε : Να έχει μία ρίζα Να έχει μία ρίζα διπλή Να είναι ου βαθμού Να έχει ρίζες άνισες 88. Δίνεται η εξίσωση : a a a να βρεις το α ώστε : Να έχει λύση Να έχει μία ρίζα διπλή Να είναι αδύνατη Να έχει ρίζες άνισες Δίνεται η εξίσωση : 88. Δίνεται η εξίσωση : 6a 9a : Να λυθεί η εξίσωση Να βρεις το α ώστε οι λύσεις της εξίσωσης να ανήκουν στο διάστημα [) 885. Δίνεται η εξίσωση : a a : Να λυθεί η εξίσωση Να βρεις το α ώστε οι λύσεις της εξίσωσης να ανήκουν στο διάστημα (-] a a : 886. Δίνεται η εξίσωση : Να λυθεί η εξίσωση Να βρεις το α ώστε οι λύσεις της εξίσωσης να ανήκουν στο διάστημα (-5) a b c Τύποι Vieta b S a c P a 887. Δίνεται η εξίσωση : a b c a όπου έχει ρίζες και η μία είναι διπλάσια της άλλης. Ποια σχέση συνδέει τα abc ; 888. Δίνεται η εξίσωση : a b c να συμπληρώσεις τον πίνακα Η εξίσωση έχει : Δ S P ρίζες άνισες ρίζα διπλή ρίζα Αδύνατη ρίζες αντίθετες ρίζες ετερόσημες 8
20 ρίζες ομόσημες ρίζες αντίστροφες Μία τουλάχιστον ρίζα ρίζες θετικές ρίζες αρνητικές ρίζα και μία θετική ρίζα και μία αρνητική Ασκήσεις με τύπους Vieta 889. Αν ρίζες της εξίσωσης 89. Οι ρίζες της εξίσωσης 89. Αν ρίζες της εξίσωσης 89. Οι ρίζες της εξίσωσης να υπολογίσεις τις παραστάσεις : : να βρεις την εξίσωση που έχει ρίζες : να υπολογίσεις τις παραστάσεις : : να βρεις την εξίσωση που έχει ρίζες : 9
21 89. Αν ρίζες της εξίσωσης 89. Οι ρίζες της εξίσωσης 5 να υπολογίσεις τις παραστάσεις : : να βρεις την εξίσωση που έχει ρίζες :
22 895. Αν ρίζες της εξίσωσης να υπολογίσεις τις παραστάσεις : 896. Αν ρίζες της εξίσωσης να υπολογίσεις τις παραστάσεις :
23 897. Να βρεις τα α β για να έχει διπλή ρίζα το η εξίσωση : 898. Να βρεις το α ώστε 899. Να βρεις το α ώστε 9. Να βρεις το α ώστε a a 5 5 a a a 9. Δίνεται η εξίσωση : 9. Να βρεις το α ώστε 9. Δίνεται η εξίσωση : και να βρεις το α ώστε να έχει ρίζες : αντίθετες αντίστροφες 5 5a 5a 6a 9. Δίνεται η εξίσωση : a ομόσημες ετερόσημες a b 9 ν.δ.ο. η διαφορά των ριζών είναι σταθερή a a a a 6 να αποδείξεις ότι έχει πραγματικές ρίζες για κάθε τιμή του α 6 να βρεις το α ώστε να έχει ρίζες : 95. Δίνεται η εξίσωση : a να βρεις το α ώστε να έχει ρίζες : Μία διπλή Δύο ετερόσημες Δύο αρνητικές Δύο θετικές Δύο αντίστροφες 96. Δίνεται η εξίσωση : Δύο ομόσημες Δύο ετερόσημες Δύο αρνητικές Δύο θετικές Μία διπλή Δύο αντίθετες Δύο αντίστροφες a 5 a να βρεις το α ώστε να έχει ρίζες : 97. Δίνεται η εξίσωση : a 6a 8 να βρεις το α ώστε να έχει ρίζες : Δύο πραγματικές Δύο αντίστροφες Δύο ώστε το γινόμενό τους να είναι τετραπλάσιο από το άθροισμά τους 98. Δίνεται η εξίσωση : Δύο ρίζες a a να βρεις το α ώστε να έχει ρίζες : Το άθροισμα των τετραγώνων των ριζών να ισούται με Το άθροισμα των αντιστρόφων των ριζών να ισούται με 8
