|
|
- Ευθαλία Διαμαντόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1
2
3
4
5
6
7 η
8 π 2 /3
9
10
11
12
13
14 χ 2
15 χ 2 t
16
17 k Y 0/0, 0/1,..., 3/3
18 π 1, π 2,..., π k k k 1 β ij Y I i = 1,..., I p (X i = x i1,..., x ip ) Y i J (j = 1,..., J) x i Y i = j π j (x i ) x i π j (x i ) x (n 1 (x),..., n J (x)) (π 1 (x),..., π j (x)) j n j (x) i Y i = j x i x logit
19 π odds = logit(π) = log = α + βx 1 π exp(α + βx) π(x) = 1 + exp(α + βx) β logit Y J logit(π j ) = log( π j π 1 ) = α j + β T j X j, j = 2,..., J β T j β j β j ( ) J 2 βj X j β T j ˆπ j = ˆπ 1 exp(β T j X j), j = 2,..., J. ˆπ 1 + ˆπ ˆπ j =1, 1 ˆπ 1 = 1 + J exp(β T j X j) π j = j=2 exp(x j β T j ), j = 2,..., J. 1 + J exp(β T j X j) J 1 j ˆπ j j=2
20 Y J ( ) J 2 J 1 π j (X) = Pr(J = j X) X j π j (X) = 1 J Y {π 1 (X),..., π j (X)} log π j(x) π J (X) = α j + β jx, j = 1,..., J 1 X J 1 J 1 log π α(x) π β (X) = log π α(x) π J (X) log π β(x) π J (X) {π j (X)} π j (X) = 1 + J 1 exp(α j + β T j X) h=1 exp(α h + β T h X) α J = 0 β J = 0 j = J α J = 0 β J = 0 j j j π j (x) = 1 J = 2 ( exp(α + βx) ) π(x) = 1 + exp(α + βx)
21 ξ ε i ξ = α + β 1 X i1 + + β k X ik + ε i ξ ξ m 1 m β α 1 < α 2 < < α m 1 Y 1 ξ α 1 2 α 1 < ξ α 2 Y = m 1 α m 2 < ξ α m 1 m α m 1 < ξ
22 Y Pr(Y i j) = Pr(ξ a j ) = Pr(α + β 1 X i1 + + β k X ik + ε i a j ) = Pr(ε i α j α β 1 X i1 β k X ik ) ε i logit [ Pr(Y i j) ] = log Pr(Y i) 1 Pr(Y i) = log Pr(Y i j) Pr(Y i > j) = α j α β 1 X i1 β k X ik β T x θ 3
23 θ j = α + b(j 1), j = 1,..., J 1 θ 1 = α Y 1, 2,..., k i y i X i p Y π π ij γ ij = Pr(Y i j) = p i1 + + p ij, j = 1,..., k Pr(X i < j X j ) Pr(Y j) odds = Pr(Y j) = Pr(Y j) 1 Pr(Y j) = p p j p j p k, j = 1,..., k 1
24 logit(γ ij ) = logit [Pr(Y j)] = log Pr(Y j), j = 1, 2,..., k 1. 1 Pr(Y j) Y j Y > j k logit(γ ij ) = logit [Pr(Y j)] = log π p j π j π k = α j + β T k X β k odds = Pr(Y y j X) = exp(α j + β T k X) 1 + exp(α j + β T, j = 1, 2,..., k k X) j α j α j j Pr(Y j) j X β k odds = Pr(Y y j X) = exp(α j + β T X) 1 + exp(α j + β T, j = 1, 2,..., k X) j = k 1 Pr(Y k) = 1 1 = 0
25 α j Y Y Y j α j α j j Pr(Y j) j X logit(γ ij ) = α j + β T X β T X
26 β T X α j β T X β T Y j X 1 X 2 odds = γ j (X 1 ) 1 γ j (X 1 ) γ j (X 2 ) 1 γ j (X 2 ) = exp(α j β T X 1 ) exp(α j β T X 2 ) = exp[βt (X 2 X 1 )] j X 1 X 2 X
27 X 2 X 1 = 1 exp( β ) Y j exp(β ) β T q p (q < p) q Y k x p Pr(Y y j ) = exp( α j β T X t T γ j ) 1 + exp( α j β T, j = 1, 2,..., k X t T γ j ) t q q γ j q t t T γ j j 1 j k γ 1 = 0
28 γ j = 0 j q t H 0 : γ j = 0, j (2 j k) γ 1 = 0 (α + β T x) Y y j = 1 y j > 1 (α + β T x) tγ j Pr(Y y j ) = exp( α j β T X t T γγ j ) 1 + exp( α j β T, j = 1, 2,..., k X t T γγ j ) Γ j Γ 1 = 0 γ q j c c 1 c 1
