R 28 February 2014
|
|
- Νικολίτα Ταρσούλη
- 6 χρόνια πριν
- Προβολές:
Transcript
1 R 28 February Timothy Bates *1 *2 2 * :1 10:1 1.0 (1) *4 (2) *1 * KMO MSA Bartlett *3 *4
2 (Parallel Analysis) X 1, X 2,..., X F 1 F 2 X 1 = β 1 1 F 1 + β 2 1 F 2 + ϵ 1 X 2 = β 1 2 F 1 + β 2 2 F 2 + ϵ 2. X 10 = β 1 10 F 1 + β 2 10 F 2 + ϵ 10 β (Factor loadings) ϵ (uniqueness) *5 F 1 F 2 *6 F 1 F 2 n n [1, 300] i X i (n) F S 1 (n) F S 2 (n) β F S 1 (n) = β 1 i X i (n) i=1 10 F S 2 (n) = β 2 i X i (n) i= % *5 1 (communality) rela *6
3 (very poor) 100 (poor) 200 (fair) 300 (good) 500 (very good) 1,000 (excellent) (Comfrey and Lee, 1992, p.217) KMO MSA KMO Kaiser-Meyer-Olkin MSA Measures of Sampling Adequacy KMO *7 MSA 0.5 KMO MSA kmo <- function(x) { x <- subset(x, complete.cases(x)) # Remove the cases with any missing value r <- cor(x) # Correlation matrix r2 <- r^2 # Squared correlation coefficients i <- solve(r) # Inverse matrix of correlation matrix d <- diag(i) # Diagonal elements of inverse matrix p2 <- (-i/sqrt(outer(d, d)))^2 # Squared partial correlation coefficients diag(r2) <- diag(p2) <- 0 # Delete diagonal elements KMO <- sum(r2)/(sum(r2)+sum(p2)) MSA <- colsums(r2)/(colsums(r2)+colsums(p2)) return(list(kmo=kmo, MSA=MSA)) } p *7 Kaiser (1974) (miserable) (mediocre) (middling) (meritorious) 0.9 (marvelous)
4 Bartlett.sphericity.test <- function(x) { method <- "Bartlett s test of sphericity" data.name <- deparse(substitute(x)) x <- subset(x, complete.cases(x)) # Remove the cases with any missing value n <- nrow(x) p <- ncol(x) chisq <- (1-n+(2*p+5)/6)*log(det(cor(x))) df <- p*(p-1)/2 p.value <- pchisq(chisq, df, lower.tail=false) names(chisq) <- "X-squared" names(df) <- "df" return(structure(list(statistic=chisq, parameter=df, p.value=p.value, method=method, data.name=data.name), class="htest")) } 7 R factanal paf rela rela eigencrit= 1 KMO MSA fa psych fm= "minres" "ml" "pa" nfactors= rotate= "none" "varimax" "quartimax" "bentlert" "geomint" "oblimin" "simplimax" "bentlerq" "geominq" "cluster" alpha psych α cortest.bartlett psych fa.parallel psych $nfact sem (confirmatory factor analysis; CFA) sem sem CFA
5 8 1 Tomothy Bates SPSS *8 p1-p40 Bates pdf *9 res$factor.loadings library(foreign) y <- read.spss(" x <- as.data.frame(y) for (i in 1:length(x)) { x[,i] <- ifelse(x[,i]==999,na,x[,i]) } # // Comments // ========================================================== # The data \verb!x! consists of 538 cases with 102 variables. # it can be saved as "factorexdata05.txt" by the following line # write.table(x,"factorexdata05.txt",quote=false,sep="\t",row.names=false) # if so, the data can be read by: # x <- read.delim("factorexdata05.txt") # ========================================================================= Ps <- x[,4:43] # Extract variables p1-p40 Ps <- subset(ps, complete.cases(ps)) # Omit missings (511 cases remain) library(rela) res <- paf(as.matrix(ps)) summary(res) # Automatically calculate KMO with MSA, determine the number of factors, # calculate chi-square of Bartlett s sphericity test, communalities