24 99. Δίνεται η εξίσωση : Δύο a a να βρεις το α ώστε να έχει ρίζες : Το άθροισμα των τετραγώνων των ριζών να ισούται με 9. Δίνεται η εξίσωση : a να βρεις το α ώστε να έχει ρίζες : δύο ώστε ώστε ώστε 8 ώστε ώστε 9. Να βρεις εξίσωση με ρίζες τους αριθμούς : Να βρεις εξίσωση με ρίζες τους αριθμούς : a a a a aa 9. Οι ρίζες της εξίσωσης : 5 : να βρεις την εξίσωση με ρίζες : 9. Οι ρίζες της εξίσωσης : : να βρεις την εξίσωση με ρίζες :
25 95. Οι ρίζες της εξίσωσης : 96. Οι ρίζες της εξίσωσης : 97. Οι ρίζες της εξίσωσης : 98. Οι ρίζες της εξίσωσης : 99. Οι ρίζες της εξίσωσης : να βρεις την εξίσωση με ρίζες : 5 : να βρεις την εξίσωση με ρίζες : 5 : : να βρεις την εξίσωση με ρίζες : να βρεις την εξίσωση με ρίζες : : : να βρεις την εξίσωση με ρίζες :
26 Να λύσεις τις εξισώσεις :
27 Να λύσεις τα προβλήματα : 957. Δύο αδέλφια είναι σήμερα και 7 αντίστοιχα σε πόσα χρόνια το γινόμενο των ηλικιών τους θα είναι ίσο με 6 ; 958. Σε ορθογώνιο τρίγωνο οι πλευρές έχουν μήκος : 5 ; 959. Σε ορθογώνιο παραλληλόγραμμο με εμβαδό δύο πλευρές του είναι : ; 96. Σε ορθογώνιο παραλληλόγραμμο με μήκος 8 και πλάτος αυξάνουμε κάθε πλευρά κατά χ ώστε το εμβαδόν του να γίνει. Πόσο το χ; 96. Σε ορθογώνιο παραλληλόγραμμο με μήκος 8 και πλάτος αυξάνουμε κάθε πλευρά κατά χ ώστε το εμβαδόν του να αυξηθεί κατά 8. Πόσο το χ; 96. Σήμερα η ηλικία ενός πατέρα είναι χ. Ποια η ηλικία τους σήμερα ; ενώ της κόρης του είναι χ. Όταν η κόρη γίνει ο πατέρας θα είναι 96. Να βρεις το είδος του τριγώνου με πλευρές : 68. Αν δεν είναι ορθογώνιο πόσο πρέπει να αυξήσουμε τις 96. πλευρές (όλες το ίδιο) για να γίνει ορθογώνιο; 6
Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο
Εξισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 3 445 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 0 / 0 6 εκδόσεις Καλό
Διαβάστε περισσότεραΑνισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 17 σελίδες. εκδόσεις. Καλό πήξιμο
Ανισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 4 391 ασκήσεις και τεχνικές σε 17 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 1 0 / 0 1 6 εκδόσεις
Διαβάστε περισσότεραΑριθμοί. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 28 σελίδες. εκδόσεις. Καλό πήξιμο
Αριθμοί Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 97 ασκήσεις και τεχνικές σε 8 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllkos..gr / 1 0 / 0 1 6 εκδόσεις Καλό πήξιμο
Διαβάστε περισσότεραΑλγεβρικές παραστάσεις
Αλγεβρικές παραστάσεις Κώστας Γλυκός Γ ΓΥΜΝΑΣΙΟΥ κεφάλαιο 1 197 ασκήσεις και τεχνικές σε 19 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 8 / 9 / 0
Διαβάστε περισσότεραΣυστήματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα κεφάλαιο 1 70 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Συστήματα Κώστας Γλυκός Άλγεβρα κεφάλαιο 1 70 ασκήσεις και τεχνικές σε 6 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllkos..gr 0 / 7 / 0 1 8 εκδόσεις Καλό
Διαβάστε περισσότεραΑσκήσεις Άλγεβρας. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 265 ασκήσεις και τεχνικές σε 24 σελίδες. εκδόσεις. Καλό πήξιμο