29 S F Y i j S i θ j 1 < S i < θ j θ 0 < θ 1 < < θ J 1 < θ J S J + 1 x i S i = α + β T x i + ε i, ε i N(0, σ 2 ) ε i α S i x i S i N(α + β T x i, σ 2 )
30 j ( γ ij = Pr(Y i j) = Pr(S i ) θ j = Pr Z i θ j α β T ) x i σ ( θj α β T ) x i = Φ σ Z i = S i α β T x i N(0, 1) Φ σ α σ γ ij = Φ(θ j β T x i ) ˆθ j = (θ j α) σ ˆβ = β σ. β
31 π 2 /3 π 2 /3
32 logit [ ] Pr(Y = j x) = log π j, j = 1,..., J 1. Pr(Y = j + 1 x) π j+1 log π j π J = log π j π j+1 + log π j π j log π j 1 π J log π j π j+1 = log π j π J log π j+1 π J, j = 1,..., J 1 ( ) J 2 log π j π j+1 = α j + β T X, j = 1,..., J 1 β J j log π J 1 j(x) π J (x) = α k + β T (J j)x, j = 1,..., J 1 k=j log π j(x) π J (x) = α j + β T u j, j = 1,..., J 1 Y
33 J 1 j = 1,, J 1 Pr(Y = j Y j) log π j π j π J, j = 1,..., J 1
34 π j+1 log, j = 1,..., J 1. π π j β j T j g(µ i ) = β T X i µ i y i = (y i1, y i2,..., y i,j 1 ) i g
35 x η η η x [ log ( )] µ 1 µ [Φ 1 (µ)] x β
36 η x β x k e β x k Pr(Y y 1 ) Pr(Y = y 1 ) x k e β
37 β n l(θ, β; y) = w i log π i i=1 i w i π i π ij I(Y i = j) I( ) ˆβ ˆθ β θ
38 α = [θ, β] H = 2 l(α; y) α α T α=ˆα I( ˆα) = H s. e( ˆα) = diag[ H]( ˆα) 1 ]
39 m 0 m 1 m 0 m 1 m 0 m 1 m 0 m 1 = 2(l 0 l 1 ) l 0 l 1 m 0 m 1 m 1 m 0 χ 2 m 0 m 1 m 0 m 1
40 D = D D χ 2 l = h w hj log ˆπ hj j ˆπ hj = w hj w h. w hj w h. h χ 2 χ 2
41 χ 2
42 β β j c 1
43 > summary( mentaldta) mental ses life Min. :1.000 Min. :0.00 Min. : st Qu.: st Qu.:0.00 1st Qu.:2.000 Median :2.000 Median :1.00 Median :4.000 Mean :2.325 Mean :0.55 Mean : rd Qu.: rd Qu.:1.00 3rd Qu.:6.250 Max. :4.000 Max. :1.00 Max. :9.000
44
45 > prop. vgam <- vglm( mental ~ ses + life, family = cumulative( parallel = T), data= mentaldta) > summary(prop.vgam) Call: vglm( formula = mental ~ ses + life, family = cumulative( parallel = T), data = mentaldta) Pearson residuals: Min 1Q Median 3Q Max logit(p[y <=1]) logit(p[y <=2]) logit(p[y <=3]) Coefficients: Estimate Std. Error z value Pr( > z ) ( Intercept): ( Intercept): ( Intercept): ** ses life ** --- Signif. codes: 0 *** ** 0.01 * Number of linear predictors: 3 35
46 Names of linear predictors: logit(p[y <=1]), logit(p[y <=2]), logit(p[y <=3]) Residual deviance: on 115 degrees of freedom Log - likelihood: on 115 degrees of freedom Number of iterations: 5 No Hauck - Donner effect found in any of the estimates Exponentiated coefficients: ses life logit [Pr(Y 1)] = X X 2 logit [Pr(Y 1)] = X X 2 logit [Pr(Y 3)] = X X 2 α i α 1 = , α 2 = , α 3 = ˆβ 1 = 0, 319 ˆβ 2 = 1.11 e 0,32 = 0, 72 X Y j j
