Σχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση IV. Εαρινό Εξάμηνο Lec 12 01/04/2019 Διδάσκων: Γεώργιος Χρ. Μακρής
|
|
- Οινώνη Κασιδιάρης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Σχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση IV Εαρινό Εξάμηνο Lec 12 01/04/2019 Διδάσκων: Γεώργιος Χρ. Μακρής
2 Καθοδική Ανάλυση Ξεκινά από τη αρχή της γραμματικής (ρίζα δένδρου) για να αναπτύξει τη συμβολοσειρά, που αναλύει, αν αυτή αποτελεί πρόταση. Καμία από τις τεχνικές που θα εξετάσουμε δεν μπορεί να εφαρμοσθεί σε αριστερά αναδρομικές γραμματικές. Διακρίνουμε της τεχνικές της οπισθοδρόμησης και τις τεχνικές της πρόγνωσης.
3 Καθοδική ανάλυση με οπισθοδρόμηση Ι 1. Δοθέντος συγκεκριμένου μη τερματικού συμβόλου εφαρμόζεται ο πρώτος κανόνας της γραμματικής. 2. Στην προτασιακή μορφή, που προκύπτει επιλέγεται το πρώτο από αριστερά μη τερματικό σύμβολο και εφαρμόζεται ο πρώτος κανόνας, που αναφέρεται σε αυτό. 3. Γίνεται επαναληπτική εφαρμογή του βήματος 2, για κάθε ένα από τα μη τερματικά σύμβολα, που ακολουθούν, μέχρι τη στιγμή της παραγωγής, μιας σειράς τερματικών συμβόλων (πρόταση γλώσσας αν ταυτίζεται) ή τμήματος τερματικών συμβόλων της προτασιακής μορφής, που διαφέρει από το αντίστοιχο τμήμα της συμβολοσειράς εισόδου Η δεύτερη περίπτωση μπορεί να είναι αποτέλεσμα εσφαλμένης επιλογής κανόνα. Αναιρείται ο κανόνας που εφαρμόσθηκε τελευταίος και χρησιμοποιείται ο επόμενος που ισχύει για το ίδιο μη τερματικό σύμβολο. Αν έχουν χρησιμοποιηθεί όλοι οι κανόνες, τότε ο αλγόριθμος διατηρεί το σύμβολο ως έχει και προχωρά στην αναίρεση του κανόνα για το προηγούμενο μη τερματικό σύμβολο και οπισθοδρομεί στην κατάλληλη θέση της συμβολοσειράς εισόδου.
4 Παράδειγμα ανάγκης καθοδικής ανάλυσης με οπισθοδρόμηση Γραμματική L: ΕΝΤΟΛΗ ΕΝΤΟΛΗ-Α ΕΝΤΟΛΗ-Β ΕΝΤΟΛΗ-Α if ΣΥΝΘΗΚΗ then ΕΝΤΟΛΗ-Α else ΕΝΤΟΛΗ-Α άλλη εντολή ΕΝΤΟΛΗ-Β if ΣΥΝΘΗΚΗ then ΕΝΤΟΛΗ if ΣΥΝΘΗΚΗ then ΕΝΤΟΛΗ-Α else ΕΝΤΟΛΗ-Β 4
5 Παράδειγμα Καθοδικής ανάλυσης με οπισθοδρόμηση ΠΑΡΑΔΕΙΓΜΑ S kxn ky S S S X l m Y m m n n n m k X n k X n Συμβολοσειρά προς αναγνώριση: kmmm (α) (β) (γ) S S S l k X n k m Y k Y m m (δ) (ε) (ζ) m 5
6 Καθοδική ανάλυση με οπισθοδρόμηση ΙΙI Ιδιαίτερα πολύπλοκη Όχι αποδοτική Αρκετά γενική, δηλ. αναγνωρίζει πιο πολλές γλώσσες από τις άλλες τεχνικές καθοδικής ανάλυσης Αργεί στον εντοπισμό των λαθών και έτσι η ανάνηψη γίνεται πολύ δύσκολη
7 Ανάλυση προβλέπουσας αναδρομικής κατάβασης Ι Στην ανάλυση αναδρομικής κατάβασης ο κάθε κανόνας, που αναφέρεται σε κάποιο μη τερματικό σύμβολο, εκφράζεται από τον ορισμό μιας διαδικασίας, που θα το αναγνωρίζει. Ένας αναλυτής προβλέπουσας αναδρομικής κατάβασης αποτελείται: από μία καθολική μεταβλητή, που περιέχει την τιμή της τρέχουσας λεξικής μονάδας από μία βοηθητική διαδικασία αναγνώρισης, που ελέγχει αν η τρέχουσα λεξική μονάδα είναι η αναμενόμενη και καλεί τη διαδικασία λεξικής ανάλυσης, για την ανάγνωση της επόμενης λεξικής μονάδας και την ενημέρωση της καθολικής μεταβλητής από τις διαδικασίες ανάλυσης, που αντιστοιχούν στα μη τερματικά σύμβολα της γραμματικής από μια διαδικασία εκκίνησης, που αφού διαβάσει την πρώτη λεξική μονάδα καλεί τη διαδικασία, που αντιστοιχεί στο μη τερματικό σύμβολο της αρχής.
8 Ανάλυση προβλέπουσας αναδρομικής κατάβασης ΙΙ ΠΑΡΑΔΕΙΓΜΑ S=έκφραση. έκφραση = έκφραση + όρος έκφραση όρος όρος. όρος = όρος * παράγοντας όρος / παράγοντας παράγοντας. παράγοντας = ( έκφραση ) αριθμός. παράγοντας: Επέλεξε ΛΕΞ_ΜΟΝ περίπτωση ( : αναγνώρισε ( ( ); έκφραση; αναγνώρισε ( ) ); περίπτωση αριθμός : αναγνώρισε( αριθμός ); αλλιώς: λάθος; Τέλος παράγοντα. //αν_λεξ_μον: αναμενόμενη λεξ. μονάδα αναγνώρισε (αν_λεξ_μον): αν (ΛΕΞ_ΜΟΝ=αν_λεξ_μον) τότε διάβασε την επόμενη μονάδα και ενημέρωσε τη μεταβλητή ΛΕΞ_ΜΟΝ; αλλιώς λάθος; τέλος αν Τέλος αναγνώρισε.
9 Ανάλυση προβλέπουσας αναδρομικής κατάβασης ΙΙI Η προβλέπουσα αναδρομική κατάβαση στηρίζεται στην πρόγνωση του κατάλληλου κάθε φορά κανόνα, που οδηγεί στην παραγωγή του δένδρου της πρότασης. Δε μπορεί να εφαρμοσθεί σε αριστερά αναδρομικές γραμματικές, όπως αυτή του προηγούμενου παραδείγματος. Ας θεωρήσουμε τη μη αριστερά αναδρομική γραμματική των αριθμητικών εκφράσεων: S=έκφραση. έκφραση = όρος υπ_όροι. υπ_όροι = + όρος υπ_όροι - όρος υπ_όροι ε. όρος = παράγοντας υπ_παραγ. υπ_παραγ = * παράγοντας υπ_παραγ / παράγοντας υπ_παραγ ε. παράγοντας = ( έκφραση ) αριθμός.