Ασκήσεις Άλγεβρας Κώστας Γλυκός B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 65 ασκήσεις και τεχνικές σε 4 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 1 3 / 1 0 / 0 1 6
Διαβάστε περισσότεραΚύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 2 /
Κύκλος Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 9 / 1 2 / 2 0 1 8 Κατεύθυνση Κεφάλαιο 48 ασκήσεις και τεχνικές σε σελίδες εκδόσεις Καλό
Διαβάστε περισσότεραΟλοκληρώματα. Κώστας Γλυκός ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις. Καλό πήξιμο / 1 0 /
Ολοκληρώματα Κώστας Γλυκός 58 ΑΣΚΗΣΕΙΣ ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 5 / / 8 εκδόσεις Καλό πήξιμο Επιλεγμένες ασκήσεις από βιβλία Σε όλες τις επόμενες
Διαβάστε περισσότεραΑνισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88
Διαβάστε περισσότεραςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός
014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής
Διαβάστε περισσότεραΤριγωνομετρία. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Τριγωνομετρία Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr / 7 / 8 Άλγεβρα Κεφάλαιο 9 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο τηλ.
Διαβάστε περισσότεραΕξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Εξισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 0 / 0 6 εκδόσεις Ασκήσεις Πιθανότητες Τράπεζα θεμάτων. Δίνεται η
Διαβάστε περισσότεραΕυθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3. 8 8. 8 8 Kgllykos..gr / 7 / 8 Κατεύθυνση Κεφάλαιο 3 ασκήσεις και τεχνικές σε σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ
1. Να λύσετε τις εξισώσεις ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ 3 50 3 5 0 0 ή 3 5 0 0 ή 3 5 0 ή 8 50 8 5 αδύνατη 3 60 3 6 6 3 3 4 510, α = 4, β = -5 και γ = 1 Δ = 4 5 4 4 15169 5 9 4 53 8 1 ή 4 410
Διαβάστε περισσότεραΕυθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /
Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο
Διαβάστε περισσότεραΕυθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /
Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Διαβάστε περισσότεραΣυναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 16 σελίδες. εκδόσεις. Καλό πήξιμο
Συναρτήσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 6 185 ασκήσεις και τεχνικές σε 16 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 / / 0 1 7 εκδόσεις Καλό
Διαβάστε περισσότερα1. Να λυθούν οι παρακάτω εξισώσεις : α. 3
. Να λυθούν οι παρακάτω εξισώσεις : α. 0 6 β. ( + ) + ( ) = ( + ) γ. ( + ) 4 = ( ) δ. ( 7) + = ε. ( ) + ( + 4)( 4) + 8 = ( + ) στ. ( 7) + = ζ. ( ) = ( )( 4) + 9. Ομοίως : α. ( + 5) (9 5) + 6 + 0 = 0 β.
Διαβάστε περισσότερα3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
Διαβάστε περισσότερα1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
Διαβάστε περισσότερα5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.
