Μια παρουσίαση από το Φυσικό Τμήμα του Παν.Αθήνας (Kαθ. Χ. Τρικαλινός)
|
|
- Βαρθολομαίος Καλάρης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Μια παρουσίαση από το Φυσικό Τμήμα του Παν.Αθήνας (Kαθ. Χ. Τρικαλινός)
2 Παρακολουθώντας ότι συμβαίνει γύρω μας, ή κάποιο πείραμα παρατηρούμε κάποια γεγονότα, τα οποία δεν μπορούμε να τα ερμηνεύσουμε στα πλαίσια της υπάρχουσας θεωρίας. Αυτά τα γεγονότα τα εξετάζουμε χωρίς να παρεμβαίνουμε. Δημιουργούμε τις συνθήκες που μας επιτρέπουν να να μελετήσουμε τα συγκεκριμένα φαινόμενα, απομονώνοντάς τα από διάφορα «εμπόδια» (ΠΕΙΡΑΜΑ). Συνήθως απαιτείται η επαναληπτική μελέτη των φαινομένων σε διάφορα εργαστήρια και με διάφορους τρόπους.
3 Κατά τη διάρκεια του πειράματος απαιτούνται ποσοτικά αποτελέσματα και γι αυτό κάνουμε μετρήσεις, δηλαδή συγκρίνουμε κάποια μεγέθη που εμφανίζονται στο πείραμα με άλλα, που τα θεωρούμε «πρότυπα» Συνήθως μετράμε χρόνους, μήκη, βάρη (μάζες;;;), τάσεις ρεύματος, εντάσεις κ.τ.λ. Τα υπόλοιπα μεγέθη (ταχύτητες, επιταχύνσεις κ.τ.λ.) πρέπει να τα υπολογίσουμε (παράγωγα μεγέθη) Με βάση τα αποτελέσματα του πειράματος, αλλά και τις προϋπάρχουσες αντιλήψεις διατυπώνουμε την κατάλληλη θεωρία. Αυτή όχι μόνο ερμηνεύει τα αποτελέσματα των πειραμάτων μας και τα εκφράζει σε ποσοτική μορφή, αλλά προβλέπει και άλλα φαινόμενα, τα οποία όμως πρέπει να επαληθευθούν πειραματικά.
4 Κατά τη επαλήθευση αυτών που προβλέπονται από τη «νέα» θεωρία παρατηρούνται φαινόμενα και γεγονότα, τα οποία δεν μπορούμε να τα ερμηνεύσουμε στα πλαίσια της υπάρχουσας θεωρίας.
5 Οι βασικές αρχές της θεωρίας Εφαρμογές της θεωρίας στη λύση ασκήσεων Γνωριμία με τα βασικά όργανα Πειραματικές δεξιότητες Επεξεργασία των αποτελεσμάτων. Αξιολόγηση της μεθόδου και των οργάνων. Εκτίμηση της ακρίβειας του θεωρητικού μοντέλου. Κατανόηση των βασικών νόμων της φυσικής Γνωριμία με φαινόμενα που δεν περιλαμβάνονται στην ύλη του μαθήματος
6 ΕΝΑ ΠΥΡΟΒΟΛΟ ΡΙΧΝΕΙ ΤΗΝ ΟΒΙΔΑ ΤΟΥ ΜΕ ΑΡΧΙΚΗ ΤΑΧΥΤΗΤΑ υ 0 ΥΠΟ ΓΩΝΙΑ φ. ΣΕ ΠΟΣΗ ΑΠΟΣΤΑΣΗ ΑΠΟ ΤΟ ΠΥΡΟΒΟΛΟ ΘΑ ΠΕΣΕΙ Η ΟΒΙΔΑ; s Η πρώτη «εύκολη» απάντηση είναι ότι θα πέσει σε απόσταση: 2 0 sin 2 Αν όμως παρακολουθήσουμε την οβίδα και μετρήσουμε το βεληνεκές της θα διαπιστώσουμε τα εξής: 1) Ο τύπος ΔΕΝ επαληθεύεται 2) Αν έχουμε μερικές οβίδες από το ίδιο πυροβόλο θα δούμε πως ΟΛΕΣ πέφτουν σε ΔΙΑΦΟΡΕΤΙΚΑ σημεία. g ΓΙΑΤΙ;;;
7 Αντίσταση του αέρα (με ή χωρίς άνεμο) που εξαρτάται από το σχήμα του βλήματος Η αντίσταση μεταβάλλεται με το ύψος Το g μεταβάλλεται με το ύψος Υπάρχουν οι βαρυτικές επιδράσεις του ήλιου και της σελήνης Υπάρχουν οι βαρυτικές επιδράσεις των γύρω αντικειμένων
8 Λόγω τριβής η οβίδα θερμαίνεται και διαστέλλεται Λόγω τριβής η οβίδα φορτίζεται και αλληλεπιδρά ηλεκτρομαγνητικά. Φωτόνια χτυπούν την οβίδα ασύμμετρα και ασκούν πίεση ΓΙΑ ΝΑ ΥΠΟΛΟΓΙΣΟΥΜΕ ΣΩΣΤΑ ΤΟ ΒΕΛΗΝΕΚΕΣ ΠΡΕΠΕΙ ΝΑ ΞΕΡΟΥΜΕ ΟΛΟΥΣ ΤΟΥΣ ΠΑΡΑΓΟΝΤΕΣ (ΑΔΥΝΑΤΟΝ) ΓΙΑ ΝΑ ΠΕΣΟΥΝ 2 ΟΒΙΔΕΣ ΣΤΟ ΙΔΙΟ ΣΗΜΕΙΟ ΠΡΕΠΕΙ ΟΛΕΣ ΟΙ ΣΥΝΘΗΚΕΣ ΝΑ ΕΙΝΑΙ ΤΑΥΤΟΣΗΜΕΣ (ΑΔΥΝΑΤΟΝ)
9 Η έννοια της μέτρησης. Ακρίβεια. Σφάλματα. Τυχαία και συστηματικά σφάλματα. Μέση τιμή. Σφάλμα μέσης τιμής Στρογγυλοποιήσεις Διάδοση σφαλμάτων
10 Γραφικές παραστάσεις. Σφάλματα. Σχεδιασμός. Κλίση καμπύλης σε ένα σημείο. Σχεδιασμός ευθείας με τη μέθοδο ελαχίστων τετραγώνων. Κριτήριο απόρριψης μετρήσεων. Σύγκριση διαφόρων τρόπων μέτρησης του ίδιου μεγέθους.