10 Ανάλυση προβλέπουσας αναδρομικής κατάβασης ΙV Για το μη τερματικό σύμβολο «έκφραση», μπορεί εναλλακτικά να έχουμε την παραγωγή, έκφραση όρος υπ_όροι παράγοντας υπ_παραγ υπ_όροι (έκφραση) υπ_παραγ υπ_όροι... ή την παραγωγή έκφραση όρος υπ_όροι παράγοντας υπ_παραγ υπ_όροι αριθμός υπ_παραγ υπ_όροι.... Γενικά, για να στηριχθεί η ανάλυση στην τεχνική της πρόγνωσης χρειάζεται για κάθε μη τερματικό σύμβολο, να είναι εκ των προτέρων γνωστό τo σύνολο των τερματικών, που είναι δυνατό να εμφανισθούν στην αρχή των συμβολοσειρών, που παράγονται από αυτό (σύνολο FIRST). Επιπλέον, αν η γραμματική περιλαμβάνει κανόνες ε, τότε για κάθε μη τερματικό σύμβολο που βρίσκεται στο αριστερό μέρος ενός τέτοιου κανόνα, επιβάλλεται και ο υπολογισμός του συνόλου των τερματικών, που μπορεί να εμφανισθούν αμέσως μετά από αυτό (σύνολο FOLLOW).
11 Ανάλυση προβλέπουσας αναδρομικής κατάβασης V Ανάλυση πρόγνωσης: κεντρική ιδέα Δοθείσης μιας παραγωγής A, ο αναλυτής πρέπει να είναι σε θέση να επιλέξει μεταξύ & Σύνολα FIRST Για ένα δεξί μέρος παραγωγής G, ορίζουμε ως FIRST( ) το σύνολο των αναγνωριστικών που εμφανίζονται πρώτα στις συμβολοσειρές που παράγονται από το. Δηλαδή ισχύει, x FIRST( ) αν και μόνο αν * x, για κάποια συμβολοσειρά Γραμματική LL(1) Αν A και A εμφανίζονται στη γραμματική πρέπει FIRST( ) FIRST( ) = Αυτό επιτρέπει στον αναλυτή να προγνώσει με ασφάλεια την παραγωγή που θα χρησιμοποιεί σε κάθε βήμα!
12 Ανάλυση προβλέπουσας αναδρομικής κατάβασης VΙ Δοθείσης μιας γραμματικής που έχει την ιδιότητα LL(1) μπορούμε να γράψουμε διαδικασίες που να αναγνωρίζουν το αριστερό μέρος της κάθε παραγωγής ο κώδικας της ανάλυσης είναι απλός και γρήγορος Οι γραμματικές με την ιδιότητα LL(1) ονομάζονται προγνώσιμες γραμματικές γιατί ο αναλυτής μπορεί να «προγνώσει» τη σωστή ανάπτυξη σε κάθε σημείο της ανάλυσης. Οι αναλυτές που εκμεταλλεύονται την ιδιότητα LL(1) ονομάζονται αναλυτές πρόγνωσης. Μία περίπτωση ανάλυσης πρόγνωσης είναι η ανάλυση προβλέπουσας αναδρομικής κατάβασης.
13 Ανάλυση προβλέπουσας αναδρομικής κατάβασης VΙI Παράδειγμα διορθωμένης γραμματικής αριθμητικών εκφράσεων (βλ. διαφάνεια Ανάλυση προβλέπουσας αναδρομικής κατάβασης ΙΙΙ) int PLUS=1, MINUS=2,... int lookahead = getnexttoken(); //καθολική μετβλητή ΛΕΞ_ΜΟΝ void advance() { lookahead = getnexttoken(); } void match(int token) { if (lookahead == token) advance(); else error(); } void Term() { Factor(); TermPrime(); } void S() { Expr(); } void Expr() { Term(); ExprPrime(); } void ExprPrime() { switch(lookahead) { case PLUS : match(plus); Term(); ExprPrime(); break; case MINUS : match(minus); Term(); ExprPrime(); break; default: return; } } void TermPrime() { switch(lookahead) { case TIMES: match(times); Factor(); TermPrime(); break; case DIV: match(div); Factor(); TermPrime(); break; default: return;} } void Factor() { switch(lookahead) { case LPAR : match(lpar); Expr(); match(rpar); break; case NUMBER: match(number); break; default: error();} }
14 Ανάλυση προβλέπουσας αναδρομικής κατάβασης VΙII Παράδειγμα διορθωμένης γραμματικής αριθμητικών εκφράσεων (βλ. διαφάνεια Ανάλυση προβλέπουσας αναδρομικής κατάβασης ΙΙΙ) Για την κατασκευή παράγωγου δένδρου: Γράφουμε μέσα στις διαδικασίες κώδικα για δημιουργία κόμβου Περνάμε τους κόμβους από διαδικασία σε διαδικασία μέσω μιας στοίβας Αφαιρούμε από τη στοίβα τους κόμβους του δεξιού μέρους της παραγωγής, τους κάνουμε απογόνους του κόμβου του αριστερού μέρους και εισάγουμε τον τελευταίο στη στοίβα Για την κατασκευή συντακτικού δένδρου Κατασκευάζουμε λιγότερους κόμβους Χρειάζεται να τους βάζουμε στη στοίβα με την κατάλληλη σειρά ώστε να εξασφαλίζουμε αριστερή προσεταιριστικότητα Expr() { Term(); ExprPrime(); /* δημιουργία κόμβου Expr; εξαγωγή κόμβου ExprPrime από στοίβα; εξαγωγή κόμβου Term από στοίβα; καθιστούμε ExprPrime και Term απογόνους του Expr; εισαγωγή κόμβου Expr στη στοίβα; */ }
15 Ανάλυση προβλέπουσας αναδρομικής κατάβασης IΧ Άλλο παράδειγμα S = if E then S else S begin S L print E. L = end ; S L. E = num = num void S() { void L() { switch(lookahead) { switch(lookahead) { case IF: match(if); E(); match(then); S(); case END: match(end); break; match(else); S(); break; case SEMI: match(semi); S(); case BEGIN: matvh(begin); S(); L(); break; L(); break; case PRINT: match(print); E(); break; default: error(); default: error(); } } } } void E() { match(num); match(eq); match(num); }
16 Ανάλυση προβλέπουσας αναδρομικής κατάβασης Χ main: κλήση S(); S 1 : εφαρμογή της παραγωγής (S, IF) : S if E then S else S S 1 : match(if); S 1 : κλήση E(); E 1 : εφαρμογή της παραγωγής για (E, NUM): E num = num E 1 : match(num); match(eq); match(num); E 1 : return για E 1 στο S 1 S 1 : match(then); S 1 :κλήση S(); S 2 : εφαρμογή της παραγωγής για (S, PRINT): S print E S 2 : match(print); S 2 : κλήση E(); E 2 : εφαρμογή της παραγωγής για (E, NUM): E num = num E 2 : match(num); match(eq); match(num); E 2 : return για E 2 στο S 2 S 2 : return για S 2 στο S 1 S 1 : match(else); S 1 : κλήση S(); S 3 : εφαρμογή της παραγωγής για (S, PRINT): S print E S 3 : match(print); S 3 : κλήση E(); E 3 : εφαρμογή της παραγωγής για (E, NUM): E num = num E 3 : match(num); match(eq); match(num); E 3 : return για E 2 στο S 3 S 3 : return για S 3 στο S 1 S 1 : return για S 1 στο main main: match(eof); return success; Άλλο παράδειγμα (συνέχεια) πρόταση: if 2=2 then print 5=5 else print 1=1
17 Ανάλυση προβλέπουσας αναδρομικής κατάβασης ΧΙ Γενική μορφή διαδικασιών προβλέπουσας αναδρομικής κατάβασης Αν για το μη τερματικό σύμβολο Χ ορίζεται στη γραμματική ο κανόνας X p1 p2... και αν υποθέσουμε ότι η pείναι i απαλείψιμη, τότε Χ: Επέλεξε ΛΕΞ_ΜΟΝ περιπτώσεις FIRST( p 1 ): διαδικασίες αναγνώρισης p 1 περιπτώσεις FIRST( p 2 ): διαδικασίες αναγνώρισης p 2... περιπτώσεις FIRST( p i ) FOLLOW(X): p i διαδικασίες αναγνώρισης ή των συμβόλων που ακολουθούν αλλιώς λάθος; Τέλος Χ.