1 ΑΣΚΗΣΕΙΣ 1. Ένα παραλληλόγραμμο ΑΒΓΔ έχει μια πλευρά ίση με 48 και το αντίστοιχο σε αυτή την πλευρά ύψος είναι 4,5 dm. Να βρείτε το εμβαδό του παραλληλογράμμου 2. Ένα παραλληλόγραμμο έχει εμβαδό 72 2
Διαβάστε περισσότεραii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας
. Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο
Διαβάστε περισσότεραΘέματα Πανελληνίων. Κώστας Γλυκός. Στη νέα ύλη ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις. Καλό πήξιμο / 2 /
Θέματα Πανελληνίων Κώστας Γλυκός Στη νέα ύλη ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 7 / / 0 7 εκδόσεις Καλό πήξιμο Ημερήσια. Θέμα Δ 00 Έστω συνάρτηση
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -
Διαβάστε περισσότεραΔιανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Διανύσματα Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 / 7 / 0 1 8 Kατεύθυνση κεφάλαιο 1 44 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό
Διαβάστε περισσότεραα έχει μοναδική λύση την x α
ΚΕΦΑΛΑΙΟ 3 ο ΕΞΙΣΩΣΕΙΣ Να εξετάσετε ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες είναι λάθος.. H εξίσωση ( α)( β) ( β)( γ) έχει τις ίδιες λύσεις με την εξίσωση α γ για οποιεσδήποτε τιμές των
Διαβάστε περισσότεραεξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες
Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο
Διαβάστε περισσότεραΟλοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση κεφάλαιο 4 83 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Ολοκληρώματα Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7.. 8 8. 8 8 Kgllykos..gr 4 / 7 / 8 Κατεύθυνση κεφάλαιο 4 8 ασκήσεις και τεχνικές σε 9 σελίδες εκδόσεις Καλό πήξιμο
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
Διαβάστε περισσότεραΚ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-
3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη
Διαβάστε περισσότερα3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ
Διαβάστε περισσότεραΑριθμοί. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Αριθμοί Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7 0 0 8 8 8 8 Kgllykosgr 5 / 0 / 0 6 εκδόσεις τηλ Οικίας : 0-6078 κινητό : 697-008888 Ασκήσεις Πιθανότητες
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
Διαβάστε περισσότεραΣυναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Συναρτήσεις Κώστας Γλυκός Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 0 / 7 / 0 1 8 εκδόσεις Καλό πήξιμο
Διαβάστε περισσότερα12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Διαβάστε περισσότεραΆλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί
wwwaskisopolisgr Άλγεβρα Α Λυκείου Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ 006-08 Δίνεται ότι και y Πραγματικοί αριθμοί α) i Να βρεθούν τα όρια μεταξύ των οποίων περιέχεται το ii Να βρεθούν τα όρια μεταξύ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
Διαβάστε περισσότεραΕκθετικές & Λογάριθμοι Κώστας Γλυκός
Εκθετικές & Λογάριθμοι Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr / / 0 9 Άλγεβρα Κεφάλαιο 4 ασκήσεις και τεχνικές σε 4 σελίδες εκδόσεις Καλό
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 1 0 / 1 2 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 1 0 / 1 / 0 1 8 Άλγεβρα Κεφάλαιο 4 174 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο
Διαβάστε περισσότεραΤι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.
