ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ"

Transcript

1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της πλευράς αυτής στην υποτείνουσα. Δηλαδή ΑΒ = ΒΓ ΒΔ Έστω ορθογώνιο τρίγωνο ΑΒΓ και Δ η προβολή της κορυφής Α στην υποτείνουσα ΒΓ. Τα τρίγωνα ΑΒΓ και ΔΒΑ είναι όμοια γιατί έχουν: A = Δ = Β είναι κοινή γωνία των τριγώνων Επομένως ισχύει η αναλογία AB ΑΒ = ΒΓ ΒΔ ΣΧΟΛΙΟ Το ίχνος Δ της καθέτου που φέρουμε από το Α προς την ΒΓ ονομάζεται ορθή προβολή ή απλώς προβολή του Α στην ΒΓ. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, ο λόγος των τετραγώνων των κάθετων πλευρών του είναι ίσος με το λόγο των προβολών τους πάνω στην υποτείνουσα. ΑΒ ΔΒ Δηλαδή ΑΓ ΔΓ Έστω ορθογώνιο τρίγωνο ΑΒΓ και Δ η προβολή της κορυφής Α στην υποτείνουσα ΒΓ. Ισχύουν οι σχέσεις: ΑΒ = ΒΓ ΒΔ και ΑΓ = ΒΓ ΓΔ. Διαιρώντας τις παραπάνω σχέσεις κατά μέλη προκύπτει: ΑΒ BΓ ΔΒ ΑΒ ΔΒ ΑΓ BΓ ΔΓ ΑΓ ΔΓ

2 3. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το άθροισμα των τετραγώνων των κάθετων πλευρών του είναι ίσο με το τετράγωνο της υποτείνουσας. (Πυθαγόρειο Θεώρημα) Έστω ορθογώνιο τρίγωνο ΑΒΓ και Δ η προβολή της κορυφής Α στην υποτείνουσα ΒΓ. Θα αποδείξουμε ότι: AB + ΑΓ = ΒΓ Ισχύουν οι σχέσεις: ΑΒ = ΒΓ ΒΔ και ΑΓ = ΒΓ ΓΔ. Προσθέτοντας τις παραπάνω σχέσεις κατά μέλη προκύπτει: ΑΒ + ΑΓ = ΒΓ ΒΔ + ΒΓ ΓΔ = = ΒΓ(ΒΛ + ΓΔ) = = ΒΓ ΒΓ = ΒΓ.. Να αποδείξετε ότι αν σε τρίγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = ΒΓ, τότε το τρίγωνο είναι ορθογώνιο με A = L. Έστω τρίγωνο ΑΒΓ και ορθή γωνία xôy. Πάνω στις πλευρές Ox, Oy ορθής γωνίας xôy θεωρούμε αντίστοιχα τμήματα ΟΔ = ΑΒ και ΟΕ = ΑΓ. Επειδή το τρίγωνο ΟΔΕ είναι ορθογώνιο σύμφωνα με το Πυθαγόρειο θεώρημα και την υπόθεση, έχουμε: ΔΕ = ΟΔ + ΟΕ = ΑΒ +ΑΓ = ΒΓ. Άρα ΔΕ = ΒΓ. Επομένως τα τρίγωνα ΑΒΓ και ΟΔΕ είναι ίσα, γιατί έχουν και τις τρεις πλευρές ίσες, οπότε θα είναι A = Ô = Δηλαδή το τρίγωνο ΑΒΓ είναι ορθογώνιο με A = L.

3 5. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους του που αντιστοιχεί στην υποτείνουσα είναι ίσο με το γινόμενο των προβολών των κάθετων πλευρών του στην υποτείνουσα. Δηλαδή ΑΔ = ΔΒΔΓ. 3 Έστω ορθογώνιο τρίγωνο ΑΒΓ και Δ η προβολή της κορυφής Α στην υποτείνουσα ΒΓ. Τα τρίγωνα ΑΒΔ και ΓΑΔ είναι όμοια, αφού είναι ορθογώνια και A = Γ ως συμπληρωματικές της Β. Επομένως, ΑΔ = ΒΔ ΔΓ. 6. Να αποδείξετε ότι το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δυο άλλων πλευρών του, ελαττωμένο κατά το διπλάσιο γινόμενο της μίας από αυτές επί την προβολή της άλλης πάνω σε αυτή. Δηλαδή α = β + γ β ΑΔ Έστω τρίγωνο ΑΒΓ με γωνία Α οξεία και το ύψος του ΑΔ. Στα ορθογώνια τρίγωνα ΔΒΓ, ΔΒΑ εφαρμόζοντας το πυθαγόρειο θεώρημα έχουμε : α = ΔΒ +ΔΓ () γ = ΑΔ + ΔΒ ΔΒ = γ ΑΔ () Αν Γ <, τότε είναι ΔΓ = β ΑΔ και από τις ισότητες () και () έχουμε: α = ΔΒ +ΔΓ = γ - ΑΔ +ΔΓ = γ ΑΔ +( β ΑΔ ) = = γ ΑΔ + β + ΑΔ -β ΑΔ = β + γ β ΑΔ. αν Γ > τότε είναι ΔΓ = ΑΔ β και από τις ισότητες () και () έχουμε: α = ΔΒ +ΔΓ = γ ΑΔ +ΔΓ = γ ΑΔ +( ΑΔ β) = = γ ΑΔ + β + ΑΔ β ΑΔ = β + γ β ΑΔ. αν τέλος Γ =, το Δ συμπίπτει με το Γ και το ορθογώνιο τρίγωνο ΓΑΒ ισχύει ΑΔ = β Τότε β + γ β ΑΔ = β + γ β = γ β = α