18 Recursive descent με σύνολα FIRST & Follow
19 Ανάλυση προβλέπουσας αναδρομικής κατάβασης ΧVΙΙ Δεν μπορούν να χρησιμοποιηθούν αριστερά αναδρομικές γραμματικές. Δεν μπορούν να χρησιμοποιηθούν γραμματικές, που δεν είναι LL(1), όπως π.χ.: σειρά_εντολών = εντολή ; σειρά_εντολών εντολή. εντολή = τερματικό.
20 Ανάλυση LL(1) I Συμβολοσειρά εισόδου κεφαλή ανάγνωσης Πίνακας ανάλυσης M[X, α] Αλγόριθμος X Y "k" στοίβα (σύμβολα που εκκρεμεί η αναγνώρισή τους)
21 Ανάλυση LL(1) II Αλγόριθμος υπολογισμού πίνακα ανάλυσης Μ
22 Ανάλυση LL(1) IIΙ ΠΑΡΑΔΕΙΓΜΑ (γραμματική αριθμητικών εκφράσεων) S = έκφραση. έκφραση = όρος υπ_όροι. υπ_όροι = + όρος υπ_όροι - όρος υπ_όροι ε. όρος = παράγοντας υπ_παραγ. υπ_παραγ = * παράγοντας υπ_παραγ / παράγοντας υπ_παραγ ε. παράγοντας = ( έκφραση ) αριθμός. M αριθμός + - * / ( ) $ έκφραση όρος υπ_όροι όρος υπ_όροι υπ_όροι + όρος υπ_όροι - όρος υπ_όροι ε ε όρος παράγοντας υπ_παραγ παράγοντας υπ_παραγ υπ_παραγ ε ε * παράγοντας υπ_παραγ / παράγοντας υπ_παραγ ε ε παράγοντας αριθμός ( έκφραση )
23 Ανάλυση LL(1) IV ΠΑΡΑΔΕΙΓΜΑ (γραμματική αριθμητικών εκφράσεων συνέχεια) LL(1) ανάλυση της συμβολοσειράς εισόδου 27-5*8 ΣΤΟΙΒΑ ΣΥΜΒΟΛ. ΠΑΡΑΓΩΓΗ $ έκφραση 27-5*8$ $ υπ_όροι όρος 27-5*8$ έκφραση = όρος υπ_όροι. $ υπ_όροι υπ_παραγ. παράγοντας 27-5*8$ όρος = παράγοντας υπ_παραγ. $ υπ_όροι υπ_παραγ. αριθμός 27-5*8$ παράγοντας = αριθμός. $ υπ_όροι υπ_παραγ. -5*8$ $ υπ_όροι -5*8$ υπ_παραγ. = ε. $ υπ_όροι όρος - -5*8$ υπ_όροι = - όρος υπ_όροι. $ υπ_όροι όρος 5*8$ $ υπ_όροι υπ_παραγ. παράγοντας 5*8$ όρος = παράγοντας υπ_παραγ. $ υπ_όροι υπ_παραγ. αριθμός 5*8$ παράγοντας = αριθμός. $ υπ_όροι υπ_παραγ. *8$ $ υπ_όροι υπ_παραγ. παράγοντας * *8$ υπ_παραγ. = * παράγοντας υπ_παραγ. $ υπ_όροι υπ_παραγ. παράγοντας 8$ $ υπ_όροι υπ_παραγ. αριθμός 8$ παράγοντας = αριθμός. $ υπ_όροι υπ_παραγ. $ $ υπ_όροι $ υπ_παραγ. = ε. $ $ υπ_όροι. = ε.
24 Ανάλυση LL(1) V Αλγόριθμος ανάλυσης LL(1) push($); // $ είναι το σύμβολο τέλους της συμβολοσειράς push(s); // S είναι η αρχή της γραμματικής lookahead = get_next_token(); // διάβασε το επόμενο αναγνωριστικό repeat X = top_of_stack(); if (X είναι τερματικό ή X == $) then if (X = = lookahead) then pop(x); lookahead = get_next_token(); else error(); else // X ένα μη τερματικό if ( M[X, lookahead] = = X Y 1 Y 2... Y k ) then pop(x); push(y k ); push(y k-1 );... push(y 1 ); else error(); until (X = $)
25 Αριστερή Αναδρομικότητα (left recursion) Ένας κανόνας είναι αριστερά αναδρομικός όταν το πρώτο σύμβολο που εμφανίζεται στο δεξί σκέλος είναι το μη τερματικό που εμφανίζεται και αριστερά π.χ. Α Αcd είναι αριστερά αναδρομικός Α c Αd δεν είναι αριστερά αναδρομικός Αντίστοιχη ρουτίνα αναδρομικού κανόνα: procedure A ; begin Α ; κάλεσμα της Α getoken(c) ; getoken(d) ; end ; 25
26 Εξάλειψη Αριστερής Αναδρομικότητας Τέχνασμα εξάλειψης Από: Α Αα β σε : Α βα' Α' αα' ε Γραμματική: Ε Ε + T Τ Τ Τ*F F F <id> ε Μετά την εξάλειψη έχουμε : Ε ΤΕ Ε + Τ Ε ε Τ FT T *F T ε F <id> ε 26
27 Απομάκρυνση αριστερής αναδρομικότητας Ι Διακρίνουμε την άμεση και την έμμεση αριστερή αναδρομικότητα ΠΑΡΑΔΕΙΓΜΑ ΑΜΕΣΗΣ ΑΡ. ΑΝΑΔΡΟΜΙΚΟΤΗΤΑΣ: έκφραση = έκφραση ΤΛ_ΑΘ όρος όρος. ΠΑΡΑΔΕΙΓΜΑ ΕΜΜΕΣΗΣ ΑΡ. ΑΝΑΔΡΟΜΙΚΟΤΗΤΑΣ: X Yp 2... Y Xp 1... ΓΕΝΙΚΗ ΜΟΡΦΗ ΑΜΕΣΗΣ ΑΡ. ΑΝΑΔΡΟΜΙΚΟΤΗΤΑΣ: X Xp1 Xp2... Xpn q1 q2... q m μετασχηματίζεται στην ισοδύναμη μορφή X X q1 X ' q2 X '... qm X '. ' 2 p1 X ' p X '... pn X '.