1 Ονοματεπώνυμο μαθητή : Ημερομηνία :.../.../20... Μαθηματικές έννοιες: Εμβαδόν, Τετραγωνικό Μέτρο, Τετραγωνικό Δεκάμετρο, Τετραγωνικό Εκατοστόμετρο, Τετραγωνικό Χιλιοστόμετρο, Στρέμμα. Θυμόμαστε- Μαθαίνουμε:
Διαβάστε περισσότεραΤριγωνομετρία. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Τριγωνομετρία Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr 8 / / 0 5 Άλγεβρα Κεφάλαιο 9 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78
Διαβάστε περισσότερα5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y
. Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 4 Ο ΕΞΙΣΩΣΕΙΣ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ Η ΕΞΙΣΩΣΗ αχ +βχ+γ=0, α ¹ 0 ΠΑΡΑΤΗΡΗΣΕΙΣ v Εξίσωση δευτέρου βαθμού καλείται η εξίσωση της μορφής : αχ + βχ + γ = 0, α ¹ 0 () v Για την επίλυση της εξίσωσης
Διαβάστε περισσότεραβ=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ
3. ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ 3. ΕΞΙΣΩΣΕΙΣ α 0 Η εξίσωση έχει μία μοναδική λύση την x= - αx+β=0 α=0 β 0 β=0 Η εξίσωση είναι αδύνατη, δηλαδή δεν έχει λύση. Η εξίσωση είναι αόριστη ή ταυτότητα, δηλαδή επαληθεύεται
Διαβάστε περισσότερα4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114
1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την
Διαβάστε περισσότεραΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί
Διαβάστε περισσότερα1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι
_ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Β Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Δώστε ένα παράδειγμα σχετικό με την έννοια της μεταβλητής 2. Να αναφέρετε
Διαβάστε περισσότερα( f( )) ( f( )) 0. f( ) f( ) 0 θέτουμε αντίστοιχα. ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ. 2. Μορφή 0 με 0. Λύση: Λύση: 3. Μορφή Λύση: Βρίσκουμε,,
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ. Μορφή 0 με 0. Λύση: 0 ( ) 0 0 ή 0... Μορφή 0 με 0 Λύση: 0.. Μορφή 0 με 0 Λύση: Βρίσκουμε,, και τη διακρίνουσα 4 Αν 0 (ή, ετερόσημοι) η εξίσωση έχει δύο ρίζες πραγματικές και άνισες
Διαβάστε περισσότερα3. Να δειχτει οτι α α. Ποτε ισχυει το ισον;
EΞΙΣΩΣΕΙΣ Ε ξ ι σ ω σ η ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Εστω η εξισωση: α+β=0 () Λυση η ριζα. της Aν εξισωσης α, β θετικοι λεγεται, να συγκρινεται κάθε τιμη τους του πραγματικου
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
Διαβάστε περισσότεραΤράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +
Διαβάστε περισσότερα3.3 ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 93 96
3.3 ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκσεις σχολικού βιβλίου σελίδας 93 96 A Ομάδας. Να λύσετε τις εξισώσεις 5 + 3 0 Δ 5 4, 5 6 4 4 Δ 36 36 0, i Δ 6 4 8 < 0, 6 + 9 0 i 3 + 4 + 0 6. η εξίσωση είναι αδύνατη. 3 3 (διπλ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού
Διαβάστε περισσότεραΝα αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου
Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 /
Παράγωγοι Κώστας Γλυκός ΕΠΑΛ Κεφάλαιο 59 ασκήσεις σε 9 σελίδες 6 9 7. 0 0. 8 8. 8 8 εκδόσεις / / 0 8 Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό : 697-00.88.88 Τα πάντα για παραγώγους (ΕΠΑΛ) Να βρεις τα πεδία
Διαβάστε περισσότεραΓ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1
Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1 Εμβαδά Επίπεδων Σχημάτων & Πυθαγόρειο Θεώρημα Η συλλογή των ασκήσεων προέρχεται από μια ποικιλία πηγών, σημαντικότερες από τις οποίες είναι το Mathematica.gr, παλιότερα
Διαβάστε περισσότερα7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΚύκλος. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Κύκλος Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyks.gr 1 3 / 1 1 / 2 0 1 6 Κατεύθυνση Κεφάλαιο 3 48 ασκήσεις και τεχνικές σε 5 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:
Διαβάστε περισσότεραx y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 /
Παράγωγοι Κώστας Γλυκός ΕΠΑΛ Κεφάλαιο 59 ασκήσεις σε 9 σελίδες 6 9 7. 0 0. 8 8. 8 8 εκδόσεις / / 0 8 Καλό πήξιμο Τα πάντα για παραγώγους (ΕΠΑΛ) Να βρεις τα πεδία ορισμού των συναρτήσεων :. f ( ) 9. f(
Διαβάστε περισσότεραΠολυώνυμα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 2 0 / 7 /
Πολυώνυμα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 66 99 77... 00 00... 88 88... 88 88 Kgllykos..gr 0 / 7 / 0 1 8 Άλγεβρα Κεφάλαιο 17 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο τηλ.