11 ΜΕΤΡΗΣΗ - ΑΚΡΙΒΕΙΑ - ΣΦΑΛΜΑ Η πόρτα πρέπει να έχει ύψος 2.2 m Η πόρτα πρέπει να έχει ύψος cm Η πόρτα πρέπει να έχει ύψος cm ΚΑΙ ΟΙ 3
12 ΜΕΤΡΗΣΗ - ΑΚΡΙΒΕΙΑ - ΣΦΑΛΜΑ 2.1 έως 2.3 m m έως cm cm έως cm cm ΠΟΙΟ ΑΠΟΤΕΛΕΣΜΑ ΜΑΣ ΧΡΕΙΑΖΕΤΑΙ; cm Μέτρηση είναι η σύγκριση του μετρούμενου μεγέθους με το πρότυπο. Κάθε μέτρηση έχει μια ακρίβεια Αυτή η ακρίβεια εκφράζεται μαθηματικά με το σφάλμα Δεν είναι πάντα απαραίτητη η μέγιστη δυνατή ακρίβεια που είναι και πολύ δαπανηρή
13 1. Στα όργανα μέτρησης 2. Στην πειραματική διαδικασία και στις συνθήκες του πειράματος 3. Στη μη σωστή κατανόηση της Φυσικής ΣΥΣΤΗΜΑΤΙΚΑ ΤΥΧΑΙΑ Μήπως 7;... Μήπως 7.5;... Μήπως 7.25;... ΟΧΙ! ΟΧΙ! ΟΧΙ! Μεταξύ 7 και 7.5, ή καλύτερα Μεταξύ 7.1 και cm
14 Μήπως 40;... Μήπως 50;... Μήπως 45;... ΟΧΙ! ΟΧΙ! ΟΧΙ! Μεταξύ 40 και 45, ή καλύτερα Μεταξύ 43 και V Τα 3 προηγούμενα παραδείγματα ανήκουν στην κατηγορία των ΤΥΧΑΙΩΝ ΣΦΑΛΜΑΤΩΝ
15 Χρονόμετρο που καθυστερεί Μετρούμε την πυκνότητα κάποιου υγρού Αποτέλεσμα g/cm 3 ΤΙ ΥΓΡΟ ΕΊΝΑΙ;;;; Χρονομέτρηση δρομέα 100 m. Αποτέλεσμα 9.65 s!!!! ΠΑΓΚΟΣΜΙΟ ΡΕΚΟΡ!!!! ΞΕΧΑΣΑΜΕ ΝΑ ΜΕΤΡΗΣΟΥΜΕ ΤΗ ΘΕΡΜΟΚΡΑΣΙΑ!!! Τα 2 προηγούμενα παραδείγματα ανήκουν στην κατηγορία των ΣΥΣΤΗΜΑΤΙΚΩΝ ΣΦΑΛΜΑΤΩΝ «Πραγματική» τιμή «Πραγματική» τιμή ΜΕΤΡΗΣΕΙΣ ΜΕ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΙΣ ΜΕ ΣΥΣΤΗΜΑΤΙΚΑ ΣΦΑΛΜΑΤΑ
16 Όπως είδαμε στο παράδειγμα με το πυροβόλο, έτσι και στα πειράματα υπάρχουν μια σειρά παράγοντες που επιδρούν στο αποτέλεσμα της μέτρησης, Αυτούς τους παράγοντες είτε τους αγνοούμε συνειδητά, γιατί είναι μικροί, είτε δεν τους ξέρουμε, είτε επειδή δεν μπορούμε να τους λάβουμε υπόψη μας. Ας θυμηθούμε την αρχή της απροσδιοριστίας που διέπει τον μικρόκοσμο: Δx Δp Αυτό μας δείχνει ότι ΤΙΠΟΤΕ δεν μπορεί να προσδιορισθεί με «απόλυτη» ακρίβεια x h
17 ΘΑ ΚΑΝΟΥΜΕ ΕΝΑ «ΠΕΙΡΑΜΑ» ΓΙΑ ΝΑ ΔΟΥΜΕ ΤΙ ΣΗΜΑΙΝΕΙ Ο ΟΡΟΣ «ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ» ΡΙΧΝΟΥΜΕ ΠΟΛΛΕΣ ΦΟΡΕΣ ΕΝΑ ΒΕΛΟΣ, ΠΡΟΣΠΑΘΩΝΤΑΣ ΝΑ ΧΤΥΠΗΣΟΥΜΕ ΤΟ 0. ΠΡΟΣΠΑΘΟΥΜΕ ΝΑ ΔΙΑΤΗΡΗΣΟΥΜΕ ΣΤΑΘΕΡΕΣ ΤΙΣ ΣΥΝΘΗΚΕΣ ΒΟΛΗΣ. Αυτό το αποτέλεσμα έχουμε για πολλές προσπάθειες, π.χ. 100 Αυτό το αποτέλεσμα έχουμε για άπειρες πρακτικά προσπάθειες.
18 Αυτή είναι η καμπύλη που μαθηματικά περιγράφεται από τον τύπο: n( x) 1 e 2 x 2 2 /2 Ο τύπος αυτός αντιστοιχεί στην κανονική κατανομή ή κατανομή Gauss. H κανονική κατανομή είναι ίσως η πιο κοινή κατανομή στη θεωρία των πιθανοτήτων. ΤΑ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ ΠΕΡΙΓΡΑΦΟΝΤΑΙ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΤΩΝ ΠΙΘΑΝΟΤΗΤΩΝ
19 Κάποιος θέλει να καταλάβει πως εξαρτάται από τη θερμοκρασία η ομική αντίσταση ενός υλικού. Για θ=25 ο C R=23.17 kohm Για θ=80 ο C R=22.61 kohm Με τις δυνατότητες που έχει μετράει την αντίσταση για 2 θερμοκρασίες Τι συμπέρασμα βγάζει;;; Για θ=25 ο C R= kohm Για θ=80 ο C R= kohm Για θ=25 ο C R= kohm Για θ=80 ο C R= kohm Δεν βγαίνει συμπέρασμα Η αντίσταση μειώνεται
20 ΓΙΑ ΚΑΘΕ ΠΕΙΡΑΜΑ ΕΙΝΑΙ ΑΠΑΡΑΙΤΗΤΟΣ Ο ΥΠΟΛΟΓΙΣΜΟΣ ΤΩΝ ΣΦΑΛΜΑΤΩΝ Σε πολλές περιπτώσεις, όταν μετρούμε πολλές φορές, στις ίδιες συνθήκες την ίδια ποσότητα βρίσκουμε διαφορετικά αποτελέσματα ΤΙ ΚΑΝΟΥΜΕ; ΒΡΙΣΚΟΥΜΕ ΤΗ ΜΕΣΗ ΤΙΜΗ ΚΑΙ ΤΟ ΣΦΑΛΜΑ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ
21 Έστω ότι μετρούμε Ν φορές την ίδια ποσότητα x και βρίσκουμε τις τιμές x i, όπου i=1,2,, N. Τότε ως πραγματική θεωρούμε τη 1 N i x x x N i 1 Ενώ ως σφάλμα θεωρούμε το x N i1 ( x x) i N( N 1) 2
22 ΣΥΝΟΛΑ T(s) T T i Μετρούμε 9 φορές την περίοδο ενός εκκρεμούς και βρίσκουμε τα αποτελέσματα που φαίνονται στον Πίνακα (s) 2 2 T T i (s ) T s Ti 9 i1 9 T 9 i1 ( T T) s s 0.03s 72 Τ=( ) s i
23 Ας υποθέσουμε πως μετά από πράξεις, που κάναμε στο κομπιουτεράκι για τον υπολογισμό της μέσης τιμής και του σφάλματός της βρίσκουμε: x x ΠΡΟΦΑΝΩΣ ΔΕΝ ΘΑ ΚΡΑΤΗΣΟΥ- ΜΕ ΤΟΣΑ ΨΗΦΙΑ, ΟΣΑ ΔΕΙΧΝΕΙ ΤΟ ΚΟΜΠΙΟΥ- ΤΕΡΑΚΙ
24 ΚΑΝΟΝΕΣ ΓΙΑ ΤΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ Η ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΕΙΝΑΙ ΥΠΟΧΡΕΩΤΙΚΗ ΑΡΧΙΖΟΥΜΕ ΣΤΡΟΓΓΥΛΟΠΟΙΩΝΤΑΣ ΤΟ ΣΦΑΛΜΑ ΚΑΤΑ ΤΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΤΟΥ ΣΦΑΛΜΑΤΟΣ ΚΡΑΤΑΜΕ 1 ΣΗΜΑΝΤΙΚΟ ΨΗΦΙΟ ΕΚΤΟΣ ΑΝ ΑΥΤΟ ΕΙΝΑΙ ΤΟ ΨΗΦΙΟ 1 Η 2. ΤΟΤΕ ΚΡΑΤΑΜΕ 2 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ ΣΤΗ ΣΥΝΕΧΕΙΑ ΣΤΡΟΓΓΥΛΟΠΟΙΟΥΜΕ ΤΗ ΜΕΣΗ ΤΙΜΗ, ΚΡΑΤΩΝΤΑΣ ΤΟΣΑ ΨΗΦΙΑ, ΟΣΑ ΕΙΝΑΙ ΤΑ ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ ΣΤΟ ΤΕΛΙΚΟ ΑΠΟΤΕΛΕΣΜΑ ΧΡΗΣΙΜΟΠΟΙΟΥΜΕ ΤΙΣ ΣΤΡΟΓΓΥΛΟΠΟΙΗΜΕΝΕΣ ΤΙΜΕΣ