47 e = 3 0 5% χ 0,05,2 = 0, 35 > prop. vgam0 <- vglm( mental ~1, family = cumulative( parallel = T), data= mentaldta) > summary(prop. vgam0) Call: vglm( formula = mental ~ 1, family = cumulative( parallel = T), data = mentaldta) Pearson residuals: Min 1Q Median 3Q Max logit(p[y <=1]) logit(p[y <=2]) logit(p[y <=3]) Coefficients: Estimate Std. Error z value Pr( > z ) ( Intercept): * ( Intercept): ( Intercept): ** --- Signif. codes: 0 *** ** 0.01 *
48 Number of linear predictors: 3 Names of linear predictors: logit(p[y <=1]), logit(p[y <=2]), logit(p[y <=3]) Residual deviance: on 117 degrees of freedom Log - likelihood: on 117 degrees of freedom Number of iterations: 1 No Hauck - Donner effect found in any of the estimates logit [Pr(Y 1)] = α 1 + β 11 X + β 21 X logit [Pr(Y 1)] = α 1 + β 12 X + β 22 X logit [Pr(Y 1)] = α 1 + β 11 X + β 21 X logit [Pr(Y 1)] = α 1 + β 13 X + β 23 X logit [Pr(Y 3)] = α 3 + β 11 X + β 21 X > cum. vgam <- vglm( mental ~ ses + life, family = cumulative, data= mentaldta) > summary(cum.vgam) Call: 38
49 vglm( formula = mental ~ ses + life, family = cumulative, data = mentaldta) Pearson residuals: Min 1Q Median 3Q Max logit(p[y <=1]) logit(p[y <=2]) logit(p[y <=3]) Coefficients: Estimate Std. Error z value Pr( > z ) ( Intercept): ( Intercept): ( Intercept): NA NA ses: ses: * ses: life: * life: * life: * --- Signif. codes: 0 *** ** 0.01 * Number of linear predictors: 3 Names of linear predictors: logit(p[y <=1]), logit(p[y <=2]), logit(p[y <=3]) Residual deviance: on 111 degrees of freedom Log - likelihood: on 111 degrees of freedom Number of iterations: 14 39
50 > deviance( prop. vgam)- deviance( cum. vgam) [1] > df. residual( prop. vgam)-df. residual( cum. vgam) [1] 4 > qchisq(0.05,4) [1] logit [Pr(Y 1)] = α 1 + β 11 X + β 2 X logit [Pr(Y 1)] = α 1 + β 12 X + β 2 X logit [Pr(Y 1)] = α 1 + β 11 X + β 2 X logit [Pr(Y 1)] = α 1 + β 13 X + β 2 X logit [Pr(Y 3)] = α 3 + β 11 X + β 2 X > summary(par.vgam) Call: vglm( formula = mental ~ ses + life, family = cumulative( parallel = F ~ ses), data = mentaldta) Pearson residuals: 40
51 Min 1Q Median 3Q Max logit(p[y <=1]) logit(p[y <=2]) logit(p[y <=3]) Coefficients: Estimate Std. Error z value Pr( > z ) ( Intercept): ( Intercept): ( Intercept): ** ses: ses: * ses: life ** --- Signif. codes: 0 *** ** 0.01 * Number of linear predictors: 3 Names of linear predictors: logit(p[y <=1]), logit(p[y <=2]), logit(p[y <=3]) Residual deviance: on 113 degrees of freedom Log - likelihood: on 113 degrees of freedom χ 2 > pchisq( deviance( prop. vgam)- deviance( par. vgam), + df. residual( prop. vgam)-df. residual( par. vgam), lower. tail = F) [1]