Διαβάστε περισσότεραB τάξη Γυμνασίου : : και 4 :
Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9
Διαβάστε περισσότεραΣυνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα
Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Διαβάστε περισσότερα1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου
Διαβάστε περισσότεραΤετραγωνική ρίζα πραγματικού αριθμού
Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:
Διαβάστε περισσότεραΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)
ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+
Διαβάστε περισσότεραΕξισώσεις πρώτου βαθμού
Εξίσωση ου βαθμού με ένα άγνωστο 0ρισμός Εξισώσεις πρώτου βαθμού Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή αχ=β λέγεται εξίσωση ου βαθμού με ένα άγνωστο. Σε μια εξίσωση η μεταβλητή λέγεται άγνωστος.οι
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α. Να βρείτε το πεδίο ορισμού της. x x x x β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο Δίνεται η συνάρτηση
Διαβάστε περισσότεραΔΙΑΝΥΣΜΑΤΑ Ερωτήσεις πολλαπλής επιλογής - Σ Λ - αντιστοίχησης
Ερωτήσεις πολλαπλής επιλογής 1. * Στο παραλληλόγραµµο ΑΒΓ είναι: ΑΒ = α, Α = β. α) Το διάνυσµα ΑΓ ισούται µε Α. α - β Β. β - α Γ.. α + β Ε. α - β α + β β) Το διάνυσµα Β ισούται µε α + β Α. α + β Β. β -
Διαβάστε περισσότερα1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ 3 ΙΑΝΟΥΑΡΙΟΥ 2016 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΑΣΚΗΣΗ 1 η Να γίνουν οι πράξεις στις παρακάτω παραστάσεις: i. 3 5 + 2 = ii. 3 ( 2) + 4 5 ( 3) = iii. iv. 2 ( 3) : 3 2 3 2 4 1 ( 2) 6 1+( 2) 1 v.
Διαβάστε περισσότεραΑ σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών
Μαθηματικά Β Γυμνασίου Α σ κήσεις για τ ι ς μέρες των Χριστ ουγεννι άτ ι κ ων διακ οπών 1. Να χρησιμοποιήσετε μεταβλητές για να εκφράσετε με μια αλγεβρική παράσταση τις παρακάτω φράσεις: a. Η διαφορά δυο
Διαβάστε περισσότεραΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()
ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότερα2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. α) Να βρείτε τις ρίζες της εξίσωσης x +0x=. x + 0x β) Να λύσετε την εξίσωση x. ίνεται η εξίσωση: x λx+(λ +λ )=0 (), λ R. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η
Διαβάστε περισσότεραΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
1 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 1. Να λυθούν οι παρακάτω εξισώσεις: 5 x - 3 + 10 2-5x + 10x= - 15 + 10x i. ( ) ( ) ( ) ii. 9( 8-x) -10( 9-x) -4( x - 1)
Διαβάστε περισσότερα1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
Διαβάστε περισσότεραΠαράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 1. Kglykos.gr. 359 ασκήσεις σε 19 σελίδες. εκδόσεις.
Παράγωγοι Κώστας Γλυκός ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 59 ασκήσεις σε 9 σελίδες Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 6 / 0 6 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78 κινητό
Διαβάστε περισσότεραΔιανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Διανύσματα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7 0 0 8 8 8 8 Kglykosgr / 9 / 0 1 6 Kατεύθυνση κεφάλαιο 1 44 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για τα διανύσματα
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013
1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Διαβάστε περισσότεραβ) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε R. Μονάδες 8 γ) Αν x
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ ΕΤΟΣ 06-7 Εξισώσεις Β βαθμού Α Λυκείου Τριών Ιεραρχών την Δευτέρα κι ευκαιρία να τους τιμήσουμε λύνοντας μερικές ασκησούλες άλγεβρας Αρχίστε από τις,,3,4,5,6,8,3,4,5,6,7,8,9,0,
Διαβάστε περισσότεραΦύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ
Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω
Διαβάστε περισσότεραΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ
ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει
Διαβάστε περισσότερα