4 7. Το τετράγωνο πλευράς τριγώνου που βρίσκεται απέναντι από αμβλεία γωνία είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών, αυξημένο κατά το διπλάσιο γινόμενο της μίας από αυτές επί την προβολή της άλλης πάνω σε αυτή. Δηλαδή α = β + γ + β ΑΔ Έστω τρίγωνο ΑΒΓ με γωνία Α αμβλεία και το ύψος του ΑΔ. Στα ορθογώνια τρίγωνα ΔΒΓ, ΔΒΑ εφαρμόζοντας το πυθαγόρειο θεώρημα έχουμε : α = ΔΒ +ΔΓ () γ = ΑΔ + ΔΒ ΔΒ = γ ΑΔ () Επειδή A > έχουμε ΔΓ = β + ΑΔ οπότε από τις παραπάνω σχέσεις προκύπτει: α = ΔΒ +ΔΓ = γ ΑΔ +ΔΓ = = γ ΑΔ + ( β + ΑΔ ) = = γ ΑΔ + β + ΑΔ + β ΑΔ = β + γ + β ΑΔ. ΣΧΟΛΙΑ Α. Σε κάθε τρίγωνο ΑΒΓ ισχύουν οι ισοδυναμίες: (i) α > β + γ Α > (ii) α = β + γ Α = (iii) α < β + γ Α < Επειδή σε κάθε τρίγωνο η μεγαλύτερη πλευρά βρίσκεται απέναντι στη μεγαλύτερη γωνία, συγκρίνοντας το τετράγωνο της μεγαλύτερης πλευράς ενός τριγώνου με το άθροισμα των τετραγώνων των άλλων πλευρών του, διαπιστώνουμε αν το τρίγωνο είναι οξυγώνιο, ορθογώνιο ή αμβλυγώνιο. Β. Σε κάθε τρίγωνο ΑΒΓ ισχύει η σχέση: α = β + γ βγ συνα. (ΝΟΜΟΣ ΤΩΝ ΣΥΝΗΜΙΤΟΝΩΝ)

5 8. Να διατυπώσετε και να αποδείξετε το πρώτο και το δεύτερο θεώρημα διαμέσων 5 ΔΙΑΤΥΠΩΣΗ Το άθροισμα των τετραγώνων δυο πλευρών ενός τριγώνου ισούται με το διπλάσιο του τετραγώνου της διαμέσου που περιέχεται μεταξύ των πλευρών αυτών, αυξημένο κατά το μισό του τετραγώνου της τρίτης πλευράς. Η διαφορά των τετραγώνων δύο πλευρών ενός τριγώνου ισούται με το διπλάσιο γινόμενο της τρίτης πλευράς επί την προβολή της αντίστοιχης διαμέσου πάνω στην πλευρά αυτή. Δηλαδή β + γ = μ α + α Δηλαδή β γ = αδμ Έστω τρίγωνο ΑΒΓ, η διάμεσος του AM = μ α και το ύψος του ΑΔ. Αν ΑΓ > ΑΒ, τότε το ίχνος Δ του ύψους υ α βρίσκεται μεταξύ των Β, Μ και είναι ΑΜΓ >, ενώ ΑΜΒ > Στα τρίγωνα ΑΜΒ και ΑΜΒ έχουμε: β = μ α + γ = μ α + + ΔΜ ΔΜ Προσθέτοντας κατά μέλη αυτές τις σχέσεις έχουμε: Έστω τρίγωνο ΑΒΓ, η διάμεσος του AM = μ α και το ύψος του ΑΔ. Αν ΑΓ > ΑΒ, τότε το ίχνος Δ του ύψους υ α βρίσκεται μεταξύ των Β, Μ και είναι ΑΜΓ >, ενώ ΑΜΒ > Στα τρίγωνα ΑΜΒ και ΑΜΒ έχουμε: β = μ α + γ = μ α + + ΔΜ ΔΜ Αφαιρώντας κατά μέλη αυτές τις σχέσεις έχουμε: β + γ = μ α + β + γ = μ α + α β γ = ΔΜ ( ΔΜ) β γ = ΔΜ β γ = αδμ

6 6 ΣΧΟΛΙΑ Μπορούμε να υπολογίσουμε τα τετράγωνα των διαμέσων ενός τριγώνου ΑΒΓ ως συνάρτηση των πλευρών του α, β, γ με την βοήθεια του πρώτου θεωρήματος των διαμέσων ως εξής: β + γ = μ α α + β + γ = μ α + α μ α = β + γ α μ α = και με κυκλική εναλλαγή των α, β και γ έχουμε για τις άλλες διαμέσους τις σχέσεις μ β = και μ γ = 9. Να αποδείξετε ότι αν δυο χορδές ΑΒ, ΓΔ ενός κύκλου τέμνονται σε ένα σημείο Ρ εσωτερικό του κύκλου, τότε ισχύει: ΡΑ ΡΒ = ΡΓ ΡΔ. Τα τρίγωνα ΡΑΓ και ΡΒΔ είναι όμοια, αφού οι γωνίες ΡAΓ = ΡΔΒ και ΡΓΑ = ΡΒΔ (ως εγγεγραμμένες γωνίες που βαίνουν στο ίδιο τόξο). Επομένως ισχύει: PA P ΡΑ ΡΒ = ΡΓ ΡΔ P PA 0. Να αποδείξετε ότι αν οι προεκτάσεις δύο χορδών ΑΒ, ΓΔ ενός κύκλου τέμνονται σε ένα σημείο Ρ, τότε ισχύει ΡΑ ΡΒ = ΡΓ ΡΔ Τα τρίγωνα ΡΑΓ και ΡΒΔ είναι όμοια, αφού οι γωνίες ΡAΓ = ΡΔΒ και ΡΓΑ = ΡΒΔ (ως εγγεγραμμένες γωνίες που βαίνουν στο ίδιο τόξο). Επομένως ισχύει: PA P ΡΑ ΡΒ = ΡΓ ΡΔ P PA

7 7. Αν από ένα εξωτερικό σημείο Ρ κύκλου (O,R) φέρουμε το εφαπτόμενο τμήμα ΡΕ και μία ευθεία που τέμνει τον κύκλο στα σημεία Α, Β, να αποδείξετε ότι ισχύει: ΡΕ = ΡΑ ΡΒ Τα τρίγωνα ΡΕΑ και ΡΕΒ είναι όμοια γιατί έχουν: ΕΡΑ = ΕΡΑ κοινή γωνία ΡΕΑ = ΕΒΑ από χορδή και εφαπτομένη Επομένως ισχύει PE PB ΡΕ = ΡΑ ΡΒ PA PE ΣΧΟΛΙA A. Αν από σημείο Ρ εκτός κύκλου φέρουμε την ευθεία ΡΟ που τέμνει τον κύκλο στα Γ και Δ και μια τυχαία τέμνουσα ΡΑΒ και θέσουμε ΟΡ = δ, έχουμε: ΡΑ ΡΒ = ΡΓ ΡΔ = (δ R)(δ + R) = δ R Όμοια αποδεικνύεται ότι ΡΑ ΡΒ = R δ, αν το Ρ είναι εσωτερικό σημείο του κύκλου. Η διαφορά δ R λέγεται δύναμη του σημείου Ρ ως προς τον κύκλο (O, R) και συμβολίζεται P (O,R) = δ R B. Για οποιοδήποτε σημείο Ρ του επιπέδου του κύκλου έχουμε: το Ρ είναι εξωτερικό σημείο του κύκλου (O, R) το Ρ είναι εσωτερικό σημείο του κύκλου (O, R) το Ρ είναι σημείο του κύκλου (O, R) P (O,R) = 0 P (O,R) > 0 P (O,R) < 0