52 pchisq( deviance( par. vgam0)- deviance( par. vgam), + df. residual( par. vgam0)- df. residual( par. vgam), lower. tail = F) [1] J 1 j + 1, j = 1,..., J 1 log( π 1 π 2 ) = X X 2 log( π 2 π 3 ) = X X 2 log( π 3 π 4 ) = X X 2 e = > ad. vgam <- vglm( mental ~ ses + life, family =acat( reverse =T, parallel = T), data= mentaldta) 42
53 > summary( ad. vgam) Call: vglm( formula = mental ~ ses + life, family = acat( reverse = T, parallel = T), data = mentaldta) Pearson residuals: Min 1Q Median 3Q Max loge(p[y=1]/p[y=2]) loge(p[y=2]/p[y=3]) loge(p[y=3]/p[y=4]) Coefficients: Estimate Std. Error z value Pr( > z ) ( Intercept): ( Intercept): ( Intercept): ses life * --- Signif. codes: 0 *** ** 0.01 * Number of linear predictors: 3 Names of linear predictors: loge(p[y=1]/p[y=2]), loge(p[y=2]/p[y=3]), loge(p[y=3]/p[y=4]) Residual deviance: on 115 degrees of freedom Log - likelihood: on 115 degrees of freedom Number of iterations: 4
54 pchisq( deviance( ad. vgam)- deviance( prop. vgam), + df. residual( ad. vgam)- df. residual( prop. vgam), lower. tail = F) [1] 1 j = 1,, J1 π 1 log( ) = X X 2 π 2 + π 3 + π 4 π 2 log( ) = X X 2 π 3 + π 4 log( π 3 π 4 ) = X X 2 e = > con. vgam <- vglm( mental ~ ses + life, family =acat( reverse =F, parallel = T), data= mentaldta) > summary(con.vgam) Call: vglm( formula = mental ~ ses + life, family = acat( reverse = F, parallel = T), data = mentaldta) 44
55 Pearson residuals: Min 1Q Median 3Q Max loge(p[y=2]/p[y=1]) loge(p[y=3]/p[y=2]) loge(p[y=4]/p[y=3]) Coefficients: Estimate Std. Error z value Pr( > z ) ( Intercept): ( Intercept): ( Intercept): ses life * --- Signif. codes: 0 *** ** 0.01 * Number of linear predictors: 3 Names of linear predictors: loge(p[y=2]/p[y=1]), loge(p[y=3]/p[y=2]), loge(p[y=4]/p[y=3]) Residual deviance: on 115 degrees of freedom Log - likelihood: on 115 degrees of freedom > pchisq( deviance( con. vgam)- deviance( prop. vgam), +df. residual( con. vgam)- df. residual( prop. vgam), lower. tail = F) [1] 1
56
57
58
59
60
61
62
Λογιστική Παλινδρόµηση
Κεφάλαιο 10 Λογιστική Παλινδρόµηση Στο κεφάλαιο αυτό ϑα δούµε την µέθοδο της λογιστικής παλινδρόµησης η οποία χρησιµεύει στο να αναπτύξουµε σχέση µίας δίτιµης ανεξάρτητης τυχαίας µετα- ϐλητής και συνεχών
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Poisson Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
5.1 logistic regresssion Chris Parrish July 3, 2016
5.1 logistic regresssion Chris Parrish July 3, 2016 Contents logistic regression model 1 1992 vote 1 data..................................................... 1 model....................................................
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Linear Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ
ΜΕΜ264: Εφαρμοσμένη Στατιστική 1 ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ 1. Σε μελέτη της επίδρασης γεωργικών χημικών στην προσρόφηση ιζημάτων και εδάφους, δίνονται στον πιο κάτω πίνακα 13 δεδομένα για το δείκτη
3 Regressionsmodelle für Zähldaten
Übung zur Vorlesung Kategoriale Daten Blatt 6 Gerhard Tutz, Moritz Berger WiSe 15/16 3 Regressionsmodelle für Zähldaten Aufgabe 21 Analyse des Datensatz bike bike
Γενικευµένα Γραµµικά Μοντέλα
Σηµειώσεις για το εργαστήριο υπολογιστών για το µάθηµα Γενικευµένα Γραµµικά Μοντέλα. Μέρος δεύτερο: Γενικευµένα Γραµµικά Μοντέλα στην SPLUS Οι σηµειώσεις γράφτηκαν από το Γιώργο Τζουγά, υποψήφιο διδάκτορα
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Funktionsdauer von Batterien in Abhängigkeit des verwendeten Materials und der Umgebungstemperatur
Beispiel: Funktionsdauer von Batterien in Abhängigkeit des verwendeten aterials und der Umgebungstemperatur emp. = 15 emp. = 70 emp. = 125 130 155 34 40 20 70 aterial 1 74 180 80 75 82 58 150 188 136 122
1.1 t Rikon * --- Signif. codes: 0 *** ** 0.01 *
Copyright (c) 004,005 Hidetoshi Shimodaira 1.. 1 1.1 t- 004-10-1 11:4:14 shimo Rikon 0.108355 0.04978.51 0.016136 * --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05. 0.1 1 Residual standard error: 0.03808
Generalized additive models in R
www.nr.no Generalized additive models in R Magne Aldrin, Norwegian Computing Center and the University of Oslo Sharp workshop, Copenhagen, October 2012 Generalized Linear Models - GLM y Distributed with
Εργασία. στα. Γενικευμένα Γραμμικά Μοντέλα
Εργασία στα Γενικευμένα Γραμμικά Μοντέλα Μ. Παρζακώνης ΜΕΣ/ 06015 Ο παρακάτω πίνακας δίνει τα αποτελέσματα 800 αιτήσεων για δάνειο σε μία τράπεζα. Ο πίνακας παρουσιάζει τον αριθμό των δανείων που εγκρίθηκαν,
DirichletReg: Dirichlet Regression for Compositional Data in R
DirichletReg: Dirichlet Regression for Compositional Data in R Marco J. Maier Wirtschaftsuniversität Wien Abstract Full R Code for Maier, M. J. (2014). DirichletReg: Dirichlet Regression for Compositional
Γραµµική Παλινδρόµηση
Κεφάλαιο 8 Γραµµική Παλινδρόµηση Η γραµµική παλινδρόµηση είναι ένα από τα πιο σηµαντικά ϑέµατα της Στατιστική ϑεωρείας. Στη συνέχεια αυτή η πολύ γνωστή µεθοδολογία ϑα αναπτυχθεί στην R µέσω των τύπων για
(i) Περιγραφική ανάλυση των μεταβλητών PRICE
Με τις εντολές > data fdata names(fdata)=c("price", "SQFT",
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
Οδηγίες χρήσης του R, μέρος 2 ο
ΟδηγίεςχρήσηςτουR,μέρος2 ο Ελληνικά Ανπροσπαθήσουμεναγράψουμεελληνικάήναανοίξουμεκάποιοαρχείοδεδομένωνμε ελληνικούςχαρακτήρεςστοr,μπορείαντίγιαελληνικάναδούμελατινικούςχαρακτήρεςμε τόνουςήάλλακαλλικαντζαράκια.τότεδίνουμετηνπαρακάτωεντολήγιαναγυρίσειτοrστα
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Αναπληρωτής Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Εφαρμογών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή
Εκτίµηση Μη-Γραµµικών Μοντέλων
Κεφάλαιο 16 Εκτίµηση Μη-Γραµµικών Μοντέλων 16.1 Περιγραφή των εδοµένων Τα δεδοµένα που ϑα χρησιµοποιηθούν στο κεφάλαιο αυτό λήφθηκαν από µια δοκιµή µε δέκτη-ορµονών σχετικά µε τον όγκο στο στήθος στους
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενική μορφή g( E[ Y X ]) Xb Κατανομή της Υ στην εκθετική οικογένεια Ανεξάρτητες παρατηρήσεις Ενας όρος για το σφάλμα g(.) Συνδετική συνάρτηση (link function)
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 28 Μαρτίου /36
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 28 Μαρτίου 2017 1/36 Πολλαπλή Γραμμική Παλινδρόμηση. Σε αρκετά προβλήματα η μεταβλητή απόκρισης
Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ Επιστήμη του Διαδικτύου «Web Science»
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ Επιστήμη του Διαδικτύου «Web Science» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Βιοστατιστική: Η περίπτωση της χρήσης της
+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών
Ιατρικά Μαθηματικά & Βιοστατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ιατρικά Μαθηματικά & Βιοστατιστική Λογαριθμιστική παλινδρόμηση Διδάσκοντες: Ευάγγελος Ευαγγέλου, Kωνσταντίνος Τσιλίδης, Ιωάννης Δημολιάτης, Ευαγγελία
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Εφαρμογών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στη
Ανάλυση της ιακύµανσης
Κεφάλαιο 9 Ανάλυση της ιακύµανσης Η ανάλυση της διακύµανσης είναι µια από τις πλέον σηµαντικές µεθόδους για ανάλυση δεδοµένων. Η µέθοδος αυτή αναφέρετε στη διαµέριση του συνολικού αθροίσµατος τετραγώνων
Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:
Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5
1. Εισαγωγή...σελ Δεδομένα της εργασίας...σελ Μεθοδολογία...σελ Ανάλυση των δεδομένων.σελ Συγκριτικά αποτελέσματα..σελ.
Περιεχόμενα 1. Εισαγωγή...σελ. 2 2. Δεδομένα της εργασίας......σελ. 3 3. Μεθοδολογία......σελ. 6 4. Ανάλυση των δεδομένων.σελ.13 5. Συγκριτικά αποτελέσματα..σελ.20 6. Συμπεράσματα.....σελ.20 7. Παράρτημα
Supplementary figures
A Supplementary figures a) DMT.BG2 0.87 0.87 0.72 20 40 60 80 100 DMT.EG2 0.93 0.85 20 40 60 80 EMT.MG3 0.85 0 20 40 60 80 20 40 60 80 100 20 40 60 80 100 20 40 60 80 EMT.G6 DMT/EMT b) EG2 0.92 0.85 5
Lampiran 1 Output SPSS MODEL I
67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης
ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ. Παιεάο Δπζηξάηηνο
ΕΡΓΑΙΑ Εθηίκεζε αμίαο κεηαπώιεζεο ζπηηηώλ κε αλάιπζε δεδνκέλωλ Παιεάο Δπζηξάηηνο ΑΘΗΝΑ 2014 1 ΠΔΡΙΔΥΟΜΔΝΑ 1) Δηζαγσγή 2) Πεξηγξαθηθή Αλάιπζε 3) ρέζεηο Μεηαβιεηώλ αλά 2 4) Πξνβιεπηηθά / Δξκελεπηηθά Μνληέια
MATHACHij = γ00 + u0j + rij
Stata output for Hierarchical Linear Models. ***************************************. * Unconditional Random Intercept Model. *************************************** MATHACHij = γ00 + u0j + rij. mixed
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Interpretation of linear, logistic and Poisson regression models with transformed variables and its implementation in the R package tlm
Interpretation of linear, logistic and Poisson regression models with transformed variables and its implementation in the R package tlm Jose Barrera-Gómez a jbarrera@creal.cat a Centre for Research in
Deming regression. MethComp package May
Deming regression MethComp package May 2007 Anders Christian Jensen Steno Diabetes Center, Gentofte, Denmark acjs@steno.dk Contents 1 Introduction 1 2 Deming regression 1 3 The likelihood function 1 4
Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος
ΤΜΜΑ ΕΠΙΧΕΙΡΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΜΑΤΩΝ Μάθηµα εύτερο-τρίτο- Βασικά Ζητήµατα στο Απλό Γραµµικό Υπόδειγµα Ακαδηµαϊκό Έτος - Στο παρόν µάθηµα δίνεται µε κάποια απλά παραδείγµατα-ασκήσεις
Introduction Problem Statement (20 points) (20 points) Grading Rubric (2 points) (2 points) (6 points)
tar zip α 1 σ 2 i = α 0 + α 1 ε 2 i 1 + β 1 σ 2 i 1 (X i ) i ε i = X i [X i F i 1 ] σ 2 i = [X i F i 1 ] (x i ) i=1,...,n h(u) = 1 n n i=1 ( 1 ( 2πσ 2 ) ϵ 2 ) i + i 2 σi 2 u = (α 0, α 1, β 1 ) ε i = x
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης
Οδηγίες χρήσης του R, μέρος 1 ο. Κατεβάζουμε το λογισμικό από την ιστοσελίδα http://cran.cc.uoc.gr/bin/windows/base/
ΟδηγίεςχρήσηςτουR,μέρος1 ο Προκαταρκτικά Κατεβάζουμετολογισμικόαπότηνιστοσελίδαhttp://cran.cc.uoc.gr/bin/windows/base/ Εγκαθιστούμετολογισμικόστονυπολογιστήμαςεκτελώνταςτοαρχείοπουκατεβάσαμε. ΤρέχουμετολογισμικόμεδιπλόκλικστομπλεεικονίδιοκαιβλέπουμετοπεριβάλλοντουR:
ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x
Mantel & Haenzel (1959) Mantel-Haenszel
Mantel-Haenszel 2008 6 12 1 / 39 1 (, (, (,,, pp719 730 2 2 2 3 1 4 pp730 746 2 2, i j 3 / 39 Mantel & Haenzel (1959 Mantel N, Haenszel W Statistical aspects of the analysis of data from retrospective
PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις
Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις Οι παρούσες σημειώσεις επιχειρούν να αποτελέσουν μια βοήθεια τόσο στην παρακολούθηση της διάλεξης όσο και στη μελέτη κάποιων εκ των θεμάτων της Γραμμικής
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
NI it (dalam jutaan rupiah)
NI it (dalam jutaan rupiah) No Kode Emiten 2009 2010 1 AISA 34.763 75.235 2 ARNA 63.888 79.039 3 ASII 10.040 14.366 4 AUTO 768.265 1.141.179 5 BATA 52.980 60.975 6 BRNA 20.260 34.760 7 BTON 9.388 8.393
Modeling heteroskedasticity: GARCH modeling Hedibert Freitas Lopes 5/28/2018
Modeling heteroskedasticity: GARCH modeling Hedibert Freitas Lopes 5/28/2018 Glossary of ARCH models Bollerslev wrote the article Glossary to ARCH (2010) which lists several families of ARCH models. You
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 30 Μαρτίου /32
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 30 Μαρτίου 2017 1/32 Ανάλυση Παλινδρόμησης: Γενικά. Με την ανάλυση παλινδρόμησης εξετάζουμε
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...
Modern Regression HW #8 Solutions
36-40 Modern Regression HW #8 Solutions Problem [25 points] (a) DUE: /0/207 at 3PM This is still a linear regression model the simplest possible one. That being the case, the solution we derived before
DirichletReg: Dirichlet Regression for Compositional Data in R
DirichletReg: Dirichlet Regression for Compositional Data in R Marco J. Maier Wirtschaftsuniversität Wien Abstract... Keywords: Dirichlet regression, Dirichlet distribution, multivariate generalized linear
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
Asymptotic distribution of MLE
Asymptotic distribution of MLE Theorem Let {X t } be a causal and invertible ARMA(p,q) process satisfying Φ(B)X = Θ(B)Z, {Z t } IID(0, σ 2 ). Let ( ˆφ, ˆϑ) the values that minimize LL n (φ, ϑ) among those
Start Random numbers Distributions p-value Confidence interval.
Υπολογιστική Στατιστική με τη γλώσσα R Κατανομές και έλεγχοι υποθέσεων Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr 19 Δεκεμβρίου 2013 1 / 33 Επισκόπηση 1 1 Start 2 Random numbers 3 Distributions
Επιχειρηματικές Προβλέψεις: Μέθοδοι & Τεχνικές Γραμμική Παλινδρόμηση Διάλεξη 10
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Γραμμική Παλινδρόμηση Διάλεξη 10 Απλή Γραμμική Παλινδρόμηση
LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.