28 Απομάκρυνση αριστερής αναδρομικότητας ΙΙ ΠΑΡΑΔΕΙΓΜΑ Η S = έκφραση. έκφραση = έκφραση + όρος έκφραση όρος όρος. όρος = όρος * παράγοντας όρος / παράγοντας παράγοντας. παράγοντας = ( έκφραση ) αριθμός. μετασχηματίστηκε στην S=έκφραση. έκφραση = όρος υπ_όροι. υπ_όροι = + όρος υπ_όροι όρος υπ_όροι ε. όρος = παράγοντας υπ_παραγ. υπ_παραγ = * παράγοντας υπ_παραγ / παράγοντας υπ_παραγ ε. παράγοντας = ( έκφραση ) αριθμός.
29 Απομάκρυνση αριστερής αναδρομικότητας ΙΙΙ Αλγόριθμος απομάκρυνσης άμεσης και έμμεσης αριστερής αναδρομικότητας Είσοδος: Μία γραμματική G χωρίς κυκλικούς κανόνες παραγωγής και κανόνες-ε Έξοδος: Μία ισοδύναμη γραμματική χωρίς αριστερή αναδρομικότητα Περιγραφή: 1. Θεωρούμε τα μη τερματικά σύμβολα X 1, X 2,..., X n, με το δείκτη του καθενός να αντιστοιχεί στη σειρά με την οποία κάνει την εμφάνισή του ο αντίστοιχος κανόνας στη γραμματική. 2. Για (i:=1 μέχρι n) επανέλαβε Για (j:=1 μέχρι i-1) επανέλαβε αντικατέστησε κάθε κανόνα της μορφής X i X jq με τους κανόνες X i p1q p2q... pkq, για τις υπάρχουσες παραγωγές X j p1 p2... pk Τέλος επανάληψης απομάκρυνε την άμεση αριστερή αναδρομικότητα των κανόνων για το σύμβολο X i Τέλος επανάληψης
30 Απομάκρυνση αριστερής αναδρομικότητας ΙV Κατά την απομάκρυνση της αριστερής αναδρομικότητας δεν αλλάζει η γλώσσα της γραμματικής. Αλλάζει η μορφή των δένδρων που παράγει η επιλεγείσα μέθοδος ανάλυσης. Σημαντικότερη συνέπεια είναι το γεγονός ότι χάνεται η επιθυμητή ιδιότητα της αριστερής προσεταιριστικότητας.
31 Παραγοντοποίηση Σε γενική μορφή η παραγοντοποίηση συνίσταται στο να πάρουμε έναν κανόνα της μορφής: Α αβ 1 αβ 2 και να τον μετατρέψουμε σε: Α αβ Β β 1 β 2 Εφαρμόζοντας την παραγοντοποίηση, μετατρέπουμε τους κανόνεςέτσιώστεταπρώτατερματικάπουεμφανίζονταισε κάθε επιλογή του δεξιού σκέλους κάθε κανόνα να είναι όλα διαφορετικά μεταξύ τους. Ονομάζουμε αυτή την ιδιότητα ενός κανόνα «προβλεψιμότητα». 31
32 Παράδειγμα Παραγοντοποίησης E T E + T Τουλάχιστον ένα T πρέπει να υπάρχει ακολουθούμενο από τη συμβολοσειρά + T που μπορεί να επαναλαμβάνεται n φορές, όπου n = 0. Άρα μπορεί να παραγοντοποιηθεί και να γραφεί: E T ( + T )* (ή εναλλακτικά E T { + T } ) Το παραπάνω αποτελεί μια μορφή αριστερής αναδρομικότητας και λύνεται γενικά με την λεγόμενη «εξάλειψη αριστερής αναδρομικότητας». 32
33 Αριστερή παραγοντοποίηση Ι Προηγείται οποιασδήποτε προβλέπουσας ανάλυσης, αν για το ίδιο μη τερματικό σύνολο υπάρχουν δύο ή περισσότεροι κανόνες με το ίδιο πρόθεμα στο δεξί μέρος. ΠΑΡΑΔΕΙΓΜΑΤΑ σειρά_εντολών = εντολή ; σειρά_εντολών εντολή. εντολή = τερματικό. ή εντολή_if = if έκφραση then εντολή if έκφραση then εντολή else εντολή.
34 Αριστερή παραγοντοποίηση ΙΙ Γενικά, ο κανόνας X " y" p1 " y" p2. μετασχηματίζεται στον X " y" X '. X p 1 p. ' 2 Είσοδος: Μία γραμματική G Έξοδος: Μία ισοδύναμη γραμματική LL(1) Περιγραφή: Για (κάθε μη τερματικό σύμβολο X) επανέλαβε συμβολίζουμε με p το μεγαλύτερο κοινό πρόθεμα μεταξύ δύο ή περισσότερων εναλλακτικών περιπτώσεων παραγωγής του X αν ( p ) τότε Έστω X p1 p2... pn. όλες οι πιθανές παραγωγές για το μη τερματικό σύμβολο Χ και έστω ότι οι p 1, p2,..., pk μοιράζονται το κοινό πρόθεμα p, ώστε στις πιθανές παραγωγές X pq1 pq2... pqk pk 1... pn. τα q 1, q2,..., qk δε μοιράζονται κάποιο κοινό πρόθεμα, ενώ τα p k 1, p2,..., pn δε αρχίζουν από p. Αντικαθιστούμε κάθε τέτοιο κανόνα με δύο κανόνες της μορφής X px p k... p. τέλος αν Τέλος επανάληψης X ' q1... qk ' 1 n.
35 Αντικατάσταση Αντικαθιστούμε στο δεξί σκέλος ενός κανόνα παραγωγής ένα μη τερματικό Α με όλα τα εναλλακτικά μέλη κανόνων για το Α: Β a Α b A α 1 α 2 αn Μετασχηματίζεται σε: Β a α 1 b a α 2 b aαnb 35
Μεταγλωττιστές. Ενότητα 7: Συντακτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Μεταγλωττιστές Ενότητα 7: Συντακτική ανάλυση (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΈστω συμβολοσειρά Το σύνολο FIRST περιέχει τα τερματικά σύμβολα από τα οποία αρχίζουν οι συμβολοσειρές που παράγονται από την
Βοηθητικές έννοιες (i) Σύνολα FIRST Έστω συμβολοσειρά Το σύνολο FIRST περιέχει τα τερματικά σύμβολα από τα οποία αρχίζουν οι συμβολοσειρές που παράγονται από την Αν a τότε a FIRST Αν τότε FIRST Νίκος Παπασπύρου,
Διαβάστε περισσότεραΣχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση ΙII. Εαρινό Εξάμηνο Lec 11 26/03/2019 Διδάσκων: Γεώργιος Χρ. Μακρής
Σχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση ΙII Εαρινό Εξάμηνο 2018-2019 Lec 11 26/03/2019 Διδάσκων: Γεώργιος Χρ. Μακρής Γραμματικές Μία γραμματική ονομάζεται αναδρομική εφόσον επιτρέπει παραγωγές
Διαβάστε περισσότεραΣχεδίαση Γλωσσών & Μεταγλωττιστζς
ΑΡΙΣΟΣΕΛΕΙΟ ΠΑΝΕΠΙΣΗΜΙΟ ΘΕΑΛΟΝΙΚΗ ΑΝΟΙΚΣΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΣΑ Σχεδίαση Γλωσσών & Μεταγλωττιστζς Ενότητα 6: Αλγόριθμοσ Προβλζπουςασ Αναδρομικήσ Κατάβαςησ Επ. Καθ. Π. Κατςαρόσ Τμήμα Πληροφορικήσ Άδειεσ Χρήςησ
Διαβάστε περισσότεραΜεταγλωττιστές. Ενότητα 8: Συντακτική ανάλυση (Μέρος 2 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Μεταγλωττιστές Ενότητα 8: Συντακτική ανάλυση (Μέρος 2 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΜεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος 2011-2012. Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Μεταγλωττιστές Ανοδικές Μέθοδοι Συντακτικής Ανάλυσης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2011-2012 Ανοδική Κατασκευή Συντακτικού Δέντρου κατασκευή δέντρου
Διαβάστε περισσότεραΜεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 4 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής
Γιώργος Δημητρίου Μάθημα 4 ο Συντακτική Ανάλυση Επαλήθευση της σύνταξης του προγράμματος Κατασκευή συντακτικού δέντρου Η κεντρική φάση της Μετάφρασης Οδηγούμενης από τη Σύνταξη Από εδώ ξεκινά η παραγωγή
Διαβάστε περισσότεραΣχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση VIΙ. Εαρινό Εξάμηνο Lec 15 09/04/2019 Διδάσκων: Γεώργιος Χρ. Μακρής
Σχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση VIΙ Εαρινό Εξάμηνο 2018-2019 Lec 15 09/04/2019 Διδάσκων: Γεώργιος Χρ. Μακρής Αναλυτής LR ώθησης - απλοποίησης Ι Συμβολοσειρά εισόδου κεφαλή ανάγνωσης
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΛΩΣΣΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ Τελικές Εξετάσεις Απαντήστε όλα τα θέματα του Μέρους Α και ένα θέμα από
Διαβάστε περισσότεραΠίνακας Περιεχοµένων Πρόλογος Κεφάλαιο Βασικές εισαγωγικές έννοιες
Πίνακας Περιεχοµένων Πρόλογος...vii Κεφάλαιο 1:Βασικές εισαγωγικές έννοιες...1 1.1 Η δοµή του µεταγλωττιστή...2 1.2 Η διαδικασία µεταγλώττισης...3 1.2.1 Η Λεξική Ανάλυση...6 1.2.2 Η Συντακτική Ανάλυση...6
Διαβάστε περισσότεραΕισαγωγή στο Bison. Μεταγλωττιστές, Χειμερινό εξάμηνο
Εισαγωγή στο Bison Μεταγλωττιστές, Χειμερινό εξάμηνο 2016-2017 Συντακτική Ανάλυση Αποτελεί την δεύτερη φάση της μετάφρασης. Εύρεση της σχέσης που υπάρχει των λεκτικών μονάδων ενός προγράμματος. Παράδειγμα
Διαβάστε περισσότεραΓλώσσες Προγραμματισμού Μεταγλωττιστές. Συντακτική Ανάλυση II
Γλώσσες Προγραμματισμού Μεταγλωττιστές Συντακτική Ανάλυση II Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Εισαγωγή στην ανάλυση από κάτω προς τα πάνω. Οι έννοιες της ελάττωσης
Διαβάστε περισσότεραΜεταγλωττιστές. Ενότητα 6: Λεκτική ανάλυση (Μέρος 2 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Μεταγλωττιστές Ενότητα 6: Λεκτική ανάλυση (Μέρος 2 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΣχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση Ι. Εαρινό Εξάμηνο Lec 05 & & 26 /02/2019 Διδάσκων: Γεώργιος Χρ.
Σχεδίαση Γλωσσών Προγραμματισμού Λεξική Ανάλυση Ι Εαρινό Εξάμηνο 2018-2019 Lec 05 & 06 25 & 26 /02/2019 Διδάσκων: Γεώργιος Χρ. Μακρής Φάσεις μεταγλώττισης Αρχικό Πρόγραμμα Λεκτική Ανάλυση λεκτικές μονάδες
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1)
Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (1) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Σχεδιασμός Ασυμφραστικών Γραμματικών
Διαβάστε περισσότεραΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 4-1
Εφαρμογές στοιβών Στην ενότητα αυτή θα μελετηθεί η χρήση στοιβών στις εξής εφαρμογές: Αναδρομικές συναρτήσεις Ισοζυγισμός Παρενθέσεων Αντίστροφος Πολωνικός Συμβολισμός ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι
Διαβάστε περισσότεραΜεταγλωττιστές. Δημήτρης Μιχαήλ. Ακ. Έτος Συντακτική Ανάλυση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Μεταγλωττιστές Συντακτική Ανάλυση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2011-2012 Συντακτική Ανάλυση Το συντακτικό μιας γλώσσας καθορίζει ποιες συμβολοσειρές
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών (Κοζάνη) Χειμ. Εξ '15
ΠΡΟΑΙΡΕΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ «ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ» 1 Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών (Κοζάνη) Χειμ. Εξ. 2014-'15 ΠΡΟΑΙΡΕΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΟΥΣ ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ Η προαιρετική
Διαβάστε περισσότεραΜεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 2 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Γιώργος Δημητρίου Μάθημα 2 ο Αλφάβητα και Γλώσσες Αλφάβητο: Ένα μη κενό και πεπερασμένο σύνολο συμβόλων Γλώσσα: Ένα οποιοδήποτε υποσύνολο των συμβολοσειρών ενός αλφαβήτου (οι προτάσεις της γλώσσας, πχ.
Διαβάστε περισσότεραΓλώσσες Προγραμματισμού Μεταγλωττιστές. Συντακτική Ανάλυση με το Εργαλείο BISON
Γλώσσες Προγραμματισμού Μεταγλωττιστές Συντακτική Ανάλυση με το Εργαλείο BISON Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Γεννήτριες Συντακτικών Αναλυτών Bison/yacc
Διαβάστε περισσότεραΜεταγλωττιστές. Εργαστήριο 5. Εισαγωγή στο BISON. Γεννήτρια Συντακτικών Αναλυτών. 2 η Φάση Μεταγλώττισης Συντακτική Ανάλυση
Μεταγλωττιστές Εργαστήριο 5 Εισαγωγή στο BISON Γεννήτρια Συντακτικών Αναλυτών 2 η Φάση Μεταγλώττισης Συντακτική Ανάλυση Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2015-1016 Φάσεις Μεταγλώττισης
Διαβάστε περισσότεραΜεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 5 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Γιώργος Δημητρίου Μάθημα 5 ο ΣΑ από Κάτω προς τα Πάνω Ξεκίνημα με την πρώτη λεκτική μονάδα Διάβασε διαδοχικές λεκτικές μονάδες αντικαθιστώντας το δεξί μέλος κάποιου κανόνα που έχει σχηματιστεί με το αριστερό
Διαβάστε περισσότεραΑπάντηση: (func endfunc)-([a-za-z])+
Γλώσσες Προγραμματισμού Μεταγλωττιστές Ασκήσεις Επανάληψης ) Περιγράψτε τις κανονικές εκφράσεις που υποστηρίζουν (i) συμβολοσειρές που ξεκινούν με το πρόθεμα "func" ή "endfunc" ακολουθούμενο το σύμβολο
Διαβάστε περισσότεραΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
Εφαρµογές στοιβών Στην ενότητα αυτή θα µελετηθεί η χρήση στοιβών στις εξής εφαρµογές: Αναδροµικές συναρτήσεις Ισοζυγισµός Παρενθέσεων Αντίστροφος Πολωνικός Συµβολισµός ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι
Διαβάστε περισσότεραΠληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Διαβάστε περισσότεραΜΕΤΑΓΛΩΤΤΙΣΤΕΣ. Στις βασικές έννοιες που σχετίζονται με τη λεξική ανάλυση. Στη δήλωση ορισμό κανονικών εκφράσεων
ΜΕΤΑΓΛΩΤΤΙΣΤΕΣ 2 Ο Εργαστηριακό Μάθημα Λεξική Ανάλυση Σκοπός: Το μάθημα αυτό αναφέρεται: Στις βασικές έννοιες που σχετίζονται με τη λεξική ανάλυση Στη δήλωση ορισμό κανονικών εκφράσεων Θεωρία Πρόλογος
Διαβάστε περισσότεραΕισαγωγή στο Bison. Μεταγλωττιστές, Χειμερινό εξάμηνο
Εισαγωγή στο Bison Μεταγλωττιστές, Χειμερινό εξάμηνο 2014-2015 Συντακτική Ανάλυση Αποτελεί την δεύτερη φάση της μετάφρασης. Εύρεση της σχέσης που υπάρχει των λεκτικών μονάδων ενός προγράμματος. Παράδειγμα
Διαβάστε περισσότεραΚεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού
Κεφάλαιο 6 Υλοποίηση Γλωσσών Προγραμματισμού Προπτυχιακό μάθημα Αρχές Γλωσσών Προγραμματισμού Π. Ροντογιάννης 1 Μεταγλωττιστής Πρόγραμμα Διαβάζει προγράμματα δεδομένης γλώσσας (πηγαία γλώσσα) και τα μετατρέπει
Διαβάστε περισσότεραΕργαστήριο 08 Εισαγωγή στo Yacc
Εργαστήριο 08 Εισαγωγή στo Yacc Θεωρία Σκοπός: Το μάθημα αυτό αναφέρεται: Στο εργαλείο κατασκευής συντακτικών αναλυτών, Yacc, στις δομές και συναρτήσεις που προσφέρει. Στη σύνταξη των αρχείων περιγραφής
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2008 ΔΙΔΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙΔΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Παράδοση: Πέμπτη 10 Απριλίου 2008, 24:00 (μεσάνυχτα)
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΟΜΗΜΕΝΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΕΠΑΛ
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΟΜΗΜΕΝΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Γ ΕΠΑΛ ΘΕΜΑ Α Α.1 Να χαρακτηρίσετε σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις (Μονάδες 10) 1. Ένας αλγόριθμος μπορεί να έχει άπειρα βήματα
Διαβάστε περισσότεραΣειρά Προβλημάτων 3 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a m b n c p m,n,p 0 και είτε m + n = p είτε m = n + p } (β) { xx rev yy rev x, y {a,b}
Διαβάστε περισσότεραΔιάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής
Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Δεύτερη Σειρά Ασκήσεων 22 Νοεμβρίου 2016 (χειρόγραφη και ηλεκτρονική παράδοση 9 Δεκεμβρίου) Άσκηση 1: Θεωρήστε τη γραμματική με κανόνες: Α B a A a c B B b A b
Διαβάστε περισσότεραΕφαρμοσμένη Πληροφορική ΙΙ (Θ) Είσοδος/Έξοδος Μεταβλητές Τύποι Μεταβλητών Τελεστές και Προτεραιότητα Μετατροπές Μεταξύ Τύπων
Εφαρμοσμένη Πληροφορική ΙΙ (Θ) Είσοδος/Έξοδος Μεταβλητές Τύποι Μεταβλητών Τελεστές και Προτεραιότητα Μετατροπές Μεταξύ Τύπων 1 Είσοδος/Έξοδος Είσοδος/Έξοδος ανάλογα με τον τύπο του προγράμματος Πρόγραμμα
Διαβάστε περισσότεραΑρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση
Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών: Εργαστηριακή Άσκηση 2011-2012 Γιάννης Γαροφαλάκης, Καθηγητής Αθανάσιος Ν.Νικολακόπουλος, Υποψήφιος Διδάκτορας 28 Μαρτίου 2012 Περίληψη Σκοπός της παρούσας
Διαβάστε περισσότεραΑναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής
Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.
Διαβάστε περισσότεραMεταγλωττιστές. 4 ο εργαστηριακό μάθημα Λεξική ανάλυση και flex. Θεωρία
Mεταγλωττιστές 4 ο εργαστηριακό μάθημα Λεξική ανάλυση και flex Σκοπός: Το μάθημα αυτό αναφέρεται: στις κανονικές εκφράσεις στην δομή και το περιεχόμενο του αρχείου-εισόδου του flex Γενικά Θεωρία Κατά την
Διαβάστε περισσότεραΔομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. Λογισμικό Συστήματος. Κλειώ Σγουροπούλου
Λογισμικό Συστήματος Κλειώ Σγουροπούλου Λογισμικό συστήματος Λειτουργικό σύστημα Μεταφραστές γλώσσας (translators) Διερμηνείς (interpreters) Μεταγλωττιστές (compilers) Εκδότες (editors) Φορτωτές (loaders)
Διαβάστε περισσότεραΣειρά Προβλημάτων 3 Λύσεις
Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) {0 n 1 n n > 0} {0 n 1 2n n > 0} (β) {w {a,b} * η w ξεκινά και τελειώνει με το ίδιο σύμβολο
Διαβάστε περισσότεραΑ. unsigned int Β. double. Γ. int. unsigned char x = 1; x = x + x ; x = x * x ; x = x ^ x ; printf("%u\n", x); Β. unsigned char
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Β Περιόδου 2015 (8/9/2015) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Διαβάστε περισσότεραΘέματα Μεταγλωττιστών
Γιώργος Δημητρίου Ενότητα 1 η : Parsers Συντακτική Ανάλυση για ΓΧΣ Οι τεχνικές συντακτικής ανάλυσης κατηγοριοποιούνται με βάση διάφορα κριτήρια: Κατεύθυνση ανάλυσης μη τερματικών συμβόλων Σειρά επιλογής
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)
Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές
Διαβάστε περισσότερα2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης
Διαβάστε περισσότεραΚεφάλαιο 2: Τυπικές γλώσσες
Κεφάλαιο 2: Τυπικές γλώσσες (μέρος 2ο) Νίκος Παπασπύρου, Κωστής Σαγώνας Μεταγλωττιστές Μάρτιος 2017 47 / 216 Γλώσσες χωρίς συμφραζόμενα (i) Γραμματικές χωρίς συμφραζόμενα: Σε κάθε παραγωγή ένα μη τερματικό
Διαβάστε περισσότεραΠεριεχόμενα Τι περιγράφει ένα ΣΔ ΣΔ και παραγωγές Θεωρία Υπολογισμού Ενότητα 15: Συντακτικά Δέντρα Επ. Καθ. Π. Κατσαρός Τμήμα Πληροφορικής Επ. Καθ. Π.