8 . Τι ονομάζεται πολυγωνικό χωριό; Τι ονομάζεται πολυγωνική επιφάνεια. 8 ΑΠΑΝΤΗΣΗ Πολυγωνικό χωρίο ονομάζεται ένα οποιοδήποτε πολύγωνο του επιπέδου μαζί με τα εσωτερικά του σημεία. Πολυγωνική επιφάνεια ονομάζεται ένα σχήμα που αποτελείται από πεπερασμένο πλήθος πολυγωνικών χωρίων, που ανά δύο δεν έχουν κοινά εσωτερικά σημεία. 3. Τι ονομάζεται εμβαδόν ενός πολυγωνικού χωρίου. Να αναφέρετε τα αξιώματα που ισχύουν για το εμβαδό ενός πολυγώνου. Πότε δύο πολύγωνα ονομάζονται ισοδύναμα; ΑΠΑΝΤΗΣΗ Έστω, ένα πολυγωνικό χωρίο S, τότε μέτρηση του χωρίου S λέμε τη σύγκρισή του με ένα άλλο επίπεδο χωρίο σ, το οποίο επιλέγουμε ως μονάδα. Η σύγκριση αυτή οδηγεί σε μια σχέση της μορφής: S = λ σ, όπου λ θετικός αριθμός. Ο θετικός αριθμός λ λέγεται εμβαδόν του πολυγωνικού χωρίου S και συμβολίζεται με (S). ΣΧΟΛΙΟ Πολλές φορές το εμβαδόν ενός πολυγωνικού χωρίου ή μιας πολυγωνικής επιφάνειας θα το συμβολίζουμε με το γράμμα Ε.. Να αναφέρετε τα αξιώματα που ισχύουν για το εμβαδό ενός πολυγώνου. ΑΠΑΝΤΗΣΗ Για το εμβαδόν δεχόμαστε ότι ισχύουν τα επόμενα αξιώματα Ίσα πολυγωνικά χωρία έχουν ίσα εμβαδά. Αν ένα πολυγωνικό χωρίο (ή μια πολυγωνική επιφάνεια) χωρίζεται σε πεπερασμένου πλήθους πολυγωνικά χωρία, που δεν έχουν κοινά εσωτερικά σημεία, τότε το εμβαδόν του ισούται με το άθροισμα των εμβαδών των επιμέρους πολυγωνικών χωρίων. Το εμβαδόν ενός τετραγώνου πλευράς είναι. Αν ένα πολύγωνο Ρ περιέχεται στο εσωτερικό ενός άλλου πολυγώνου Π, τότε το εμβαδόν του Ρ είναι μικρότερο του εμβαδού του Π.

9 9 5. Πότε δύο πολύγωνα ονομάζονται ισοδύναμα ή ισεμβαδικά; ΑΠΑΝΤΗΣΗ Ισοδύναμα ή ισεμβαδικά ονομάζονται δύο ή περισσότερα σχήματα που έχουν το ίδιο εμβαδόν. ΣΧΟΛΙΟ Αν δύο πολυγωνικά χωρία είναι ίσα, τότε έχουν ίσα εμβαδά. Το αντίστροφο δεν ισχύει. 6. Δίνεται ορθογώνιο παραλληλόγραμμο ΑΒΓΔ με ΑΒ = α και ΑΔ = β. Να κατασκευάσετε τετράγωνα ΒΓΘΙ και ΓΔΕΖ έτσι, ώστε να μην έχουν κοινά εσωτερικά σημεία με το ΑΒΓΔ. Αν οι προεκτάσεις των ΕΖ και ΙΘ τέμνονται στο σημείο Η, τότε να αποδείξετε ότι το εμβαδό του ορθογωνίου παραλληλογράμμου ΑΒΓΔ είναι Ε ΑΒΓΔ = α β Έστω ένα ορθογώνιο ΑΒΓΔ, με ΑΒ = α και ΑΔ = β. Προεκτείνουμε την πλευρά ΑΔ κατά τμήμα ΔΕ = α, την ΑΒ κατά ΒΙ = β και σχηματίζουμε το τετράγωνο ΑΙΗΕ, το οποίο έχει πλευρά α + β και επομένως είναι: (ΑΙΗΕ) = (α + β) (). Προεκτείνοντας τις ΔΓ και ΒΓ σχηματίζονται τα τετράγωνα ΔΓΖΕ, ΒΙΘΓ με πλευρές α, β αντίστοιχα και το ορθογώνιο ΓΘΗΖ που είναι ίσο με το ΑΒΓΔ. Έτσι έχουμε (ΔΓΖΕ)=α, (ΒΙΘΓ) = β και (ΓΘΗΖ) = (ΑΒΓΔ) () Είναι φανερό όμως ότι (ΑΙΗΕ) = (ΑΒΓΔ) + (ΓΘΗΖ) + (ΒΙΘΓ) + (ΔΓΖΕ), από την οποία με τη βοήθεια των () και () προκύπτει ότι: (α + β) = (ΑΒΓΔ) + α + β. α +αβ + β = (ΑΒΓΔ) + α + β αβ = (ΑΒΓΔ) Άρα (ΑΒΓΔ) = αβ.

10 0 7. Να αποδείξετε ότι το εμβαδόν Ε ενός παραλληλογράμμου ισούται με το γινόμενο μιας πλευράς του επί το ύψος που αντιστοιχεί σε αυτή. Δηλαδή είναι : Ε = β υ Έστω παραλληλόγραμμο ΑΒΓΔ και το ύψος του ΑΖ που αντιστοιχεί στη ΒΓ. Από το Δ φέρουμε ΔΗ κάθετη στην προέκταση της ΒΓ. Τα τρίγωνα ΖΒΑ και ΗΓΔ είναι ίσα γιατί Z = H = 90 ΑΒ = ΔΓ και Β = Γ οπότε: Άρα (ΖΒΑ) = (ΗΓΔ) (). Από το σχήμα όμως έχουμε ότι (ΑΒΓΔ) = (ABZ) + (ΑΖΓΔ), οπότε σύμφωνα με την () προκύπτει ότι: (ΑΒΓΔ) = (ΑΖΓΔ) + (ΔΓΗ) = (ΑΖΗΔ). Επομένως έχουμε Δηλαδή είναι: (ΑΒΓΔ) = (ΑΖΗΔ) = ΑΔΑΖ = ΒΓΑΖ, (ΑΒΓΔ) = ΒΓ ΑΖ. 8. Δίνεται τρίγωνο ΑΒΓ με πλευρές α, β, γ. Αν υ α είναι το ύψος που αντιστοιχεί στην πλευρά α να αποδείξετε ότι το εμβαδόν του τριγώνου δίνεται από την σχέση: Ε = α υ Με πλευρές ΑΒ και ΒΓ σχηματίζουμε το παραλληλόγραμμο ΑΒΓΔ, το εμβαδόν του οποίου είναι (ΑΒΓΔ) = αυ α (). Όμως τα τρίγωνα ΑΒΓ και ΔΑΓ είναι ίσα, οπότε: Από το σχήμα έχουμε ότι: (ΑΒΓ) = (ΑΔΓ) (). (ΑΒΓΔ) = (ΑΒΓ) + (ΑΓΔ) (ΑΒΓΔ) = (ΑΒΓ) + (ΑΒΓ) (ΑΒΓΔ) = (ΑΒΓ) αυ α = (ΑΒΓ), άρα (ΑΒΓ) = αυα ΣΧΟΛΙΟ Με κυκλική εναλλαγή των γραμμάτων α, β και γ έχουμε: (ΑΒΓ) = αυα = βυβ = γυγ