25 Βρίσκουμε το σημαντικό ψηφίο που μας ενδιαφέρει Εξετάζουμε το αμέσως επόμενο Αν αυτό είναι >5 αυξάνουμε το σημαντικό κατά μία μονάδα και παραλείπουμε τα υπόλοιπα x Αν αυτό είναι < 5 αφήνουμε το σημαντικό όπως είναι και παραλείπουμε τα υπόλοιπα Αν αυτό είναι = 5 εξετάζουμε τι υπάρχει μετά Αν υπάρχει έστω και 1 ψηφίο >0 αυξάνουμε το σημαντικό κατά μία μονάδα και παραλείπουμε τα υπόλοιπα Αν δεν υπάρχει ούτε 1 ψηφίο >0 κάνουμε ότι θέλουμε (είτε αυξάνουμε, είτε αφήνουμε όπως είναι). Χρησιμοποίηση των κανόνων στο παράδειγμα x x
26 Άλλα παραδείγματα στρογγυλοποιήσεων x x x x x x Όσα αναφέραμε εδώ για τις στρογγυλοποιήσεις ισχύουν για όλα τα πειραματικά αποτελέσματα και τα σφάλματα
27 Ξέρουμε ότι άμεσα μπορούμε να μετρήσουμε μόνο λίγα φυσικά μεγέθη, π.χ. Χρόνο, μήκος, μάζα, τάση, ένταση κ.τ.λ. Γι αυτά μπορούμε φυσικά να μιλήσουμε για πολλαπλές μετρήσεις, μέση τιμή κ.τ.λ. Τι γίνεται όμως αν θέλουμε να βρούμε παράγωγα μεγέθη, π.χ. ταχύτητα, επιτάχυνση κ.ά.;
28 Έστω παράγωγο φυσικό μέγεθος u=f(x,y,z, ), όπου x,y,z, άμεσα μετρούμενες ποσότητες. Έστω x, y, z,... οι «μέσες τιμές» αυτών των ποσοτήτων και x, y, z,... τα σφάλματά τους. Τότε θα έχουμε: u f ( x, y, z,...) u u u u x y z... x y z Το σύμβολο u x είναι μερική παράγωγος
29 Υπολογισμός της επιτάχυνσης κατά την ευθύγραμμη, ομαλά μεταβαλλόμενη κίνηση. a 2s 2 t s = m t = s 2 2 a a a s t s t a 2 2 s t (35.2) 2 2 Μετά από πράξεις βρίσκουμε a t 4s 412 t (35.2) 3 3 a m/s a m/s 2 2 Τελικά a m/s 2
30 k r 5 k r sin 9 5 sin 9 r cm o o = k 5 r cos k sin r r cos 9 9 k cm k cm k cm k cm k cm
31 Τα τυχαία σφάλματα των άμεσα μετρούμενων μεγεθών μπορούν να είναι: α) Σφάλματα μέσης τιμής β) Σφάλματα ανάγνωσης γ) Σφάλματα οργάνου δ) Όλα μαζί τα παραπάνω Στη διάδοση σφαλμάτων το σφάλμα της κάθε μεταβλητής μπορεί να είναι διαφορετικό. Π.χ. Στο προηγούμενο παράδειγμα (το 1 ο ) το σφάλμα του s είναι σφάλμα ανάγνωσης, ενώ το σφάλμα του t είναι σφάλμα μέσης τιμής Εκτός από το σφάλμα ανάγνωσης υπάρχει και το σφάλμα παράλλαξης, που είναι κάτι σαν συστηματικό σφάλμα και πρέπει να αποφεύγεται.
32 ΣΦΑΛΜΑ ΑΝΑΓΝΩΣΗΣ α) Για τα αναλογικά όργανα εξαρτάται από την απόσταση ανάμεσα στις υποδιαιρέσεις του οργάνου β) Για τα ψηφιακά όργανα είναι το μισό του τελευταίου ψηφίου, εκτός αν δίνεται κάτι διαφορετικό ΣΦΑΛΜΑ ΟΡΓΑΝΟΥ είναι το σφάλμα που υπάρχει λόγω της κατασκευής του οργάνου και συνήθως είναι γραμμένο πάνω στο όργανο, ή στα συνοδευτικά έγγραφα ΚΑΤΑ ΚΑΝΟΝΑ ΤΟ ΣΦΑΛΜΑ ΟΡΓΑΝΟΥ ΕΙΝΑΙ ΜΙΚΡΟΤΕΡΟ ΑΠΟ ΤΟ ΣΦΑΛΜΑ ΑΝΑΓΝΩΣΗΣ
33 Το σφάλμα είναι μεγάλο ή μικρό; Εκφράζεται σε ποσοστά x x Υπάρχει περίπτωση το σχετικό σφάλμα να είναι 120% ή ακόμη και 500% και εμεί να μην ανησυχούμε;
34 Χρησιμοποιώντας το γνωστό μας μέτρο, κάποιος μετράει 6 φορές το μήκος ενός αντικειμένου και βρίσκει τις τιμές (σε cm): Αμέσως κάνει ότι μάθαμε παραπάνω, υπολογίζει μέση τιμή και σφάλμα μέσης τιμής: L cm L cm Και έτσι τελικά βρίσκει: L cm ΛΑΘΟΣ! Αν όλες οι τιμές ήταν 32.6 (καθόλου απίθανο) θα βρίσκαμε σφάλμα 0!!! Το μέτρο έχει σφάλμα ανάγνωσης 0.1 cm. Αυτό το σφάλμα δεν μπορούμε να το γλιτώσουμε. Οι πολλαπλές μετρήσεις δεν έχουν νόημα και μπορούμε να γράψουμε αμέσως L= cm. Αν σε κάποια μέτρηση υπάρχουν περισσότερα από ένα σφάλματα, κρατάμε το μεγαλύτερο
35 ΣΥΝΗΘΙΣΜΕΝΗ ΚΑΙ ΛΑΘΟΣ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ Κάθε σημείο σχεδιάζεται με τα σφάλματά του Σχεδιάζουμε μια ομαλή καμπύλη που πρέπει να περνά περίπου από την περιοχή που ορίζουν τα σφάλματα και ΟΧΙ από τα πειραματικά σημεία
36 Τις γραφικές παραστάσεις συνήθως τις σχεδιάζουμε με το χέρι, προσπαθώντας να περάσουμε τη γραμμή όσο καλύτερα γίνεται ανάμεσα στα σημεία. Σε κάποιες περιπτώσεις μπορούμε να χρησιμοποιήσουμε μια μαθηματική μέθοδο, η οποία μας δίνει τη βέλτιστη καμπύλη. Αυτή είναι η ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ. Εδώ θα την δούμε (και θα την χρησιμοποιούμε) μόνο για την περίπτωση της ευθείας. Υπάρχει για παραβολή, ημιτονοειδή, εκθετική κ.τ.λ. Στους ηλεκτρονικούς υπολογιστές υπάρχουν πολύπλοκες μέθοδοι. Τα συνηθισμένα πακέτα ΔΕΝ δίνουν καλές καμπύλες.