Θεωρία Υπολογισμού νότητα 15: Συντακτικά Δέντρα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΠρογραμματισμός Ι. Δείκτες. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Προγραμματισμός Ι Δείκτες Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Τι είναι ο δείκτης Ένας δείκτης είναι μια μεταβλητή που περιέχει μια διεύθυνση μνήμης. Θυμηθείτε πως
Διαβάστε περισσότεραιαφάνειες παρουσίασης #3
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Διαβάστε περισσότεραΔιαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 6 η Βρόχοι Επανάληψης Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή
Διαβάστε περισσότεραΑλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)
Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Pascal- Εισαγωγή Η έννοια του προγράμματος Η επίλυση ενός προβλήματος με τον υπολογιστή περιλαμβάνει, όπως έχει ήδη αναφερθεί, τρία εξίσου
Διαβάστε περισσότεραΔιασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1
Διασυνδεδεμένες Δομές Δυαδικά Δέντρα Προγραμματισμός II 1 lalis@inf.uth.gr Δέντρα Τα δέντρα είναι κλασικές αναδρομικές δομές Ένα δέντρο αποτελείται από υποδέντρα, καθένα από τα οποία μπορεί να θεωρηθεί
Διαβάστε περισσότεραΔιάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 06: Συνδεδεμένες Λίστες & Εφαρμογές Στοιβών και Ουρών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Υλοποίηση ΑΤΔ με Συνδεδεμένες Λίστες -
Διαβάστε περισσότεραΔιαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 7 η Πίνακες Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή Σωτήρης Χριστοδούλου
Διαβάστε περισσότεραΑναδρομή (Recursion) Πώς να λύσουμε ένα πρόβλημα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί με τον ίδιο τρόπο.
Αναδρομή (Recursion) Πώς να λύσουμε ένα πρόβλημα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί με τον ίδιο τρόπο. Πού χρειάζεται; Πολλές μαθηματικές συναρτήσεις ορίζονται αναδρομικά. Δεν είναι
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010 Ι ΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙ ΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Ανάθεση: Πέµπτη 15 Απριλίου 2010, 11:00 (πρωί)
Διαβάστε περισσότεραΓλώσσα Προγραμματισμού C
Προγραμματισμός HY: Γλώσσα Προγραμματισμού C Δρ. Ηλίας Κ. Σάββας, Αναπληρωτής Καθηγητής, Τμήμα Μηχανικών Πληροφορικής Τ.Ε., T.E.I. Θεσσαλίας Email: savvas@teilar.gr URL: http://teilar.academia.edu/iliassavvas
Διαβάστε περισσότεραΓλώσσες Προγραμματισμού Μεταγλωττιστές. Σημασιολογική Ανάλυση
Γλώσσες Προγραμματισμού Μεταγλωττιστές Σημασιολογική Ανάλυση Πανεπιστήμιο Μακεδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακελλαρίου Δομή Σημασιολογικής Ανάλυσης Στατική και Δυναμική Σημασιολογία Σημασιολογικοί
Διαβάστε περισσότεραΠρογραμματισμός ΗΥ και Υπολογιστική Φυσική. Χρήστος Γκουμόπουλος
Προγραμματισμός ΗΥ και Υπολογιστική Φυσική Χρήστος Γκουμόπουλος Προγραμματισμός ΗΥ και Υπολογιστική Φυσική Χρήστος Γκουμόπουλος Προγραμματισμός ΗΥ και Υπολογιστική Φυσική Χρήστος Γκουμόπουλος Προγραμματισμός
Διαβάστε περισσότεραΔιαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 5 η Έλεγχος Προγράμματος Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή
Διαβάστε περισσότεραΘεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)
Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα
Διαβάστε περισσότεραΘέματα Μεταγλωττιστών
Θέματα Μεταγλωττιστών Γιώργος Δημητρίου Ενότητα 1 η : Parsers Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συντακτική Ανάλυση για ΓΧΣ Οι τεχνικές συντακτικής ανάλυσης κατηγοριοποιούνται
Διαβάστε περισσότεραfor for for for( . */
Εισαγωγή Στον Προγραµµατισµό «C» Βρόχοι Επανάληψης Πανεπιστήµιο Πελοποννήσου Τµήµα Πληροφορικής & Τηλεπικοινωνιών Νικόλαος Δ. Τσελίκας Νικόλαος Προγραµµατισµός Δ. Τσελίκας Ι Ο βρόχος for Η εντολή for χρησιµοποιείται
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων)
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων) Τι θα κάνουμε σήμερα Εισαγωγικά Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Της Ασυμφραστικής
Διαβάστε περισσότεραHY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,
Διαβάστε περισσότεραΜεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 3 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής
Γιώργος Δημητρίου Μάθημα 3 ο Λεκτική Ανάλυση και Λεκτικοί Αναλυτές Γενικά για τη λεκτική ανάλυση Έννοιες που χρειαζόμαστε Τεχνικές λεκτικής ανάλυσης Πίνακας συμβόλων και διαχείριση λαθών Σχεδίαση λεκτικού
Διαβάστε περισσότεραΠρογραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Διαβάστε περισσότεραTop Down Bottom Up. Συντακτική Ανάλυση. Συντακτική Ανάλυση για Γραµµατικές χωρίς Συµφραζόµενα (top-down - Earley)
Top Down Bottom Up Συντακτική Ανάλυση Γιώργος Μανής δεοµένης της παραγωγής X αβ, ο συµβολισµός X α β αναπαριστά µία κατάσταση στη οποία το α έχει ήδη αναγνωριστεί και το β προσδοκάται να αναγνωριστεί.