11 9. Να αποδείξετε ότι το εμβαδό ενός τραπεζίου με βάσεις Β, β και ύψος υ δίνεται από τον τύπο (Β β) Ε = υ. Θεωρούμε τραπέζιο ΑΒΓΔ (ΒΓ//ΑΔ), με βάσεις ΒΓ = Β, ΑΔ = β και ύψος υ. Φέρουμε τη διαγώνιο ΑΓ. Τότε έχουμε Ε = (ΑΒΓΔ) = (ΑΒΓ) + (ΑΓΔ) (). Αλλά τα δύο τρίγωνα ΑΒΓ και ΑΓΔ έχουν το ίδιο ύψος υ και βάσεις Β, β αντίστοιχα και επομένως: (ΑΒΓ) = Β υ και (ΑΒΔ) = βυ (), Με αντικατάσταση των σχέσεων () στην () προκύπτει ότι: (Β β) Ε = (ΑΒΓ) + (ΑΓΔ) = Β υ + βυ = υ. ΣΧΟΛΙΟ Το εμβαδόν ενός τραπεζίου επιπλέον, ισούται με το γινόμενο της διαμέσου επί το ύψος του. ΣΗΜΑΝΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΕΜΒΑΔΩΝ ΒΑΣΙΚΩΝ ΣΧΗΜΑΤΩΝ Η διάμεσος ΑΜ του τριγώνου ΑΒΓ χωρίζει το τρίγωνο σε δύο ισοδύναμα τρίγωνα. Ισόπλευρό με πλευρά α έχει εμβαδό: Ε= 3 Το εμβαδό ενός τετραπλεύρου με διαγώνιες κάθετες ισούται με το ημιγινόμενο των διαγωνίων του δ και δ.

12 0. Να αποδείξετε ότι το εμβαδό ενός τριγώνου ισούται με Ε= τ ρ όπου τ είναι η ημιπερίμετρος και ρ η ακτίνα του εγγεγραμμένου κύκλου του τριγώνου. Έστω τρίγωνο ΑΒΓ και ο εγγεγραμμένος κύκλος του (Ι, ρ). Φέρουμε τα τμήματα ΙΑ, ΙΒ και ΙΓ και έτσι το τρίγωνο χωρίζεται στα τρίγωνα ΙΒΓ, ΙΓΑ και ΙΑΒ που έχουν το ίδιο ύψος ρ και δεν έχουν κοινά εσωτερικά σημεία. Είναι : (ΑΒΓ) = (ΑΙΒ) + (ΒΙΓ) + (ΓΙΑ) = = αρ + βρ + γρ = = (α + β +γ)ρ = τρ = τρ. Δίνεται τρίγωνο ΑΒΓ με πλευρές α, β, γ εγγεγραμμένο σε κύκλο με ακτίνα R και ΑΔ το ύψος του. α) Να φέρετε την διάμετρο ΑΕ του κύκλου και να αποδείξετε ότι τα τρίγωνα ΑΒΔ και ΑΕΓ είναι όμοια. β) Να υπολογίσετε το ύψος ΑΔ του τριγώνου ως συνάρτηση των πλευρών του β και γ και της ακτίνας R του περιγεγραμμένου του κύκλου. α β γ γ) Να αποδείξετε ότι το εμβαδό Ε του τριγώνου ΑΒΓ δίνεται από τον τύπο Ε= R α) Θεωρούμε τη διάμετρο ΑΔ. Τα τρίγωνα ΑΗΓ και ΑΒΔ είναι όμοια, αφού B = H = και Γ = Δ ως εγγεγραμμένες που βαίνουν στο ίδιο τόξο. β) Από την ομοιότητα των τριγώνων έχουμε ότι: AH A ΑΒΑΓ = ΑΔΑΗ βγ = Rυ α. AB A γ) Από την σχέση βγ = Rυ α έχουμε ότι υ α = Ε = αυα = α = R R. Οπότε για το εμβαδό Ε του τριγώνου ΑΒΓ έχουμε: R

13 3. Για το εμβαδό Ε ενός τριγώνου ΑΒΓ με πλευρές α, β, γ να αποδείξετε ότι το εμβαδό του δίνεται από τον τύπο Ε= β γ ημα. Nα γραφτεί ο προηγούμενος τύπος με κυκλική εναλλαγή των γραμμάτων του για όλες τις γωνίες του τριγώνου. Διακρίνουμε τις περιπτώσεις Αν A>, στο ορθογώνιο τρίγωνο ΔΒΑ έχουμε ημα = υ β = γημα άρα το εμβαδό Ε του τριγώνου είναι: Ε = βυβ = β γημα Αν A >, πάλι από το ορθογώνιο τρίγωνο ΔΒΑ προκύπτει ότι: ημ(80 ο - Α) = υ β = γημ(80 ο - Α) = γημα άρα το εμβαδό Ε του τριγώνου είναι: Ε = βυβ = β γημα Αν A =, τότε υ β = γ, επομένως πάλι ο τύπος ισχύει Άρα σε κάθε περίπτωση έχουμε: Ε = β γημα ΣΧΟΛΙΟ Σε κάθε τρίγωνο ΑΒΓ ισχύει η σχέση R, όπου R είναι η ακτίνα του περιγγεγραμμένου κύκλου του τριγώνου. Η σχέση αυτή είναι γνωστή ως ο νόμος των ημιτόνων. 3. Να αποδείξετε ότι αν δύο τρίγωνα έχουν ίσες βάσεις, τότε ο λόγος των εμβαδών τους ισούται με το λόγο των αντίστοιχων υψών, ενώ αν έχουν ίσα ύψη, τότε ο λόγος των εμβαδών τους ισούται με το λόγο των αντίστοιχων βάσεων. Θεωρούμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα με α, α και υ α, υ α οι βάσεις τους και τα αντίστοιχα ύψη τους. Θα αποδείξουμε τις συνεπαγωγές : α = α, = υ α = υ α, =