37 Έστω ότι έχουμε μετρήσει Ν ζεύγη τιμών x και y και βρήκαμε τις τιμές x i και y i, όπου i=1,2,3, N. Αν ξέρουμε, ότι τα x και y συνδέονται με τη σχέση: y ABx Τότε μπορούμε να υπολογίσουμε τα Α και Β και να χαράξουμε την ευθεία x=f(y) χρησιμοποιώντας τους τύπους. A N N N N 2 xi yi x i xi yi i1 i1 i1 i1 N N 2 2 Nxi xi i1 i1 N N N ( ) N ( x y ) x y i1 i1 i1 B N N 2 2 Nxi xi i1 i1 Και για τα σφάλματα των Α και Β i i i i i i1 A y N N 2 i i1 i1 N x N x x i 2 B y N N N 2 Nxi x i1 i1 i 2 y N i1 ( y A Bx ) i N 2 i 2
38 6 i1 a x 6 i1 2 i x i F a kx i Nxi x i1 i1 6 i1 xy i i 2 y i i N N N N 2 x i yi x i xi yi i1 i1 i1 i1 0 N N 2 2 Nxi xi i1 i1 F (N) δf=1 N ( ) 5.515N x (cm) δx=0.05 cm N=6
39 k N N N N ( x y ) x y i i i i i1 i1 i1 N N 2 2 Nxi xi i1 i N/cm B y A 1 1.3N 0.17 N/cm a N k N/cm 0 Κατά τον σχεδιασμό ευθείας με τη μέθοδο ελαχίστων τετραγώνων: 1. Επιλέγουμε τους άξονες 2. Σχεδιάζουμε τα σημεία και τα σφάλματά τους 3. Χρησιμοποιώντας τα Α και Β που βρήκαμε δίνουμε 2 τιμές στα x και βρίσκουμε τα y. Από τα 2 σημεία σχεδιάζουμε την ευθεία Αν έχουμε κάνει λάθος η ευθεία δεν θα «πέφτει» καλά
40 Τα αποτελέσματα ενός πειράματος ΥΠΟΠΤΗ ΤΙΜΗ Αν δεν αγνοήσουμε την 5η μέτρηση στα παραπάνω αποτελέσματα θα έχουμε: Ενώ αν την αγνοήσουμε: x = x =
41 Πως δουλεύουμε Χρησιμοποιώντας όλες τις τιμές x 1, x 2, x 3,, x Ν (μεταξύ αυτών και την «ύποπτη» x j ) υπολογίζουμε τη μέση τιμή x. Βρίσκουμε την τυπική απόκλιση σ από τον τύπο: N 2 ( xi x) i1 N 1 Βρίσκουμε το λόγο της απόλυτης τιμής της διαφοράς της μέσης τιμής από την «ύποπτη» τιμή προς την τυπική απόκλιση: x x j Από τον ΠΙΝΑΚΑ του παραρτήματος του φυλλαδίου βρίσκουμε την πιθανότητα P(<μσ) να έχουμε μέτρηση που απέχει από την μέση τιμή λιγότερο από την ύποπτη που εξετάζουμε
42 Πως δουλεύουμε Βρίσκουμε την πιθανότητα Ρ(μσ) να έχουμε τιμή που να απέχει από την μέση περισσότερο ή όσο η «ύποπτη», από τη σχέση: P( ) 1 P( ) Πολλαπλασιάζουμε το Ρ(μσ) με τον αριθμό των μετρήσεων Ν και βρίσκουμε το αποτέλεσμα u. Τότε: Αν u<0.5 απορρίπτουμε την «ύποπτη» τιμή, βρίσκουμε νέα μέση τιμή (από Ν-1 μετρήσεις) και το σφάλμα της. Αν u0.5 κρατάμε την «ύποπτη» τιμή, βρίσκουμε το σφάλμα της και συνεχίζουμε.
43 Βρίσκουμε: x 8.3 Για την τυπική απόκλιση παίρνουμε: 0.87 Για την «ύποπτη» τιμή 6.8 παίρνουμε: 1.5/ Για αυτή την τιμή του μ και χρησιμοποιώντας τον ΠΙΝΑΚΑ του Παραρτήματος βρίσκουμε: P( 1.72 ) Επομένως: P( 1.72 ) 1 P( 1.72 ) Έχουμε Ν=5, επομένως: u P( ) N Επειδή u<0.5 πρέπει να απορρίψουμε την τιμή 6.8. Τελικό αποτέλεσμα από τις 4 πλέον μετρήσεις: x =
44 ΧΡΗΣΙΜΕΣ ΟΔΗΓΙΕΣ - ΣΥΜΒΟΥΛΕΣ Κατά την εκτέλεση του πειράματος, σε κάθε βήμα, σκεφθείτε αν υπάρχουν συστηματικά σφάλματα και πως αυτά μπορούν να εξουδετερωθούν (πειραματικά ή θεωρητικά). Σε κάθε βήμα βρείτε ποια τυχαία σφάλματα υπεισέρχονται στις μετρήσεις. Για το σκοπό αυτό ελέγξτε: α) Τα σφάλματα του κατασκευαστή του οργάνου β) Το σφάλμα ανάγνωσης γ) Το σφάλμα μέσης τιμής (αν υπάρχει)
45 Γενικά απαιτείται εμπειρία. Οι «συνταγές» δεν είναι πάντα εφαρμόσιμες. Όταν μετράμε το μήκος ενός αντικειμένου με μέτρο φροντίζουμε το ένα άκρο του να πέφτει «ακριβώς» σε μια ευκρινή υποδιαίρεση Όταν μετράμε π.χ. ένταση και τάση ρεύματος φροντίζουμε π.χ. η ένταση να παίρνει ακέραιες τιμές Όταν μετράμε την περίοδο εκκρεμούς αρχίζουμε και τελειώνουμε τις μετρήσεις μας όταν το εκκρεμές βρίσκεται στο άκρο, διότι εκεί η ταχύτητά του μηδενίζεται.