LAMPIRAN Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. 2. BACA PT Bank Capital Indonesia Tbk. 3. BABP PT Bank MNC Internasional Tbk. 4. BBCA
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Κατανομές και έλεγχοι υποθέσεων με τη γλώσσα R Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
R 28 February 2014
R (minato-nakazawa@umin.net) 28 February 2014 2011 http://minato.sip21c.org/swtips/factor-in-r.pdf 1 Timothy Bates *1 *2 2 *3 3 300 2:1 10:1 1.0 (1) *4 (2) *1 http://www.psy.ed.ac.uk/people/tbates/lectures/methodology/
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Επίλυση: Oneway Anova Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Απλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Στοιχεία από την r-project για την επεξεργασία και χαρτογράφηση χωρική κατανομή σημειακών παρατηρήσεων
Στοιχεία από την r-project για την επεξεργασία και χαρτογράφηση χωρική κατανομή σημειακών παρατηρήσεων Ανάγνωση Δεδομένων # READ DATA # # εντοπισμός αρχείου filepath
Άσκηση 2. i β. 1 ου έτους (Υ i )
Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),
An Introduction to Splines
An Introduction to Splines Trinity River Restoration Program Workshop on Outmigration: Population Estimation October 6 8, 2009 An Introduction to Splines 1 Linear Regression Simple Regression and the Least
η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p
ΑΣΚΗΣΗ 1 ΣΕΜΦΕ 14-15 i. Έστω yi ο αριθμός των προσπαθειών κάθε μαθητή μέχρι να πετύχει τρίποντο. Ο αριθμός των προσπαθειών πριν ο μαθητής να πετύχει τρίποντο θα είναι xi = yi - 1, i = 1,,18. 2 2 3 2 1
ΔPersediaan = Persediaan t+1 - Persediaan t
Lampiran 4 Data Perhitungan Perubahan Persediaan ΔPersediaan = Persediaan t+1 - Persediaan t No Kode Perusahaan 2011 Persediaan t+1 (2012) Persediaan t (2011) ΔPersediaan a b a-b 1 ADES 74.592.000.000
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
Άσκηση 1. Πληθυσμός (Χ i1 )
Άσκηση Μία αντιπροσωπεία πωλήσεως αυτοκινήτων διαθέτει καταστήματα σε 5 διαφορετικές πόλεις. Ο επόμενος πίνακας δίνει τις πωλήσεις Υ i του τελευταίου μήνα καθώς επίσης και τον πληθυσμό Χ i και το οικογενειακό
Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.
. ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης
Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων. Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή
Η βιτρίνα των καταστημάτων ως εργαλείο δημοσίων σχέσεων Ονοματεπώνυμο: Ειρήνη Πορτάλιου Σειρά: 8 η Επιβλέπουσα: Αν. Καθηγήτρια : Βεντούρα Ζωή Δεκέμβριος 2011 Στόχος Έρευνας H βιτρίνα των καταστημάτων αποτελεί
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL3 1 5 5 4 4 4 3 4 3 4 3 4 5 2 4 4 3 5 4 4 4 4 5 4 3 4 3 2 2 3 2 3 3 3 3 4 2 3 2 4 4 4 5 3 4 4 4 3 4 4 5 4 5 5 5 4 2 3 3 3 4 3
1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
( ) ( ) STAT 5031 Statistical Methods for Quality Improvement. Homework n = 8; x = 127 psi; σ = 2 psi (a) µ 0 = 125; α = 0.
STAT 531 Statistical Methods for Quality Improvement Homework 3 4.8 n = 8; x = 17 psi; σ = psi (a) µ = 15; α =.5 Test H : µ = 15 vs. H 1 : µ > 15. Reject H if Z > Z α. x µ 17 15 Z = = =.88 σ n 8 Z α =
Tutorial on Multinomial Logistic Regression
Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού
Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος
Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models
Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models Sy-Miin Chow Pennsylvania State University Katie Witkiewitz University of New
Δείγμα (μεγάλο) από οποιαδήποτε κατανομή
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)
ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. ΜΑΘΗΜΑ 12 Συµπερασµατολογία για την επίδραση πολλών µεταβλητών σε µια ποσοτική (Πολλαπλή Παλινδρόµηση) [µέρος 2ο]
Ενότητα 2 ιαφάνειες Μαθήµατος: 2- Ενότητα 2 ιαφάνειες Μαθήµατος: 2-2 ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο.6. είκτες µερικής συσχέτισης
Standardized Coefficients t Sig.
Στο αρχείο δεδομένων dummy1.sav καταγράφονται τα χρόνια εμπειρίας (exprnc), το επίπεδο μόρφωσης (educ), οι αρμοδιότητες (mgt) και ο μισθός (salary) 46 υπαλλήλων. Να βρεθεί ένα μοντέλο πρόβλεψης του μισθού