14 Για τα εμβαδά Ε και Ε των τριγώνων είναι Ε = αυα και Ε = α υα Και διαιρώντας κατά μέλη προκύπτει: = Από την τελευταία σχέση προκύπτουν οι ζητούμενες συνεπαγωγές.. Αν δύο τρίγωνα είναι όμοια με λόγο ομοιότητας λ να αποδείξετε ότι ο λόγος των εμβαδών τους Ε είναι ίσος με το τετράγωνο του λόγου ομοιότητας, δηλαδή = λ. Ε Έστω τα όμοια τρίγωνα ΑΒΓ και Α'Β'Γ' με A = A' και Β = B'. Τότε = = λ (), όπου λ ο λόγος ομοιότητας. Για τα εμβαδά Ε και Ε των τριγώνων είναι Ε = αυα και Ε = α υα που διαιρώντας κατά μέλη προκύπτει: = ) ( = λλ = λ. 5. Να δείξετε ότι ο λόγος των εμβαδών δύο όμοιων πολυγώνων είναι ίσος με το τετράγωνο του λόγου ομοιότητας τους. Θεωρούμε δυο όμοια πολύγωνα π.χ. τα πεντάγωνα ΑΒΓΔΕ και Α'Β'Γ'Δ'Ε' με λόγο ομοιότητας λ, τότε ισχύουν οι αναλογίες Φέρουμε τις διαγώνιους των πολυγώνων από τις κορυφές Α και Α', οπότε αυτά χωρίζονται σε ισάριθμα τρίγωνα όμοια μεταξύ τους. Αν Ε, Ε, Ε 3 και Ε', Ε', Ε' 3 είναι τα εμβαδά των αντίστοιχων τριγώνων, τότε έχουμε : E AB = = λ E E και αντίστοιχα έχουμε: E AB = 3 E E = λ, επομένως είναι: 3

15 5 λ E E = = E E E = 3 E E = E E 3 E E E 3 3 ( ) = ( Έ ) 6. Aν μια γωνία ενός τριγώνου είναι ίση με μια γωνία ενός άλλου τριγώνου, τότε ο λόγος των εμβαδών τους είναι ίσος με τον λόγο των γινομένων των πλευρών που περιέχουν τις γωνίες αυτές. Θεωρούμε τα τρίγωνα ΑΒΓ και Α'Β'Γ' και διακρίνουμε τις περιπτώσεις. Αν A = A' τότε ημα = ημα και ισχύει: = = Αν A + A' = 80 Α = 80 ο Α τότε ημα = ημ(80 ο Α ) = ημα', και πάλι ισχύει: = = 7. Πότε ένα πολύγωνο ονομάζεται κανονικό; Να αποδείξετε ότι σε κάθε κανονικό πολύγωνο με ν πλευρές η γωνία του φ ν είναι ίση με 80 ο 360. ΑΠΑΝΤΗΣΗ Ένα πολύγωνο ονομάζεται κανονικό, όταν έχει όλες τις πλευρές του ίσες και όλες τις γωνίες του ίσες. Έστω Α Α...Α ν ένα κανονικό πολύγωνο με ν πλευρές και έστω A = A =... = A ν = φ ν Επειδή το άθροισμα των γωνιών κάθε κυρτού ν-γώνου είναι (ν - )80, θα έχουμε: φ ν + φ ν + + φ ν = (ν )80 νφ ν = 80 ν 360 o o φ ν = φ ν = 80 ο 360

16 8. Να αποδείξετε ότι δύο κανονικά πολύγωνα με τον ίδιο αριθμό πλευρών είναι όμοια. 6 Θεωρούμε δύο κανονικά πολύγωνα ΑΒΓ...Τ, Α'Β'Γ'...Τ' με τον ίδιο αριθμό πλευρών ν. Τότε η γωνία καθενός είναι ν, άρα είναι ίσες, δηλαδή ισχύει: A = A, Β = Β',..., Τ = Τ' (). Επίσης, έχουν και τις πλευρές τους ίσες, δηλαδή ισχύει: ΑΒ = ΒΓ =... = ΤΑ και Α'Β' = Β'Γ' =... = Τ'Α' Άρα AB A' B' B TA... () B' ' T' A' Από τις () και () προκύπτει ότι τα πολύγωνα ΑΒΓ... Τ και Α'Β'Γ'...Τ' είναι όμοια. ΣΧΟΛΙΑ Α. Κάθε κανονικό πολύγωνο έχει έναν περιγεγραμμένο και έναν εγγεγραμμένο κύκλο που έχουν κοινό κέντρο. Β. Το κοινό κέντρο των δύο αυτών κύκλων λέγεται κέντρο του πολυγώνου. Γ. Η ακτίνα R του περιγεγραμμένου κύκλου λέγεται ακτίνα του πολυγώνου. Δ. Η απόσταση του κέντρου του πολυγώνου από μια πλευρά του, δηλαδή η ακτίνα του εγγεγραμμένου κύκλου λέγεται απόστημα του πολυγώνου. Ε. Η γωνία υπό την οποία φαίνεται κάθε πλευρά του πολυγώνου από το κέντρο του, λέγεται κεντρική γωνία του πολυγώνου 9. ΣΥΜΒΟΛΙΣΜΟΙ ΣΤΑ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ R η ακτίνα του κύκλου μέσα στο οποίο συνήθως σχεδιάζουμε κανονικό πολύγωνο δ η διάμετρος του προηγούμενου κύκλου. ν ο αριθμός των πλευρών ενός κανονικού πολυγώνου λ ν η πλευρά ενός κανονικού πολυγώνου α ν το απόστημα ενός κανονικού πολυγώνου. ω ν η κεντρική γωνία ενός κανονικού πολυγώνου φ ν η γωνία ενός κανονικού πολυγώνου Ε ν το εμβαδό ενός κανονικού πολυγώνου P ν η περίμετρος ενός κανονικού πολυγώνου