46 Ας υποθέσουμε, ότι η αντίδρασή μας κατά την μέτρηση της περιόδου ενός εκκρεμούς είναι περίπου 0.2 s. Αν η περίοδος είναι της τάξης των 1.2 s, τότε το σφάλμα θα είναι περίπου 17% (μεγάλο). Αντί να μετρήσουμε μία περίοδο Τ, μετρούμε το μέγεθος x=20t και βρίσκουμε π.χ. x=24.8 s. Τότε το σφάλμα δx θα είναι και πάλι 0.2 s. Τότε το σφάλμα της μιας περιόδου προκύπτει από τον τύπο διάδοσης των σφαλμάτων, δηλαδή: T x T 1 x T x x x Τ= Γιατί μετρήσαμε 20 περιόδους και όχι 100 ή και περισσότερες, οπότε το σφάλμα θα γινόταν πρακτικά 0;;;
47 Για την καταγραφή των μετρήσεών σας και την παρουσίαση των αποτελεσμάτων σας χρησιμοποιείτε πάντα Πίνακες. Σας γλιτώνουν από χώρο και λόγια και είναι πολύ πιο εύληπτοι από αυτόν που διαβάζει την εργασία σας. Παράδειγμα Πίνακα για τον υπολογισμό της συνάρτησης x=f(a,b) m/s των άμεσα μετρούμενων μεγεθών Α m και Β s. A, [m] δα, [m] B, [s] δβ, [s] X [m/s] Δx, [m/s]
48 Επιπλέον σε όσα αναφέραμε ήδη για το σχεδιασμό τους ΟΛΕΣ ΟΙ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΓΙΝΟΝΤΑΙ ΣΕ ΧΑΡΤΙ ΜΙΛΛΙΜΕΤΡΕ ΔΕΔΟΜΕΝΑ x y δx δy Οι διακεκομμένες γραμμές 2. Οι πειραματικές τιμές 3. Δεν γίνεται εκμετάλλευση όλου του χαρτιού
49 Δεν γίνεται εκμετάλλευση όλου του χαρτιού Αυτή η γραφική παράσταση είναι η σωστή Το συνηθισμένο μέγεθος μιας γραφικής παράστασης είναι περίπου ½ σελίδα Α4
50 Έστω ότι θέλουμε να υπολογίσουμε την κλίση μιας πειραματικής καμπύλης σε ένα σημείο. ΓΙΑΤΙ;;; Πολλοί ισχυρίζονται ότι κλίση είναι η γωνία που σχηματίζει η καμπύλη στο σημείο αυτό με τον άξονα των x. Στην καλύτερη περίπτωση λένε ότι είναι η εφαπτομένη αυτής της γωνίας. Δεν πρέπει σε καμιά περίπτωση να ξεχνάμε, ότι εδώ δεν έχουμε να κάνουμε με «αφηρημένους» αριθμούς των μαθηματικών αλλά με συγκεκριμένα ΦΥΣΙΚΑ ΜΕΓΕΘΗ.
51 Μια φοιτήτρια με βάση τις μετρήσεις της σχεδιάζει την καμπύλη, η οποία είναι ευθεία σε διάγραμμα οπως στο σχήμα. Μετράει τη γωνία και τη βρίσκει 45 ο. Βρήκα ότι η κλίση είναι: Κ=tanφ=tan45 o =1 Βρήκα ότι η κλίση είναι: Κ=tanφ=tan30 o =0.58 Ο φοιτητής κάνει την ίδια άσκηση. Σχεδιάζει λίγο διαφορετικά την ευθεία και βρισκει ότι η γωνία είναι τώρα 30 ο.
52 Ας θυμηθούμε τον ορισμό της εφαπτομένης Για το τρίγωνο του σχήματος ισχύει: a tan b c φ b a
53 y y 2 ΓΙΑ ΝΑ ΒΡΟΥΜΕ ΤΗΝ ΚΛΙΣΗ ΜΙΑΣ ΚΑΜΠΎΛΗΣ ΣΕ ΕΝΑ ΣΗΜΕΙΟ ΚΑΝΟΥΜΕ ΤΑ ΕΞΗΣ: 1. Στο σημείο Α φέρνουμε «με το χέρι» A Δy την εφαπτόμενη y 1 2. Χρησιμοποιώντας 2 τυχαία σημεία Δx της εφαπτόμενης σχηματίζουμε ορθογώνιο τρίγωνο, οι κάθετες πλευρές x 1 x 2 x του οποίου είναι παράλληλες προς τους άξονες x και y. 3. Χρησιμοποιώντας τις κλίμακες που έχουμε ορίσει στους άξονες βρίσκουμε τα x 1, x 2, y 1 και y 2, που μας δίνουν τα μήκη Δx και Δy. 4. Βρίσκουμε την κλίση από τον τύπο: Δy y y K Δx x x
54 y 2 y 1 A Δx Δy Δy y y K Δx x x [ ] 40 x 1 x 2
55 y 1 Δy A Δy y y K Δx x x [ ] 20 y 2 Δx x 1 x 2 ΠΡΟΣΟΧΗ!!! Η ΚΛΙΣΗ ΕΧΕΙ ΔΙΑΣΤΑΣΕΙΣ
56
57 Σχεδιασμός καμπύλης σε απλό και ημιλογαριθμικό χαρτί. Η μικρότερη τιμή των y είναι 0.002, ενώ η μεγαλύτερη
58 ΑΥΤΗ Η ΜΕΘΟΔΟΣ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΟ ΑΝ ΕΧΟΥΜΕ ΥΠΟΛΟΓΙΣΕΙ ΤΟ ΙΔΙΟ ΜΕΓΕΘΟΣ ΜΕ ΔΙΑΦΟΡΕΤΙΚΟΥΣ ΤΡΟΠΟΥΣ, Ή ΑΝ ΕΧΟΥΝ ΒΡΕΙ ΤΟ ΙΔΙΟ ΜΕΓΕΘΟΣ ΔΙΑΦΟΡΟΙ ΕΡΕΥΝΗΤΕΣ. Έστω λοιπόν ότι μέτρησαν το ίδιο μέγεθος x με Ν τρόπους (N ερευνητές) και βρήκαν τα αποτελέσματα: x x, i 1,2,... N i i
59 1 ος 2 ος ΤΩΡΑ ΓΙΑ ΤΟ ΜΕΓΕΘΟΣ x ΜΠΟΡΟΥΜΕ ΝΑ ΣΚΕΦΘΟΥΜΕ ΤΑ ΕΞΗΣ: Άξονας τιμών Αποτελέσματα μετρήσεων (Περιοχή τιμών) 3 ος 4 ος ΑΣ ΔΩΣΟΥΜΕ ΤΩΡΑ ΚΑΙ ΤΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΦΡΑΣΕΙΣ ΓΙΑ ΤΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΜΑΣ Τελικό x Δx x N i1 N i1 xw i w i i x N i1 1 w i w i Όπου 1 ( x) 2
Δημιουργούμε τις συνθήκες που μας επιτρέπουν να μελετήσουμε τα συγκεκριμένα φαινόμενα, απομονώνοντάς τα από διάφορα «εμπόδια» (ΠΕΙΡΑΜΑ).
Παρακολουθώντας ότι συμβαίνει γύρω μας, ή κάποιο πείραμα παρατηρούμε κάποια γεγονότα, τα οποία δεν μπορούμε να τα ερμηνεύσουμε στα πλαίσια της υπάρχουσας θεωρίας. Αυτά τα γεγονότα τα εξετάζουμε χωρίς να
Διαβάστε περισσότεραΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα
Σκοπός ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή καμπυλών και να μπορέσει εν τέλει
Διαβάστε περισσότερα2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ
1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα
Διαβάστε περισσότεραΜια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.
Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι
Διαβάστε περισσότεραΠερί σφαλμάτων και γραφικών παραστάσεων
Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις
Διαβάστε περισσότεραΒ Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
Διαβάστε περισσότεραΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός
ΑΣΚΗΣΗ 3 Θεωρία Σφαλμάτων Σκοπός Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή. Τις περισσότερες φορές στις ασκήσεις του εργαστηρίου,
Διαβάστε περισσότεραΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4
ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Εισαγωγή... 2 Έννοια του σφάλματος...3 Συστηματικά και τυχαία σφάλματα...4 Εκτίμηση του σφάλματος κατά την ανάγνωση κλίμακας...8 Πολλαπλές μετρήσεις... 10 Περί του αριθμού των σημαντικών
Διαβάστε περισσότεραΣφάλματα Είδη σφαλμάτων
Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την
Διαβάστε περισσότεραΗλεκτρονική ΦΥΣ 686. Διδάσκων/Υπεύθυνος : Τζιχάντ Μούσα
Ηλεκτρονική ΦΥΣ 686 Διδάσκων/Υπεύθυνος : Τζιχάντ Μούσα Γραφείο: B244, Πτέρυγα Ε, 2 Όροφος, Τμήμα Φυσικής, Νέα Πανεπιστημιούπολη Τηλ: 2289 2844 E-mail: mousa@ucy.ac.cy Ώρες Εργαστηρίου: Δευτέρα 17:0 0-21:00
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Αθήνα 2014 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1. Η ΕΝΝΟΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ... 2. ΤΥΠΟΙ ΣΦΑΛΜΑΤΩΝ. ΣΥΣΤΗΜΑΤΙΚΑ ΚΑΙ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ... 3. ΕΚΤΙΜΗΣΗ ΣΦΑΛΜΑΤΟΣ ΚΑΤΑ
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ http://www.physicslab.tuc.gr https://www.eclass.tuc.gr/courses/sci123/ Επιμέλεια παρουσίασης: Ά.Καλλιατάκη,
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ http://www.physicslab.tuc.gr https://www.eclass.tuc.gr/courses/sci123/ Επιμέλεια παρουσίασης: Ά.Καλλιατάκη,
Διαβάστε περισσότεραΑ και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ
Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011-12 Τοπικός διαγωνισμός στη Φυσική 10-12-2011 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Κεντρική ιδέα της άσκησης Στην άσκηση μελετάμε την κίνηση ενός
Διαβάστε περισσότερα1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Αθήνα 2017 1 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 1. Η ΕΝΝΟΙΑ ΤΟΥ ΣΦΑΛΜΑΤΟΣ... 2. ΤΥΠΟΙ ΣΦΑΛΜΑΤΩΝ. ΣΥΣΤΗΜΑΤΙΚΑ ΚΑΙ ΤΥΧΑΙΑ ΣΦΑΛΜΑΤΑ... 3. ΕΚΤΙΜΗΣΗ ΣΦΑΛΜΑΤΟΣ ΚΑΤΑ
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ http://physlab.phys.uoa.gr Εισαγωγή στην θεωρία σφαλμάτων ΑΘΗΝΑ 009 Συγγραφή του παρόντος φυλλαδίου: Αν. Καθηγητής Χρήστος Τρικαλινός Διευθυντής Εργαστηρίου
Διαβάστε περισσότεραΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΝΤΑΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ ΑΠΛΟΥ ΕΚΚΡΕΜΟΥΣ Α. ΣΤΟΧΟΙ Η εξοικείωση με τη χρήση απλών πειραματικών διατάξεων. Η εξοικείωση με
Διαβάστε περισσότεραΠα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Δημήτριος Νικολόπουλος, Καθηγητής Περιβαλλοντική και Ιατρική Φυσική Εξίσωση και κλίση ευθείας Έστω ότι έχουμε δυο σταθερές α και
Διαβάστε περισσότεραΆσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης
Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
Διαβάστε περισσότεραΜελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός
Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Βασικές έννοιες, σχέσεις και διαδικασίες Αδρανειακό
Διαβάστε περισσότεραΒ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ () ΜΕ ΤΗ ΒΟΗΘΕΙΑ
Διαβάστε περισσότεραΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ. Θεωρία - Πείραμα Μετρήσεις - Σφάλματα
ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΟΜΑΔΑ:RADIOACTIVITY Τα μέλη της ομάδας μας: Γιώργος Παπαδόγιαννης Γεράσιμος Κουτσοτόλης Νώντας Καμαρίδης Κωνσταντίνος Πούτος Παναγιώτης Ξανθάκος
Διαβάστε περισσότεραΜαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
Διαβάστε περισσότεραΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΝΙΚΑΙΑΣ ΠΕΙΡΑΙΑ. Φύλλο εργασίας
Φύλλο εργασίας ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΤΑΞΗ ΤΜΗΜΑ... ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΚΥΛΙΝΔΡΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ. ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΟΥ Στόχοι: Να μετρήσετε τη ροπή αδράνειας στερεού σώματος
Διαβάστε περισσότεραΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΕΚΦΕ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ
ΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΕΚΦΕ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ Προκριματικός διαγωνισμός για την 17 η EUSO 2019 στην Φυσική Σάββατο 08/12/2018 Ονοματεπώνυμα μελών ομάδας 1) 2) 3) Σχολείο: 1 Εισαγωγή ΥΠΟΛΟΓΙΣΜΟΣ
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.
ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις
Διαβάστε περισσότερα1. Πειραματικά Σφάλματα
. Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού
Διαβάστε περισσότεραΠα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ
Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών Εισαγωγή στην Εργαστηριακή Φυσική ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Δημήτριος Ν.Νικολόπουλος Καθηγητής Περιβαλλοντική και Ιατρική Φυσική Μέτρηση Η σύγκριση ενός μεγέθους
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης
Διαβάστε περισσότεραΜαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
Διαβάστε περισσότεραΓνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών
Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο
Διαβάστε περισσότεραΕπεξεργασία Δεδομένων - Γραφικές Παραστάσεις
1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή
Διαβάστε περισσότεραΠροετοιμασία των ομάδων για τον τοπικό διαγωνισμό.
Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και
Διαβάστε περισσότεραΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΕΤΥ203 3 Ώρες εργαστηρίου την ημέρα Προαπαιτούμενo: Φυσική Ι (ΕΤΥ101) Βαθμός Μαθήματος: 0.1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + 0.4*(Βαθμός Τελικής εξέτασης
Διαβάστε περισσότεραΆσκηση 4 Θεμελιώδης νόμος της Μηχανικής
Άσκηση 4 Θεμελιώδης νόμος της Μηχανικής Σύνοψη Η άσκηση αυτή διαφέρει από όλες τις άλλες. Σκοπός της είναι η πειραματική επαλήθευση του θεμελιώδους νόμου της Μηχανικής. Αυτό θα γίνει με τη γραφική ανάλυση
Διαβάστε περισσότεραΕπεξεργασία Δεδομένων - Γραφικές Παραστάσεις
1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή
Διαβάστε περισσότεραΠΡΟΕΤΟΙΜΑΣΙΑ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΚΑΤΑΓΡΑΦΗΣ. (Η έκδοση που χρησιμοποιήθηκε είναι η )
ΕΚΦΕ ΛΕΥΚΑΔΑΣ ΝΟΕΜΒΡΙΟΣ 2012 ΜΕΛΕΤΗ ΤΗΣ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG. ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Α. Στόχοι: Η απεικόνιση της θέσης ενός σώματος που εκτελεί
Διαβάστε περισσότεραΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ
ΕΚΦΕ Α Αν. Αττικής - Υπεύθυνος Κ. Παπαμιχάλης Εργαστηριακές ασκήσεις Φυσικής Β Γυμνασίου ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Βασικές έννοιες: Θέση - μετατόπιση - χρόνος - χρονικό διάστημα - ταχύτητα
Διαβάστε περισσότεραΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ
ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Μαρία Κατσικίνη E-mal: katsk@auth.gr Web: users.auth.gr/katsk Τηλ: 0 99800 Γραφείο : Β όροφος, Τομέας Φυσικής Στερεάς Κατάστασης Σειρά των ασκήσεων Θεωρία : Σφάλματα Θεωρία :
Διαβάστε περισσότεραx 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από
Στη θεωρία, θεωρία και πείραμα είναι τα ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ... υπό ισχυρή συμπίεση ίδια αλλά στο πείραμα είναι διαφορετικά, A.Ensten Οι παρακάτω σημειώσεις περιέχουν τα βασικά σημεία που πρέπει να γνωρίζει
Διαβάστε περισσότεραΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012
1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,
Διαβάστε περισσότεραΜελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός
Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός
Διαβάστε περισσότεραΆσκηση Σ1 Άμεσες μετρήσεις σφάλματα
Συμπλήρωμα Σ1.ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ Άσκηση Σ1 Άμεσες μετρήσεις σφάλματα (Αφορά το 1ο εργαστήριο. Η αντίστοιχη θεωρία είναι στις σελίδες 13-20 του βιβλίου ενώ εδώ βλέπεις το πειραματικό μέρος επειδή δεν υπάρχει
Διαβάστε περισσότεραΟ ΠΕΙΡΑΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΗΣ Α.Δ.Μ.Ε ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ Μια διαφορετική πρόταση επεξεργασίας των δεδομένων από αυτή του εργαστηριακού οδηγού.
Ο ΠΕΙΡΑΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΗΣ Α.Δ.Μ.Ε ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ Μια διαφορετική πρόταση επεξεργασίας των δεδομένων από αυτή του εργαστηριακού οδηγού. Η μελέτη της ελεύθερης πτώσης στην Α Λυκείου ( εργαστηριακή
Διαβάστε περισσότεραΕργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ Παρουσίαση οργάνωσης των Εργαστηρίων Φυσικής Ι Ακαδ. Έτους 2013-14 http://www.physicslab.tuc.gr physicslab@isc.tuc.gr
Διαβάστε περισσότεραΓενικό Εργαστήριο Φυσικής
http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής Γενικό Εργαστήριο Φυσικής Σφάλματα Μελέτη φυσικού φαινομένου Ποσοτική σχέση παραμέτρων Πείραμα Επαλήθευση Καθιέρωση ποσοτικής σχέσης Εύρεση τιμής
Διαβάστε περισσότεραΠρακτική µε στοιχεία στατιστικής ανάλυσης
Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα :
Νόμος Νόμοι Πρότυπο ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Πρότυπο ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης (Ε.Ο.Μ.Κ) Όταν η επιτάχυνση ενός
Διαβάστε περισσότεραΦυσικά μεγέθη. Φυσική α λυκείου ΕΙΣΑΓΩΓΗ. Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα. Β.
ΕΙΣΑΓΩΓΗ Φυσικά μεγέθη Όλα τα φυσικά μεγέθη τα χωρίζουμε σε δύο κατηγορίες : Α. τα μονόμετρα Β. τα διανυσματικά Μονόμετρα ονομάζουμε τα μεγέθη εκείνα τα οποία για να τα γνωρίζουμε χρειάζεται να ξέρουμε
Διαβάστε περισσότεραΑνακρίνοντας τρία διαγράμματα
Ανακρίνοντας τρία διαγράμματα 1) Ένα σώµα κινείται πάνω στον άξονα x και στο διάγραµµα φαίνεται η θέση του σε συνάρτηση µε το χρόνο. Με βάση πληροφορίες που µπορείτε να αντλήσετε µελετώντας το παραπάνω
Διαβάστε περισσότεραΚεφάλαιο 8: Ελεύθερη πτώση
Κεφάλαιο 8: Ελεύθερη πτώση Σύνοψη Πειραματικός προσδιορισμός του διαγράμματος διαστήματος χρόνου s(t) ενός σώματος, το οποίο εκτελεί ελεύθερη πτώση. Υπολογισμός της κλίσης της καμπύλης s(t) σε μια τυχαία
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)
ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) Όταν το πρωτοείδα, κι εγώ δεν το συμπάθησα. Είναι, όμως, λάθος μας, καθώς πρόκειται για κάτι πολύ απλό και σίγουρο ως μέθοδος υπολογισμού
Διαβάστε περισσότεραΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ
ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ Αποδείξαμε πειραματικά, με τη βοήθεια του φαινομένου της περίθλασης, ότι τα ηλεκτρόνια έχουν εκτός από τη σωματιδιακή και κυματική φύση. Υπολογίσαμε τις σταθερές πλέγματος του γραφίτη
Διαβάστε περισσότερα9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ
73 9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 9.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό μήκος ενός τόπου είναι η δίεδρη γωνία μεταξύ του αστρονομικού μεσημβρινού του τόπου και του μεσημβρινού του Greenwich. Η γωνία αυτή
Διαβάστε περισσότεραΠΕΙΡΑΜΑ 3. Ελεύθερη πτώση Υπολογισμός της επιτάχυνσης της βαρύτητας -g-
ΠΕΙΡΑΜΑ 3 Ελεύθερη πτώση Υπολογισμός της επιτάχυνσης της βαρύτητας -g- Σκοπός του πειράματος Σκοπός του πειράματος είναι να μελετηθεί η ελεύθερη πτώση σφαίρας και από τις μετρήσεις απόστασης και χρόνου
Διαβάστε περισσότεραΦυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση. Περιέχει: 1.
Φυσική Προσανατολισμού Β τάξη Ενιαίου Λυκείου 1 0 Κεφάλαιο- Καμπυλόγραμμες κινήσεις : Οριζόντια βολή, Κυκλική Κίνηση Περιέχει: 1. Αναλυτική Θεωρία 2. Ερωτήσεις Θεωρίας 3. Ερωτήσεις Πολλαπλής Επιλογής 4.
Διαβάστε περισσότεραΘέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: Ε.Κ.Φ.Ε Κέρκυρας -1-
Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: 1) 2) 3) 4) Ε.Κ.Φ.Ε Κέρκυρας -1- ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Α. Θεωρητική εισαγωγή Το απλό εκκρεμές είναι μια διάταξη που
Διαβάστε περισσότεραΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 26 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Μαΐου, 2012 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: 1) Είναι πολύ σημαντικό
Διαβάστε περισσότεραΕυρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών Προκαταρκτικός Διαγωνισμός Ανατολικής Αττικής. Φυσική
Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 017-18 Προκαταρκτικός Διαγωνισμός Ανατολικής Αττικής Φυσική Σχολείο: Ονόματα των μαθητών της ομάδας: 1) ) 3) Οι στόχοι του πειράματος 1. Η μέτρηση της επιτάχυνσης
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο
ΕΚΦΕ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ ΕΚΦΕ ΝΕΑΣ ΙΩΝΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο N T=ηmgσυνθ mgηµθ θ Σχήµα1 mg Κατά τη διεξαγωγή της άσκησης θα µάθεις
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
Διαβάστε περισσότεραΦυσικά Μεγέθη Μονάδες Μέτρησης
ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΤΑΞΗ: Α Λυκείου Προσανατολισμού 1,3,4. ΚΕΦΑΛΑΙΑ ΕΝΟΤΗΤΕΣ ΜΑΘΗΣΙΑΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ Οι μαθητές και οι μαθήτριες να είναι σε θέση να: ΑΝΤΙΣΤΟΙΧΑ
Διαβάστε περισσότεραΕισαγωγικές Γνώσεις Πειραματική Διαδικασία
ΕΚΦΕ Ν.ΚΙΛΚΙΣ 1 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ Στόχοι 1.
Διαβάστε περισσότεραΚεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων
Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με
Διαβάστε περισσότεραΚεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων
Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με
Διαβάστε περισσότεραΚίνηση σε Ηλεκτρικό Πεδίο.
Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενός ισοπλεύρου τριγώνου ΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σημειακά ηλεκτρικά φορτία 1 =2μC και 2 αντίστοιχα.
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΣ 685
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΣ 685 Διδάσκων/Υπεύθυνος : Τζιχάντ Μούσα Γραφείο: B244, Πτέρυγα Ε, 2 Όροφος, Τμήμα Φυσικής, Νέα Πανεπιστημιούπολη Τηλ: 2289 2844 E-mail: mousa@ucy.ac.cy Ώρες Εργαστηρίου: Δευτέρα 19:0
Διαβάστε περισσότεραΗ αβεβαιότητα στη μέτρηση.
Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων
ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την
Διαβάστε περισσότεραΠΡΟΣΔΙΟΡΙΣΜΟΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΥΜΠΑΓΟΥΣ ΚΑΙ ΟΜΟΓΕΝΟΥΣ ΚΥΛΙΝΔΡΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΣΥΣΚΕΥΗΣ ΚΕΚΛΙΜΕΝΟΥ ΕΠΙΠΕΔΟΥ ΠΟΛΛΑΠΛΩΝ ΧΡΗΣΕΩΝ
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΥΜΠΑΓΟΥΣ ΚΑΙ ΟΜΟΓΕΝΟΥΣ ΚΥΛΙΝΔΡΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΤΗΣ ΣΥΣΚΕΥΗΣ ΚΕΚΛΙΜΕΝΟΥ ΕΠΙΠΕΔΟΥ ΠΟΛΛΑΠΛΩΝ ΧΡΗΣΕΩΝ ΣΤΟΧΟΙ Πειραματική μέτρηση της ροπής αδράνειας συμπαγούς και ομογενούς κυλίνδρου
Διαβάστε περισσότεραΚεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών
Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα
Διαβάστε περισσότεραΜετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.
Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)
Διαβάστε περισσότεραΕπεξεργαςία πειραματικών δεδομζνων
Επεξεργαςία πειραματικών δεδομζνων Επεξεργασία μετρήσεων. Στα θέματα που ακολουθούν, η επεξεργασία των μετρήσεων στηρίζεται στη δημιουργία γραφημάτων α βαθμού, δηλαδή της μορφής ψ=α χ+β,και στην εξαγωγή
Διαβάστε περισσότεραΓ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc
4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20 204 3 Ώρες εργαστηρίου την εβδομάδα Προαπαιτούμενo: Φυσική ΙΙ (ΕΤΥ102) Βαθμός Μαθήματος: 0.1*( 1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + Βαθμός Τελικής
Διαβάστε περισσότεραΟδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου
ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ
ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 9144 Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Συνεργάτες: Ιντζέογλου
Διαβάστε περισσότεραΟδηγός Διόρθωσης εξεταστικού δοκιμίου Φυσικής 4ώρου Τ.Σ Παγκυπρίων εξετάσεων 2013
Οδηγός Διόρθωσης εξεταστικού δοκιμίου Φυσικής 4ώρου Τ.Σ Παγκυπρίων εξετάσεων 2013 Γενικές οδηγίες. Οι διορθωτές ακολουθούν τον οδηγό βαθμολόγησης και όχι τις προσωπικές τους απόψεις ή αντιλήψεις. Γίνεται
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ
ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 11 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 08/12/2012
Διαβάστε περισσότεραΠρογραμματισμός Ύλης Έτους Τάξη Α Κοινός Κορμός
Προγραμματισμός Ύλης Έτους Τάξη Α Κοινός Κορμός Μάθημα: Φυσική Τμήματα:,.. Τάξη: Α Ομάδα Προσανατολισμού 1,3,4 Καθηγητές: Περ. Εβδομ: 2 ΚΕΦΑΛΑΙΑ ΕΝΟΤΗΤΕΣ ΥΛΗ ΠΕΡΙΟΔΟΙ ΗΜΕΡΟΜΗΝΙΕΣ Φυσικά Μεγέθη Μονάδες
Διαβάστε περισσότεραΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥ- ΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΣΩΜΑΤΟΣ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ ΜΕΤΡΗΣΗ ΤΟΥ ΣΥ- ΝΤΕΛΕΣΤΗ ΤΡΙΒΗΣ ΟΛΙΣΘΗΣΗΣ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Τζ. Τσιτοπούλου, Ι. Χριστακόπουλος]
Διαβάστε περισσότεραΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ
1 η θεματική ενότητα: Εφαρμογές του εκπαιδευτικού λογισμικού IP 2005 ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ Θέμα Οριζόντια βολή δραστηριότητας: Μάθημα και Τάξη Φυσική Α Λυκείου στην οποία απευθύνεται: Εκπαιδευτικοί:
Διαβάστε περισσότεραΟνοματεπώνυμο Φοιτητή. Εργαστηριακό Τμήμα Π.χ. Δευτέρα
Ονοματεπώνυμο Φοιτητή Εργαστηριακό Τμήμα Π.χ. Δευτέρα 11 00 13 00 Ομάδα Π.χ. 1A Πειραματική άσκηση Ελεύθερη πτώση Ημερομηνία Εκτέλεσης Άσκησης... / / 2015 Ημερομηνία παράδοσης εργαστ.αναφοράς... / / 2015
Διαβάστε περισσότεραΦυσική Α Λυκείου. Σημειώσεις από τη θεωρία του σχολικού βιβλίου (βοήθημα για μια γρήγορη επανάληψη)
Φυσική Λυκείου Σημειώσεις από τη θερία του σχολικού βιβλίου (βοήθημα για μια γρήγορη επανάληψη) Εισαγγή στις φυσικές επιστήμες Οι φυσικές επιστήμες αποτελούν την προσπάθεια του ανθρώπου να περιγράψει και
Διαβάστε περισσότεραΔυναμική. Ομάδα Γ. Δυναμική Κατακόρυφη βολή και γραφικές παραστάσεις Κατακόρυφη βολή και κάποια συμπεράσματα.
. Ομάδα Γ. 1.2.21. Κατακόρυφη βολή και γραφικές παραστάσεις Από ένα σημείο Ο σε ύψος Η=25m από το έδαφος εκτοξεύεται κατακόρυφα προς τα πάνω ένα σώμα με αρχική ταχύτητα υ 0 =20m/s. Αν g=10m/s 2, ενώ η
Διαβάστε περισσότεραΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος
Περιεχόμενα ΦΕ1 ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ ΤΟ ΜΗΚΟΣ 2015-16 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Τα φυσικά μεγέθη Η Μέτρηση των φυσικών μεγεθών Μια μονάδα μέτρησης για όλους Το φυσικό μέγεθος Μήκος Όργανα μέτρησης
Διαβάστε περισσότεραΟΔΗΓΟΣ ΔΙΟΡΘΩΣΗΣ (Προτεινόμενες Λύσεις)
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Παρασκευή, 13 Ιουνίου 2014
Διαβάστε περισσότεραΘέματα Παγκύπριων Εξετάσεων
Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί
Διαβάστε περισσότεραi. ένας προβολέας πολύ μικρών διαστάσεων ii. μια επίπεδη φωτεινή επιφάνεια αποτελούμενη από πολλές λάμπες σε λειτουργία
ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό
Διαβάστε περισσότεραΜΕΡΟΣ Α : Αποτελείται από 6 ερωτήσεις των 5 μονάδων η κάθε μια.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ Ημερομηνία και ώρα εξέτασης: 6
Διαβάστε περισσότεραΑ u. u cm. = ω 1 + α cm. cm cm
ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ
Διαβάστε περισσότεραΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Μ. ΔΙΑΚΟΝΟΥ, Β. ΟΡΦΑΝΟΠΟΥΛΟΣ, Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 1. α. Από τις παρακάτω έννοιες
Διαβάστε περισσότεραΗμερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Σάββατο 11 Νοεμβρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (g) ΚΑΤΑ ΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ
ΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΕΚΦΕ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ Προκριματικός διαγωνισμός για την 16 η EUSO 2018 στην Φυσική Σάββατο 09/12/2017 Ονοματεπώνυμα μελών ομάδας 1) 2) 3) Σχολείο: ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ
Διαβάστε περισσότερα