and # factor loadings. Communalities are 1 minus uniquenesses. barplot(res$eigenvalues[,1]) # First column of eigenvalues. resv <- varimax(res$factor.loadings) # Varimax rotation is possible later. print(resv) barplot(sort(colsums(loadings(resv)^2),decreasing=true)) # screeplot using rotated SS loadings. scores <- as.matrix(ps) %*% as.matrix(resv$loadings) # Get factor scores in a simple manner. library(psych) cortest.bartlett(ps) # Bartlett s sphericity test. res2 <- fa.parallel(ps) res3 <- fa(ps, fm="minres", nfactors=8, rotate="oblimin") print(res3) # Factor loadings as $loadings 9 2 (2014) factanal() * 10 *8 *9 *10
6 install.packages("misaki", repos=" library(misaki) demo(part2) # factanal() rotation="none" > # demo(part2) data(tests) > result <- factanal(, factors=2, scores="regression") > result$loadings Loadings: Factor1 Factor Factor1 Factor2 SS loadings Proportion Var Cumulative Var > biplot(result$scores, result$loading, cex = 2) biplot()
7 rela paf 2 40 KMO 0.7 MSA 0.5 > library(rela) > summary(paf(as.matrix( ))) $KMO [1] $MSA MSA $Bartlett [1] $Communalities Initial Communalities Final Extraction $Factor.Loadings [,1] [,2] $RMS [1] psych > cortest.bartlett(cor( ), n=40)$p.value # [1] e-21 > # cortest.bartlett( ) > # > res2 <- fa.parallel( ) Loading required package: parallel Loading required package: MASS Parallel analysis suggests that the number of factors = 2 and the number of components = 2
8 p 2 2 fa() > print(res3 <- fa(, nfactors=2, rotate="varimax", fm = "ml")) Factor Analysis using method = ml Call: fa(r =, nfactors = 2, rotate = "varimax", fm = "ml") Standardized loadings (pattern matrix) based upon correlation matrix ML1 ML2 h2 u2 com ML1 ML2 SS loadings Proportion Var Cumulative Var Proportion Explained Cumulative Proportion Mean item complexity = 1.2 Test of the hypothesis that 2 factors are sufficient. The degrees of freedom for the null model are 15 and the objective function was 3.71 with Chi Square of The degrees of freedom for the model are 4 and the objective function was 0.06 The root mean square of the residuals (RMSR) is 0.02 The df corrected root mean square of the residuals is 0.05 The harmonic number of observations is 40 with the empirical chi square 0.44 with prob < 0.98 The total number of observations was 40 with MLE Chi Square = 2.16 with prob < 0.71 Tucker Lewis Index of factoring reliability = RMSEA index = 0 and the 90 % confidence intervals are NA BIC = Fit based upon off diagonal values = 1 Measures of factor score adequacy ML1 ML2 Correlation of scores with factors Multiple R square of scores with factors Minimum correlation of possible factor scores > biplot(res3$scores, res3$structure) factanal() 40
9 sem * 11 * 12 library(misaki); data(tests) # library(sem) # sem cor1 <- cor( ) # model1 <- specifymodel() # <-, a1 <-, a2 <-, a3 <-, b1 <-, b2 <-, b3 <-, b4 <->, e1, NA <->, e2, NA <->, e3, NA <->, e4, NA <->, e5, NA <->, e6, NA <->, NA, 1 <->, NA, 1 sem1 <- sem(model1, cor1, N=40) # sem summary(sem1, fit.indices=c("gfi", "AGFI", "RMSEA", "CFI", "AIC", "BIC")) *11 install.packages(sem, dep=true) sem *12