17 30. Να αποδείξετε ότι σε κάθε κανονικό πολύγωνο εγγεγραμμένο σε κύκλο ακτίνας R ισχύει: λ ν α 7 ν R Έστω ΑΒΓΔ...Τ ένα κανονικό ν-γωνο, R η ακτίνα του, ΑΒ = λ ν η πλευρά του και OH = α ν το απόστημά του. Από το ορθογώνιο τρίγωνο ΗΟΑ, με εφαρμογή του Πυθαγόρειου θεωρήματος προκύπτει OH +HA =OA R 3. Να αποδείξετε ότι σε κάθε κανονικό πολύγωνο εγγεγραμμένο σε κύκλο ακτίνας R ισχύουν οι 360 o σχέσεις: α) Ρ ν = ν λ και β) ω ν = ν Έστω ΑΒΓΔ...Τ ένα κανονικό ν-γωνο, R η ακτίνα του, ΑΒ = λ ν η πλευρά του και OH = α ν το απόστημά του. α) Επειδή ΑΒ = ΒΓ =... = ΤΑ = λ ν, θα είναι Ρ ν = νλ ν. β) Επειδή AB B... TA θα είναι ΑÔΒ = ΒÔΓ =... = ΤÔΑ = ω ν και αφού οι γωνίες ΑÔΒ, ΒÔΓ,... και ΤÔΑ έχουν άθροισμα 360, έχουμε: o 360 νω ν = 360 ω ν = 3. Να αποδείξετε ότι σε κάθε καν. πολύγωνο εγγεγραμμένο σε κύκλο ακτίνας R ισχύει Ε ν = Ρν α ν. Έστω ΑΒΓΔ...Τ ένα κανονικό ν-γωνο, R η ακτίνα του, ΑΒ = λ ν η πλευρά του και OH = α ν το απόστημά του. Τα τρίγωνα ΟΑΒ, ΟΒΓ,..., ΟΤΑ είναι ίσα, άρα και ισεμβαδικά και επομένως έχουμε: Ε ν = ν(οαβ) = ν ΑΒΟΗ = νλν α ν = νλν.(αφού Ρ ν = νλ ν )

18 8 33. Να αποδείξετε ότι σε δύο κανονικά ν-γωνα ο λόγος των πλευρών τους ισούται με το λόγο των λ ν R ν α ακτίνων τους και το λόγο των αποστημάτων τους. Δηλαδή ισχύει: = = λν R' ν α ν Έστω δύο κανονικά πολύγωνα ΑΒΓ...Τ και Α'Β Τ'...Τ' με το ίδιο πλήθος πλευρών, έστω ν (ν 3) και Ο, Ο' τα κέντρα τους. Τα τρίγωνα ΟΑΒ και Ο'Α'Β' είναι όμοια γιατί είναι ισοσκελή και o 360 έχουν ΑÔΒ = Α'Ô'Β' = επομένως, AB A' B' OA OH O' A' O' H' = R = R' όπου ΟΗ, Ο'Η' τα ύψη των τριγώνων. 3. Σε κύκλο με κέντρο Ο και ακτίνα R να εγγράψετε τετράγωνο και να υπολογίσετε το απόστημα και την πλευρά του ως συνάρτηση της ακτίνας του. ΚΑΤΑΣΚΕΥΗ Έστω ένας κύκλος (Ο,R). Για την κατασκευή τετραγώνου φέρουμε δύο κάθετες διαμέτρους ΑΓ και ΒΔ, τότε θα είναι ΑÔΒ = ΒÔΓ = ΓÔΔ = ΔÔΑ = 90, οπότε ΑΒ = BΓ = ΓΔ = ΔΑ και επομένως το ΑΒΓΔ είναι τετράγωνο. ΥΠΟΛΟΓΙΣΜΟΣ ΠΛΕΥΡΑΣ Από το ορθογώνιο και ισοσκελές τρίγωνο ΟΑΒ με εφαρμογή του Πυθαγόρειου θεωρήματος έχουμε ΑΒ = ΟΑ + ΟΒ λ = R + R λ = R λ = R ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΟΣΤΗΜΑΤΟΣ Ισχύει: R = R = R R = R R = R = R επομένως α = R R R α = R

19 35. Σε κύκλο με κέντρο Ο και ακτίνα R να εγγράψετε κανονικό εξάγωνο και να υπολογίσετε το απόστημα και την πλευρά του ως συνάρτηση της ακτίνας του. 9 ΚΑΤΑΣΚΕΥΗ Έστω ένας κύκλος (Ο,R), για την κατασκευή κανονικού εξαγώνου παίρνουμε πάνω στον κύκλο έξι διαδοχικά τόξα ΑΒ, BΓ, ΓΔ, ΔΕ, ΕΖ και ΖΑ με αντίστοιχη χορδή R, το καθένα. ΥΠΟΛΟΓΙΣΜΟΣ ΠΛΕΥΡΑΣ Είναι ΑÔΒ = ω 6 = 60 και επειδή OA = OB (=R) το τρίγωνο ΟΑΒ είναι ισόπλευρο. Άρα AB = OA = R, δηλαδή λ 6 = R ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΟΣΤΗΜΑΤΟΣ 6 Ισχύει: 6 R 6 = R 6 = R R = R R = 3R 3R 3R R 3 R 3 6 = α 6 = δηλαδή α 6 = 36. Σε κύκλο με κέντρο Ο και ακτίνα R να εγγράψετε ισόπλευρο τρίγωνο και να υπολογίσετε το απόστημα και την πλευρά του ως συνάρτηση της ακτίνας του. ΚΑΤΑΣΚΕΥΗ Έστω ένας κύκλος (Ο,R), για την κατασκευή ισοπλεύρου τριγώνου παίρνουμε τα σημεία Α, Β, Γ, Δ, Ε και Ζ που διαιρούν τον κύκλο σε έξι ίσα τόξα, τότε τα σημεία Α, Γ, Ε είναι κορυφές ισόπλευρου τριγώνου, αφού ΑΓ = ΓΕ = ΕΑ = 0. ΥΠΟΛΟΓΙΣΜΟΣ ΠΛΕΥΡΑΣ Επειδή ΑΓΔ = 80, η ΑΔ είναι διάμετρος και επομένως το τρίγωνο ΑΓΔ είναι ορθογώνιο, οπότε λ 3 = ΑΓ = ΑΔ - ΔΓ = (R) - R = 3R λ 3 = 3R λ 3 = 3R R 3, δηλαδή είναι λ 3 = R 3 ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΟΣΤΗΜΑΤΟΣ 3 Ισχύει: 3 R 3 = R 3 = R R 3 = R 3R = R 3 = R α 3 = R R R δηλαδή α 6 =