Διαβάστε περισσότεραΔιάλεξη 3: Προγραμματισμός σε JAVA I. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Προγραμματισμός σε JAVA I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Στοιχειώδης Προγραμματισμός - Προγραμματισμός με Συνθήκες - Προγραμματισμός με Βρόγχους
Διαβάστε περισσότεραΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά (2.3) Το Λήμμα της Άντλησης για ασυμφραστικές γλώσσες (2.3.1) Παραδείγματα 1 Πότε μια
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Δεύτερη Σειρά Ασκήσεων 22 Νοεμβρίου 2016 Μέρος Α. (χειρόγραφη και ηλεκτρονική παράδοση 9 Δεκεμβρίου) Άσκηση 1: Θεωρήστε τη
Διαβάστε περισσότεραΜεταγλωττιστές. Γιώργος Δημητρίου. Μάθημα 8 ο. Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Γιώργος Δημητρίου Μάθημα 8 ο Μετάφραση Οδηγούμενη από τη Σύνταξη Ο ΣΑ καλεί τις ρουτίνες που εκτελούν τη σημασιολογική ανάλυση και παράγουν τον ενδιάμεσο κώδικα Σημασιολογικές πληροφορίες μπορούν να μεταφέρονται
Διαβάστε περισσότεραΑνάπτυξη και Σχεδίαση Λογισμικού
Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Συναρτήσεις (Functions) Οι βασικές λειτουργικές ενότητες ενός προγράμματος C Καλούνται με ορίσματα που αντιστοιχούνται σε
Διαβάστε περισσότεραΣειρά Προβλημάτων 4 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { ww rev w {a, b} * και w αποτελεί καρκινική λέξη } (α) H ζητούμενη μηχανή
Διαβάστε περισσότεραΜεταγλωττιστές. Σημασιολογική Ανάλυση. Εργαστήριο 9. Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι
Μεταγλωττιστές Εργαστήριο 9 Σημασιολογική Ανάλυση Διδάσκοντες: Δρ. Γεώργιος Δημητρίου Δρ. Άχμεντ Μάχντι 2016-2017 Σύνταξη και Σημασιολογία Σε οποιαδήποτε γλώσσα (προγραμματισμού ή μη) υπάρχουν δύο βασικές
Διαβάστε περισσότεραΑναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6: Γλώσσες. 6.1 Ιστορική εξέλιξη 6.4 Υλοποίηση γλώσσας. Κεφάλαιο 6: «Γλώσσες Προγραµµατισµού»
ΚΕΦΑΛΑΙΟ 6: Γλώσσες Προγραµµατισµού 6.1 Ιστορική εξέλιξη 6.4 Υλοποίηση γλώσσας 1 6.1 Γενιές γλωσσών προγραµµατισµού 2 Δεύτερη γενιά: γλώσσα assembly Ένα µνηµονικό σύστηµα για την αναπαράσταση προγραµµάτων
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Διαβάστε περισσότεραΟ βρόχος for Η εντολή for χρησιμοποιείται για τη δημιουργία επαναληπτικών βρόχων στη C
Ο βρόχος for Η εντολή for χρησιμοποιείται για τη δημιουργία επαναληπτικών βρόχων στη C Επαναληπτικός βρόχος καλείται το τμήμα του κώδικα μέσα σε ένα πρόγραμμα, το οποίο εκτελείται από την αρχή και επαναλαμβάνεται
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΥΝΤΑΚΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
1 ΚΕΦΑΛΑΙΟ 4 ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΥΝΤΑΚΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Στόχος Στόχος του Κεφαλαίου αυτού είναι να µάθουµε τις βασικότερες από τις τεχνικές και τις µεθοδολογίες συντακτικής ανάλυσης των κατηγοριών bottom up
Διαβάστε περισσότεραΔιάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Διαβάστε περισσότεραΔιασυνδεδεμένες Δομές. Λίστες. Προγραμματισμός II 1
Διασυνδεδεμένες Δομές Λίστες Προγραμματισμός II 1 lalis@inf.uth.gr Διασυνδεδεμένες δομές Η μνήμη ενός πίνακα δεσμεύεται συνεχόμενα η πρόσβαση στο i-οστό στοιχείο είναι άμεση καθώς η διεύθυνση του είναι
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΔιαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 2 η Τύποι Δεδομένων Δήλωση Μεταβλητών Έξοδος Δεδομένων Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα
Διαβάστε περισσότεραΘα χρησιμοποιήσουμε το bison, μια βελτιωμένη έκδοση του yacc. Φροντιστήριο 2ο Εισαγωγή στο YACC. Yacc. Δομή Προγράμματος Yacc
HY340 : ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ HY340 : ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ Φροντιστήριο 2ο Εισαγωγή στο YACC Ι ΑΣΚΩΝ Αντώνιος Σαββίδης Slide
Διαβάστε περισσότεραΜηχανές Turing (T.M) I
Μηχανές Turing (T.M) I Οι βασικές λειτουργίες μιας TM είναι: Διάβασε το περιεχόμενο του τρέχοντος κυττάρου Γράψε 1 ή 0 στο τρέχον κύτταρο Κάνε τρέχον το αμέσως αριστερότερο ή το αμέσως δεξιότερο κύτταρο
Διαβάστε περισσότεραFORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
Διαβάστε περισσότεραΔιάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Διαβάστε περισσότεραΣχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση Ι. Εαρινό Εξάμηνο Lec /03/2019 Διδάσκων: Γεώργιος Χρ. Μακρής
Σχεδίαση Γλωσσών Προγραμματισμού Συντακτική Ανάλυση Ι Εαρινό Εξάμηνο 2018-2019 Lec 09 18 /03/2019 Διδάσκων: Γεώργιος Χρ. Μακρής Φάσεις μεταγλώττισης Αρχικό Πρόγραμμα Λεκτική Ανάλυση λεκτικές μονάδες Πίνακας
Διαβάστε περισσότεραΔιάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες)
Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 13: Δομές Δεδομένων ΙΙ (Ταξινομημένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 13-1 Περιεχόμενο
Διαβάστε περισσότεραΠροβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Διαβάστε περισσότεραΜεταγλωττιστές. μια φοιτητική προσέγγιση
Μεταγλωττιστές μια φοιτητική προσέγγιση i. Περιεχόμενα i. Περιεχόμενα ii.πηγές 1. Εισαγωγή στη Μεταγλώττιση 1.1 Η διαδικασία της μεταγλώττισης Μεταγλωττιστής: Ανάλυση Σύνθεση 1.2 Οι φάσεις της μεταγλώττισης
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝΩ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝΩ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο : Α. Να αναφέρετε ονομαστικά τις βασικές λειτουργίες (πράξεις) επί των δομών δεδομένων. Μονάδες 8 Β. Στον
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΜεταγλωττιστές Βελτιστοποίηση
Μεταγλωττιστές Βελτιστοποίηση Νίκος Παπασπύρου nickie@softlab.ntua.gr Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Εργαστήριο Τεχνολογίας Λογισμικού Πολυτεχνειούπολη, 15780
Διαβάστε περισσότεραΝ!=1*2*3* *(N-1) * N => N! = (Ν-1)! * N έτσι 55! = 54! * 55
ΑΝΑ ΡΟΜΗ- ΑΣΚΗΣΕΙΣ Μια µέθοδος είναι αναδροµική όταν καλεί τον εαυτό της και έχει µια συνθήκη τερµατισµού π.χ. το παραγοντικό ενός αριθµού Ν, µπορεί να καλεί το παραγοντικό του αριθµού Ν-1 το παραγοντικό
Διαβάστε περισσότεραΔιάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διαβάστε περισσότεραΥπολογισμός - Εντολές Ελέγχου
Προγραμματισμός Η/Υ Ι Υπολογισμός - Εντολές Ελέγχου ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2018-2019 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περίληψη Σήμερα... θα συνεχίσουμε τη συζήτησή μας για τα βασικά στοιχεία
Διαβάστε περισσότεραΗΥ101: Εισαγωγή στην Πληροφορική
Δρ. Χρήστος Ηλιούδης Τι είναι η ; Η διαδικασία του προγραμματισμού είναι μία πολύπλοκη διαδικασία που συχνά οδηγεί σε λάθη (πραγματοποιείται από ανθρώπους!!!). Τα προγραμματιστικά λάθη λέγονται bugs και
Διαβάστε περισσότερα