10 CFA * 13 AGFI 0.9 CFI RMSEA Model Chisquare = Df = 8 Pr(>Chisq) = Goodness-of-fit index = Adjusted goodness-of-fit index = RMSEA index = % CI: (NA, ) Bentler CFI = AIC = BIC = Normalized Residuals Min. 1st Qu. Median Mean 3rd Qu. Max R-square for Endogenous Variables Parameter Estimates Estimate Std Error z value Pr(> z ) a e-04 <--- a e-08 <--- a e-08 <--- b e-04 <--- b e-15 <--- b e-09 <--- b e-10 <--- e e-04 <--> e e-02 <--> e e-01 <--> e e-01 <--> e e-04 <--> e e-04 <--> Iterations = 22 *13 model1 <- cfa(covs=null, reference.indicators=false) :,, :,,,
Ιωάννης Τσαούσης, Πανεπιστήμιο Κρήτης Τμήμα Ψυχολογίας
Η Ανάλυση Παραγόντων (Factor Analysis) Τι είναι η ανάλυση παραγόντων Σκοπός της ανάλυσης παραγόντων (ΑΠ) είναι να συνοψίσει τις σχέσεις ανάμεσα σε ένα μεγάλο αριθμό μεταβλητών με έναν περιεκτικό και ακριβή
ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ
ΤΕΙ ΠΕΙΡΑΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΜΑΘΗΜΑ: Ανάλυση Πολυδιάστατων (Πολυμεταβλητών) Δεδομένων και Συστήματα Εξόρυξης Δεδομένων (Multivariate Data
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Παραδείγματα στο Amos Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια
ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ FACTOR ANALYSIS
ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ ΣΤΟΧΟΣ FACTOR ANALYSIS ΜΕΙΟΝΕΚΤΗΜΑΤΑ-ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΙΑΦΟΡΕΣ ΜΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ. ΚΑΤΑΛΛΗΛΟΤΗΤΑ Ε ΟΜΕΝΩΝ. ΠΩΣ ΕΠΙΤΥΓΧΑΝΕΤΑΙ. ΠΑΡΑ ΕΙΓΜΑ ΥΛΟΠΟΙΗΣΗ ΣΤΟ SPSS ΕΡΜΗΝΕΙΑ 1 ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ
Οδηγός Ανάλυσης Αξιοπιστίας και Εγκυρότητας Ψυχομετρικών Κλιμάκων με το SPSS
Οδηγός Ανάλυσης Αξιοπιστίας και Εγκυρότητας Ψυχομετρικών Κλιμάκων με το SPSS Άγγελος Μάρκος Λέκτορας ΠΤΔΕ, ΔΠΘ Αλεξανδρούπολη 2012 1. Εισαγωγή Η μέτρηση στις επιστήμες της συμπεριφοράς συχνά στοχεύει στην
Διερεύνηση της Αξιοπιστίας και της Εγκυρότητας Ψυχομετρικής Κλίμακας με το λογισμικό SPSS
Διερεύνηση της Αξιοπιστίας και της Εγκυρότητας Ψυχομετρικής Κλίμακας με το λογισμικό SPSS 1. Εισαγωγή Άγγελος Μάρκος Αλεξανδρούπολη, 04.04.2013 Η μέτρηση στις επιστήμες της συμπεριφοράς συχνά στοχεύει
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Poisson Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
ΜΕΘΟ ΟΛΟΓΙΑ ΕΚΠΑΙ ΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ
ΜΕΘΟ ΟΛΟΓΙΑ ΕΚΠΑΙ ΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ ΑΝΑΛΥΣΗ ΠΑΡΑΓΟΝΤΩΝ (FACTOR ANALYSIS) ΜΕ ΤΟ SPSS Ρ ΚΟΡΡΕΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΑΝΑΛΥΣΗ ΠΑΡΑΓΟΝΤΩΝ (FACTOR ANALYSIS) Η ανάλυση παραγόντων (Fact) είναι ουσιαστικά µία τεχνική µείωσης
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Παραγοντική ανάλυση και SPSS Πρόχειρες σημειώσεις
Παραγοντική ανάλυση και SPSS Πρόχειρες σημειώσεις ΣΤΟΧΟΣ ΠΑΡΑΓΟΝΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Η εύρεση της ύπαρξης κοινών παραγόντων ανάμεσα σε μία ομάδα μεταβλητών. Τι επιτυγχάνεται? 1.Μείωση της διάστασης του προβλήματος.
5.1 logistic regresssion Chris Parrish July 3, 2016
5.1 logistic regresssion Chris Parrish July 3, 2016 Contents logistic regression model 1 1992 vote 1 data..................................................... 1 model....................................................
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Οι νέοι και το περιβάλλον: Περιβαλλοντικές στάσεις και συµπεριφορά µαθητών Λυκείων και ΤΕΕ του Ν. Ροδόπης
Οι νέοι και το περιβάλλον: Περιβαλλοντικές στάσεις και συµπεριφορά µαθητών Λυκείων και ΤΕΕ του Ν. Ροδόπης Ευρ. Παπαδηµητρίου, Λέκτορας Κοινωνιολογίας Τµήµα Κοινωνικής ιοίκησης, ηµοκρίτειο Πανεπιστήµιο
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL3 1 5 5 4 4 4 3 4 3 4 3 4 5 2 4 4 3 5 4 4 4 4 5 4 3 4 3 2 2 3 2 3 3 3 3 4 2 3 2 4 4 4 5 3 4 4 4 3 4 4 5 4 5 5 5 4 2 3 3 3 4 3
η π 2 /3 χ 2 χ 2 t k Y 0/0, 0/1,..., 3/3 π 1, π 2,..., π k k k 1 β ij Y I i = 1,..., I p (X i = x i1,..., x ip ) Y i J (j = 1,..., J) x i Y i = j π j (x i ) x i π j (x i ) x (n 1 (x),..., n J (x))
Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ
Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ5 1 4 3 3 4 4 5 4 5 4 2 5 5 4 5 4 4 3 5 4 3 2 1 3 2 3 3 4 3 3 4 2 3 3 2 4 4 4 3 4 5 2 3 2 2 3 3 3 3 3 6 3 3 3 3 4 4 4 5 4 7 4 3 3 4 3 3
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Linear Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Generalized additive models in R
www.nr.no Generalized additive models in R Magne Aldrin, Norwegian Computing Center and the University of Oslo Sharp workshop, Copenhagen, October 2012 Generalized Linear Models - GLM y Distributed with
Repeated measures Επαναληπτικές μετρήσεις
ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Λογιστική Παλινδρόµηση
Κεφάλαιο 10 Λογιστική Παλινδρόµηση Στο κεφάλαιο αυτό ϑα δούµε την µέθοδο της λογιστικής παλινδρόµησης η οποία χρησιµεύει στο να αναπτύξουµε σχέση µίας δίτιµης ανεξάρτητης τυχαίας µετα- ϐλητής και συνεχών
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια 2
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
Reliability analysis Ανάλυση αξιοπιστίας
Reliability analysis Ανάλυση αξιοπιστίας ΙΑΤΥΠΩΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ. ΤΡΟΠΟΣ ΕΛΕΓΧΟΥ. ΥΛΟΠΟΙΗΣΗ ΣΤΟ SPSS. ΠΑΡΑ ΕΙΓΜΑ. 1 ΙΑΤΥΠΩΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ Συνήθως όταν θέλουμε να «μετρήσουμε» χαρακτηριστικά π.χ. η
2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα
Bayesian SEM: A more flexible representation of substantive theory Web tables
Bayesian SEM: A more flexible representation of substantive theory Web tables Bengt Muthén & Tihomir Asparouhov April 14, 2011 1 [Table 1 about here.] [Table 2 about here.] [Table 3 about here.] [Table
ΠΑΝΕΠΙΣΤΗΜΙΟ+ΠΑΤΡΩΝ+ Τμήμα+Διοίκησης+Επιχειρήσεων+
ΠΑΝΕΠΙΣΤΗΜΙΟ+ΠΑΤΡΩΝ+ Τμήμα+Διοίκησης+Επιχειρήσεων+ «Η# δράση# των# επιχειρήσεων# στα# κοινωνικά# δίκτυα# (social# media)# στο# διαδίκτυο# και# η# επίδραση#στην#απόδοση#των#επιχειρήσεων)#»# Δρ.#Δέσποινα#Καραγιάννη,#Αθηνά#Ντάβαρη#(ΜΒΑ)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΑΣΚΗΣΗ, ΕΡΓΟΣΠΙΡΟΜΕΤΡΙΑ ΚΑΙ ΑΠΟΚΑΤΑΣΤΑΣΗ» ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Μεθοδολογία έρευνας και στατιστική 2. ΚΩΔ.
Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square
Appendix A3 Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS F Value Pr > F Model 107 374.68 3.50 8573.07
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ ΣΕ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΡΕΥΝΑ ΑΓΟΡΑΣ
Τ.Ε.Ι ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ & ΘΡΑΚΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ ΣΕ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΡΕΥΝΑ ΑΓΟΡΑΣ Αστέριος Μαντζούκης Κυριάκος Παπαντωνίου ΟΚΤΩΒΡΙΟΣ 2014
ΑΝΑΛΥΣΗ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ Α.Κ.Σ.
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΑΝΑΛΥΣΗ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ Α.Κ.Σ. Μ-Ν ΝΤΥΚΕΝ Ορισμός Σκοπός της Α.Κ.Σ. Η Α.Κ.Σ. εντάσσεται στις μεθόδους διερευνητικής ανάλυσης (exploratory) συνθετικών φαινόμενων (Παραγοντικές μεθόδοι).
Οδηγίες χρήσης του R, μέρος 2 ο
ΟδηγίεςχρήσηςτουR,μέρος2 ο Ελληνικά Ανπροσπαθήσουμεναγράψουμεελληνικάήναανοίξουμεκάποιοαρχείοδεδομένωνμε ελληνικούςχαρακτήρεςστοr,μπορείαντίγιαελληνικάναδούμελατινικούςχαρακτήρεςμε τόνουςήάλλακαλλικαντζαράκια.τότεδίνουμετηνπαρακάτωεντολήγιαναγυρίσειτοrστα
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
Τομέας Βιομηχανικής Διοίκησης και Επιχειρησιακής Έρευνας
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Βιομηχανικής Διοίκησης και Επιχειρησιακής Έρευνας Έρευνα Αγοράς Μέρος 2 ο - Έλεγχοι Συσχέτισης και Πολυμεταβλητή Στατιστική 1 Περιεχόμενα 1. Έλεγχοι Συσχετίσεων Δύο Μεταβλητών
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation
References [1] B.V.R. Punyawardena and Don Kulasiri, Stochastic Simulation of Solar Radiation from Sunshine Duration in Srilanka [2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
X = [ 1 2 4 6 12 15 25 45 68 67 65 98 ] X X double[] X = { 1, 2, 4, 6, 12, 15, 25, 45, 68, 67, 65, 98 }; double X.Length double double[] x1 = { 0, 8, 12, 20 }; double[] x2 = { 8, 9, 11, 12 }; double mean1
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.
Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και
Lampiran 1 Output SPSS MODEL I
67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables
χ 2 test ανεξαρτησίας
χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ
Απλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Table A.1 Random numbers (section 1)
A Tables Table Contents Page A.1 Random numbers 696 A.2 Orthogonal polynomial trend contrast coefficients 702 A.3 Standard normal distribution 703 A.4 Student s t-distribution 704 A.5 Chi-squared distribution
ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΠΑΡΑΓΟΝΤΙΚΗ ΑΝΑΛΥΣΗ Δρ.
Correction Table for an Alcoholometer Calibrated at 20 o C
An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol
ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21
Πίνακας Περιεχομένων Πρόλογος... 17 ΚΕΦΑΛΑΙΟ 1 ο ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΚΑΙ ΑΝΑΛΥΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΩΝ ΜΕ ΧΡΗΣΗ ΕΛΕΓΧΩΝ (STUDENT S T).. 21 (Basic Sampling Techniques and Questionnaire Analysis using
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
DEMOCRITUS UNIVERISTY OF THRACE Dept. of Physical Education and Sport Sciences Doctoral Program of Study COURSE OUTLINE
DEMOCRITUS UNIVERISTY OF THRACE Dept. of Physical Education and Sport Sciences Doctoral Program of Study COURSE OUTLINE 1. COURSE TITLE: Advanced Statistics 2. COURSE COORDINATOR/ LECTURER: Mavrommatis
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ
Supplementary figures
A Supplementary figures a) DMT.BG2 0.87 0.87 0.72 20 40 60 80 100 DMT.EG2 0.93 0.85 20 40 60 80 EMT.MG3 0.85 0 20 40 60 80 20 40 60 80 100 20 40 60 80 100 20 40 60 80 EMT.G6 DMT/EMT b) EG2 0.92 0.85 5
255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo
(absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total
Α.Σ.ΠΑΙ.Τ.Ε. Π.Ε.ΣΥ.Π. ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΤΟΥΣ ΣΚΟΠΟΥΣ ΣΥΕΠ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΤΟ SPSS
Eigenvalue Α.Σ.ΠΑΙ.Τ.Ε. Π.Ε.ΣΥ.Π. ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΤΟΥΣ ΣΚΟΠΟΥΣ ΣΥΕΠ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΤΟ SPSS ΔΡ ΚΟΡΡΕΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΑΘΗΝΑ 2017 6 5 4 3 2 1 0 Scree Plot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Οδηγίες χρήσης του R, μέρος 1 ο. Κατεβάζουμε το λογισμικό από την ιστοσελίδα http://cran.cc.uoc.gr/bin/windows/base/
ΟδηγίεςχρήσηςτουR,μέρος1 ο Προκαταρκτικά Κατεβάζουμετολογισμικόαπότηνιστοσελίδαhttp://cran.cc.uoc.gr/bin/windows/base/ Εγκαθιστούμετολογισμικόστονυπολογιστήμαςεκτελώνταςτοαρχείοπουκατεβάσαμε. ΤρέχουμετολογισμικόμεδιπλόκλικστομπλεεικονίδιοκαιβλέπουμετοπεριβάλλοντουR:
ΠΟΛΥΜΕΤΑΒΛΗΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ EUROSTAT
ηµοσιεύθηκε στην Επιστηµονική Επετηρίδα Εφαρµοσµένης Έρευνας vol. XII no., 007 σελ. 0- ΠΟΛΥΜΕΤΑΒΛΗΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ EUROSTAT Μιλτιάδης Χαλικιάς Τµήµα ιοίκησης Επιχειρήσεων, ΤΕΙ Πειραιά ΠΕΡΙΛΗΨΗ
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Εισαγωγή στα Μοντέλα Δομικών Εξισώσεων με τη χρήση του AMOS
Εισαγωγή στα Μοντέλα Δομικών Εξισώσεων με τη χρήση του AMOS Βασίλης Παυλόπουλος Τμήμα Ψυχολογίας, Πανεπιστήμιο Αθηνών vpavlop@psych.uoa.gr users.uoa.gr/~vpavlop ΠΜΣ Κοινωνική Ψυχολογία των Συγκρούσεων,
Supplementary Information 1.
Supplementary Information 1. Fig. S1. Correlations between litter-derived-c and N (percent of initial input) and Al-/Fe- (hydr)oxides dissolved by ammonium oxalate (AO); a) 0 10 cm; b) 10 20 cm; c) 20
Γυναίκα Λέκτορας Επίκουρος καθηγητής/-τρια Αναπληρωτής καθηγητής/-τρια Καθηγητής/-τρια.... Ναι Όχι Ναι. Όχι Ναι Όχι Ναι Όχι Αν ναι, πόσο από τον εργασιακό σας χρόνο αφιερώνετε στο ελεύθερο επάγγελμα που
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Galatia SIL Keyboard Information
Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014