20 0 37. Ο αριθμός π Έστω κύκλος με διάμετρο R. Aν συμβολίσουμε με L το μήκος του τότε λόγος L του μήκους του R κύκλου προς τη διάμετρό του είναι σταθερός, δηλαδή είναι ο ίδιος για κάθε κύκλο. Η σταθερή αυτή τιμή του λόγου ΣΧΟΛΙΑ L R συμβολίζεται διεθνώς με το Ελληνικό γράμμα π (αρχικό της λέξης περιφέρεια) Δηλαδή π = Α. Ο αριθμός π είναι ένας άρρητος, υπερβατικός αριθμός και μια προσέγγισή του, που στην πράξη χρησιμοποιείται, είναι π 3,. Β. Ο Αρχιμήδης χρησιμοποιούσε ως προσέγγιση του π το 7 L R 38. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΣΧΕΣΕΙΣ ΠΟΥ ΙΣΧΥΟΥΝ ΣΤΟΝ ΚΥΚΛΟ. Το μήκος L του κύκλου ακτίνας R δίνεται από τη σχέση L = πr. Ένα τόξο, μετρημένο σε μοίρες μ ο R, κύκλου ακτίνας R έχει μήκος = Ακτίνο (rad) ονομάζεται ένα τόξο κύκλου με μήκος R.. Ένα τόξο, μετρημένο σε ακτίνια α, κύκλου ακτίνας R έχει μήκος = αr 5. Η σχέση που μετατρέπει μια γωνία από μοίρες σε ακτίνια και αντίστροφα είναι: Το εμβαδόν Ε ενός κυκλικού δίσκου ακτίνας R δίνεται από τη σχέση E = πr. 7. Θεωρούμε έναν κύκλο (O,R) και μία επίκεντρη γωνία ΑÔΒ. Το σύνολο των κοινών σημείων της επίκεντρης γωνίας ΑÔΒ και του κυκλικού δίσκου (O,R) λέγεται κυκλικός τομέας κέντρου Ο και ακτίνας R. Το εμβαδόν ενός κυκλικού τομέα (ΟΑΒ) δίνεται από τις σχέσεις: (Ο AB ) = R R Έστω ένας κύκλος (O,R) και μια χορδή του ΑΒ. Η ΑΒ χωρίζει τον κυκλικό δίσκο σε δύο μέρη που βρίσκονται εκατέρωθεν αυτής. Καθένα από αυτά τα μέρη λέγεται κυκλικό τμήμα. Το εμβαδόν ε του κυκλικού τμήματος που περιέχεται στην κυρτή γωνία ΑΟΒ είναι ε = (Ο AB ) ( ΟΑΒ)

21 ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση ΑΒ = ΑΓ + ΒΓ τότε το τρίγωνο αυτό είναι ορθογώνιο με ορθή γωνία την Β.. Αν γ είναι η μεγαλύτερη πλευρά τριγώνου ΑΒΓ με πλευρές α, β, γ και γ >α +β τότε αυτό είναι πάντοτε αμβλυγώνιο. 3. Σε κάθε ορθογώνιο τρίγωνο ΑΒΓ με ορθή γωνία την Α, ισχύει η σχέση β < α +γ.. Αν σε τρίγωνο ΑΒΓ, με πλευρές α, β, γ ισχύει β < α + γ, τότε το τρίγωνο είναι πάντοτε οξυγώνιο. 5. Σε κάθε τρίγωνο ΑΒΓ ισχύει α = β +γ - βγσυνα 6. Υπάρχει τρίγωνο ΑΒΓ που να ισχύει η σχέση α = β +γ - βγσυνα 7. Στο τρίγωνο ΑΒΓ η μ α είναι διάμεσός του. Ισχύει β + γ = 8. Υπάρχει τρίγωνο ΑΒΓ, με πλευρές α, β,γ, για το οποίο ισχύει ταυτόχρονα : α >β +γ, β <α +γ, γ >α +β 9. Αν ΑΔ η προβολή της πλευράς γ πάνω στη β τριγώνου ΑΒΓ με πλευρές α, β, γ και ισχύουν ταυτόχρονα: α = β + γ - βαδ και α = β + γ + βαδ, τότε το ΑΒΓ είναι ορθογώνιο στο Α. 0. Στο διπλανό σχήμα είναι ΟΓ = cm, ΟΔ = 3 cm και ΟΒ = OA 3 = x. Η τιμή του x είναι cm.

22 . Δύο οποιαδήποτε τρίγωνα που έχουν ίσα εμβαδά είναι ίσα.. Κάθε τρίγωνο που χωρίζεται από μια διχοτόμο του σε δύο ισοδύναμα τρίγωνα, είναι ισοσκελές. 3. Ρόμβος με διαγώνιους δ, δ είναι ισοδύναμος με ορθογώνιο τρίγωνο με κάθετες πλευρές τις διαγώνιες δ, δ του ρόμβου.. Η ευθεία που συνδέει τα μέσα των δύο βάσεων οποιουδήποτε τραπεζίου το διαιρεί σε δύο ισοδύναμα τραπέζια. 5. Κάθε κυρτό πολύγωνο που έχει όλες του τις γωνίες ίσες είναι κανονικό. 6. Η γωνία οποιουδήποτε κανονικού ν-γώνου και η κεντρική του γωνία είναι συμπληρωματικές. 7. Ο περιγεγραμμένος και εγγεγραμμένος κύκλος κάθε κανονικού πολυγώνου είναι ομόκεντροι κύκλοι. 8. Η κεντρική γωνία κάθε κανονικού πολυγώνου είναι ίση με τη γωνία που σχηματίζουν τα αποστήματα δύο διαδοχικών πλευρών του.

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της πλευράς αυτής στην

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

Μεθοδική Επανάληψη Γεωμετρίας Β Λυκείου

Μεθοδική Επανάληψη Γεωμετρίας Β Λυκείου Μεθοδική Επανάληψη Γεωμετρίας Β Λυκείου Στέλιος Μιχαήλογλου www.askisopolis.gr 8ο Κεφάλαιο: Ομοιότητα. Πότε δύο ευθύγραμμα σχήματα λέγονται όμοια; Τι ονομάζεται λόγος ομοιότητας αυτών; Με τι ισούται ο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.4 ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΘΕΩΡΙΑ 1 Έστω ΑΒΓ ένα τρίγωνο με πλευρές α, β και γ. Συμβολίζουμε με τα την ημιπερίμετρο α + β + γ του ΑΒΓ, δηλαδή: τ =. 2 Το εμβαδόν Ε του

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. β γ α β. α γ β δ. Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας και αντίστροφα.

Διαβάστε περισσότερα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση

Διαβάστε περισσότερα

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ 1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ α). Να αποδείξετε ότι : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα ισούται με το γινόμενο των προβολών

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015 Τράπεζα Θεμάτων 8 -//0 ο Θέμα Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης Θεωρήματα διχοτόμων..8.δίνεται τρίγωνο ΑΒΓ με ΑΔ διχοτόμο της γωνίας και Φέρουμε τις διχοτόμους

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Επιμέλεια: ιώργος Ράπτης ΘΕΤ ΣΤΗΝ ΕΩΕΤΡΙ ΛΥΚΕΙΟΥ ΘΕ 1 ο. Να αποδείξετε ότι το εμβαδό τραπεζίου με βάσεις 1, και ύψος υ δίνεται από τον τύπο: ( 1+ ) υ Ε= ονάδες 1 B. ν φν, λν και αν είναι: η γωνία, η πλευρά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος ) Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1 ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε

Διαβάστε περισσότερα

α <β +γ τότε είναι οξυγώνιο.

α <β +γ τότε είναι οξυγώνιο. ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β) ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αµυραδάκη 0, Νίκαια (10-4903576) ΝΟΕΜΒΡΙΟΣ 011 ΘΕΜΑ 1 Ο Να αποδείξετε ότι, σε ένα ορθογώνιο τρίγωνο, το τετράγωνο µιας κάθετης πλευράς του ισούται µε το γινόµενο της υποτείνουσας επί την προβολή της στην

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. Μονάδες 8. Δίνεται κύκλος (Ο, R) και σημείο Ρ εκτός αυτού. Φέρουμε την εφαπτομένη ΡΑ ώστε

ΘΕΜΑΤΑ. Μονάδες 8. Δίνεται κύκλος (Ο, R) και σημείο Ρ εκτός αυτού. Φέρουμε την εφαπτομένη ΡΑ ώστε ΕΛ ΕΩΜΕΤΡΙΑ Β 1 ΕΛ ΕΩΜΕΤΡΙΑ Β 93 Α. Να αποδείξετε ότι: Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της πλευράς αυτής στην

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ 1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ 1 Σε τρίγωνο με > και ορθόκεντρο Η να δείξετε ότι: Δίνεται τρίγωνο στο οποίο ισχύει: α β γ βγ Να δείξετε ότι: A 10 Δίνεται τρίγωνο με πλευρές α, β, γ και διάμεσο μα ν ισχύει η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ.

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ. ΚΦΑΛΑΙΟ 11. Παραθέτουμε για εύκολη αναφορά το πινακάκι με την αντιστοιχία χορδών-αποστημάτων-τόξων που χρειάζεται σε όλες σχεδόν τις παρακάτω ασκήσεις Κανονικό εξάγωνο Πλευρά λν Χορδή λ = Απόστημα α =

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Σελίδα 37 Στο παρακάτω σχήμα σχεδιάστε την διάμεσο ΑΜ, την διάμεσο ΒΛ και την διάμεσο ΓΝ. Τι παρατηρείτε; Να κατασκευάσετε

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ 1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος» ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 3 Β' Λυκείου. Ύλη: Αναλογίες- Ομοιότητα- Μετρικές σχέσεις

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 3 Β' Λυκείου. Ύλη: Αναλογίες- Ομοιότητα- Μετρικές σχέσεις ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 3 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Αναλογίες- Ομοιότητα- Μετρικές σχέσεις 15-0-16 Θέμα 1 ο : Α.i. Να διατυπώσετε το Πυθαγόρειο Θεώρημα. (5 μον.) ii. Πότε δύο ευθύγραμμα τμήματα

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( Κανονικά πολύγωνα ) Δραστηριότητα 1 : Θεωρούμε ένα κύκλο κέντρου Ο και ακτίνας ρ ( τυχαίο μήκος ) και πάνω σε σ αυτόν παίρνουμε 5 διαδοχικά ίσα τόξα τα: AB, B Γ, ΓΔ, ΔΕ, ΕΑ. Στην συνέχεια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ. Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 16 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ : ΓΕΩΜΕΤΡΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) Α1. Να αποδείξετε ότι,

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που

Διαβάστε περισσότερα

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Θεωρία 2014 2015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΘΕΩΡΙΑ ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 2 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ιδακτέα εξεταστέα ύλη σχολικού

Διαβάστε περισσότερα

ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE

ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ 06-7 Επειδή το ζητήσατε κορίτσια μου: Α. ΘΕΩΡΙΑ Τα κεφάλαια: ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου 9 ο Μετρικές σχέσεις, 0 ο Εμβαδά, ο Μέτρηση Κύκλου, την διδαχθείσα ύλη Β.

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β. Προηγούµενες και απαραίτητες γνώσεις Μαρτάκης Μάρτης Μαθηµατικός του 1 ου ΓΕΛ Ρόδου 1 ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β Προηγούµενες και απαραίτητες γνώσεις 1. σε ορθογώνιο τρίγωνο µε 30 ο, η απέναντι 30 ο κάθετη είναι το µισό της υποτείνουσας α και αντίστροφα.

Διαβάστε περισσότερα

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. Ερωτήσεις ανάπτυξης 1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του. 2. ** Υπάρχει κανονικό πολύγωνο εγγεγραµµένο σε κύκλο ακτίνας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.4 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.5 ΜΗΚΟΣ ΤΟΞΟΥ ΘΕΩΡΙΑ 1 (Μήκος κύκλου) Το μήκος του κύκλου (Ο, R) συμβολίζεται με L. Ο Ιπποκράτης ο Χίος απέδειξε ότι

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 2 ΚΕΦΑΛΑΙΟ 1ο ΓΕΩΜΕΤΡΙΑ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου - Είδη τριγώνων 1. Ποια είναι τα κύρια στοιχεία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»

ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα» 1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Παπαθανάση Κέλλυ Πατσιμάς Ανδρέας Πατσιμάς Δημήτρης Ραμαντάνης Βαγγέλης

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii) ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ 1-13 1 Ποιοι αριθμοί ονομάζονται ομόσημοι και ποιοι ετερόσημοι; 1 Δίνονται οι αριθμοί: 1,,.1,,, 9, + 3, 3 3.1 Ποιοι από αυτούς είναι θετικοί και ποιοι αρνητικοί;.

Διαβάστε περισσότερα

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του

Το επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του ΣΤΕΡΕΑ ΜΑΘΗΜΑ 10 Δίεδρες γωνίες Δύο επίπεδα α και β που τέμνονται, χωρίζουν τον χώρο σε τέσσερα μέρη, που λέγονται τεταρτημόρια. Ορίζουν επίσης σχήματα ανάλογα των γωνιών που ορίζουν δύο τεμνόμενες ευθείες

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1ο Α. Nα αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα