L mma thc 'Antlhshc. A. K. Kapìrhc

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "L mma thc 'Antlhshc. A. K. Kapìrhc"

Transcript

1 L mma thc 'Antlhshc A. K. Kapìrhc 12 MartÐou 2009

2 2

3 Perieqìmena 1 Το Λήμμα της Άντλησης για μη κανονικές γλώσσες Μη κανονικές γλώσσες Λήμμα άντλησης για μη κανονικές γλώσσες Χρήση του Λήμματος Άντλησης Δείξτε ότι γλώσσα B = {0 n 1 n : n 0} είναι μη κανονική Δείξτε ότι γλώσσα C = {w : w έχει ίσο πλήθος από 0 ς και 1 ς} είναι μη κανονική Δείξτε ότι γλώσσα F = {ww : w {0, 1} } είναι μη κανονική Δείξτε ότι γλώσσα D = {1 n2 : n 0} είναι μη κανονική Δείξτε ότι γλώσσα E = {0 i 1 j : i > j} είναι μη κανονική Δείξτε ότι γλώσσα A = {a(ab) n c n : n 0} δεν είναι κανονική Εστω L η γλώσσα στο αλφάβητο {a, b} που ορίζεται αναδρομικά ως εξής: Εστω L η γλώσσα στο αλφάβητο {a, b} που ορίζεται αναδρομικά ως εξής: Το Λήμμα της Άντλησης για γλώσσες μη ανεξάρτητες συμφραζομένων Διαισθητική παρουσίαση του Λήμματος με Δέντρο Παραγωγής Παραδείγματα με το Λήμμα της Άντλησης Δείξτε ότι γλώσσα B = {a n b n c n : n 0} δεν είναι ανεξάρτητη συμφραζομένων Δείξτε ότι γλώσσα C = {a i b j c k : 0 i j k} δεν είναι ανεξάρτητη συμφραζομένων Δείξτε ότι γλώσσα D = {ww : w {0, 1} } δεν είναι ανεξάρτητη συμφραζομένων. 17 3

4 4 PERIEQŸOMENA

5 Kefˆlaio 1 To L mma thc 'Antlhshc gia mh kanonikèc gl ssec 1.1 Mh kanonikèc gl ssec Ενα πεπερασμένο αυτόματο, παρά την απλότητα του, είναι μια πολύ ισχυρή κατασκευή. Η δύναμη τους γίνεται φανερή επειδή τα αυτόματα αυτά μπορούν να εκφράσουν όλες τις κανονικές εκφράσεις. Ενα πεπερασμένο αυτόματο, παρά το πεπερασμένο πλήθος των καταστάσεων του, μπορεί να εκφράσει κανονικές γλώσσες με οσοδήποτε μεγάλο μήκος n. Για παράδειγμα την γλώσσα A = {(01) } που αποτελείται από όλες τις δυνατές λέξεις που μπορούμε να γράψουμε με αλφάβητο S = {01}. Το αυτόματο που αναγνωρίζει τη A, θα εκμεταλλευτεί την κανονικότητα της εναλλαγής από 0 σε 1, και κάνοντας κάτι σαν φλιπ-φλοπ μεταξύ 2 καταστάσεων θα φθάνει σε αποδοχή. Ομως, υπάρχουν γλώσσες που δεν αναγνωρίζονται από πεπερασμένα αυτόματα. Αυτές οι γλώσσες δεν είναι κανονικές. Για παράδειγμα μια μη κανονική γλώσσα είναι η B = {0 n 1 n : n 0}. Διαισθητικά, ο λόγος που η B δεν είναι αναγνωρίζεται από πεπερασμένο αυτόματο, είναι ότι μια λέξη της B μπορεί να αποτελείται από οσοδήποτε μεγάλη αρχική ακολουθία από 0 ς συνολικού μήκους n. Αυτό το πλήθος n από 0 ς δεν είναι δυνατόν να απομνημονευτεί στις πεπερασμένες καταστάσεις ενός αυτομάτου ώστε να συγκριθεί αν είναι ίσο με τα 1 ς που ακολουθούν. Το παραπάνω διαισθητικό επιχείρημα δεν αποτελεί απόδειξη της μη κανονικότητας της B. Δηλαδή, η ανάγκη τη μετρήσεως του πλήθους των διαφορετικών εμφανίσεων στοιχείων που μας ενδιαφέρουν σε μια λέξη δεν συνεπάγεται πάντα μη κανονικότητα της γλώσσας. Για παράδειγμα ας θεωρήσουμε της γλώσσες στο αλφάβητο S = {0, 1}: C = {w : έχει ίσο πλήθος 0 ς και 1 ς} και D = {w : έχει ίσο πλήθος εμφανίσεων των υπακολουθίων 01 και 10} Διαισθητικά, επειδή και οι δυο γλώσσες φαίνεται να απαιτούν μέτρηση εμφανίσεων επιθυμητών υπακολουθίων, μας κάνει να νομίζουμε ότι δεν είναι κανονικές. Το εκπληκτικό είναι, και συνάμα πολύ διδακτικό στο να μην εμπιστευόμαστε τυφλά την διαίσθηση, ότι η γλώσσα D είναι κανονική. 1.2 L mma ˆntlhshc gia mh kanonikèc gl ssec Θα παρουσιάσουμε μια τεχνική αυστηρής αποδείξεως ότι μια δοσμένη γλώσσα δεν είναι κανονική. Η τεχνική αυτή ονομάζεται λήμμα της άντλησης και βασίζεται στο γεγονός ότι όλες οι κανονικές γλώσσες έχουν μια ειδική ιδιότητα. Αν μπορέσουμε να δείξουμε, με τη βοήθεια του λήμματος, ότι η προς εξέταση γλώσσα L δεν έχει την ειδική ιδιότητα τότε σίγουρα η L δεν είναι κανονική. 5

6 6KEFŸALAIO 1. TO LŸHMMA THS ŸANTLHSHS GIA MH KANONIKŸES GLŸWSSES Παρατηρούμε ότι το λήμμα της άντλησης έχει αρνητικό στόχο: την απόδειξη ότι η προς εξέταση γλώσσα δεν είναι κανονική. H eidik idiìthta kˆje kanonik c gl ssac: Θα προσπαθήσουμε να περιγράψουμε διαισθητικά την ειδική ιδιότητα που εμφανίζεται σε όλες τις κανονικές γλώσσες. Καταρχήν παρατηρούμε ότι κάθε μία κανονική γλώσσα L αντιστοιχεί σε ένα πεπερασμένο αυτόματο M L που την αναγνωρίζει. Επειδή το M L είναι πεπερασμένο τότε θα έχει πεπερασμένο πλήθος καταστάσεων, έστω k αυτές q 1,..., q k. Η κρίσιμη παρατήρηση είναι ότι κάθε λέξη w της κανονικής γλώσσας L με μήκος w > k, δηλαδή μεγαλύτερο από το πλήθος των καταστάσεων του M L, όταν δοθεί ως είσοδο στο M L τότε αναγκαστικά το αυτόματο θα περιέλθει σε μια κατάσταση του > 1 φορά. Διότι ξέρουμε ότι κάθε αυτόματο, σε κάθε γράμμα της εισόδου που διαβάζει μεταβαίνει σε αντίστοιχη κατάσταση. Το κρίσιμο συμπέρασμα είναι: το M L ακόμα και αν διαβάζοντας κάθε γράμμα της λέξης w μεταβαίνει σε διαφορετική κατάσταση, θα οδηγηθεί σε επανάληψη επίσκεψης καταστάσεως, επειδή ισχύει k < n (καταστάσεις του M L είναι < μήκος λέξεως w L) Σχηματικά, έστω μια αρκετά μακρουλή λέξη w L : μήκος: n>k { }} { w = 1... t t+1... p p+1... n = 1... p μήκος: p k ώστε t να είναι το γράμμα που οδήγησε το αυτόματο M L για πρώτη φορά στην κατάσταση q p και p να είναι το γράμμα που οδήγησε το αυτόματο M L για πρώτη φορά σε επανάληψη επισκέψεως της καταστάσεως q p. Άρα, αν μετά το γράμμα p που μας οδήγησε στην q p παραθέσουμε όσες i φορές επιθυμούμε την υπολέξη t+1... p πάντα θα φθάνουμε στην κατάσταση q p. Ετσι όταν το αυτόματο M L διαβάσει στην συνέχεια την υπό-λέξη p+1... n θα οδηγηθεί σε αποδοχή της w (διότι η μακρουλή λέξη w L). Το σημαντικό είναι να αντιληφθούμε σε αυτό το σημείο ότι αν φουσκώσουμε την μακρουλή λέξη για όσες i φορές θέλουμε τότε προκύπτει η λέξη: w(i) = 1... t ( t+1... p ) i p+1... n = i, για κάθε i 0 η οποία ανήκει στη κανονική γλώσσα L. Διότι η αντλημένη υπό-λέξη ( t+1... p ) i ( φουσκωμένη κατά i φορές, αν σας αρέσει) πάντα θα μας οδηγεί στην κατάσταση q p από την οποία μας παραλαμβάνει η υπό-λέξη και μας οδηγεί με βεβαιότητα σε κατάσταση αποδοχής. Οσα περιγράψαμε διαισθητικά παραπάνω διατυπώνονται αυστηρά με το εξής λήμμα: Λήμμα Άντλησης: Αν L είναι μια κανονική γλώσσα, υπάρχει ένας φυσικός αριθμός p (είναι το μήκος φουσκώματος που χαρακτηρίζεται από το πλήθος k καταστάσεων του πεπερασμένου αυτόματος M L που αποδέχεται την L), ώστε κάθε μακρουλή λέξη w L, δηλαδή με μήκος w p, να μπορεί να γραφεί w = ώστε να ισχύουν οι παρακάτω ιδιότητες: 1. Για κάθε φυσικό i 0 η φουσκωμένη λέξη ανήκει στην γλώσσα: i L. 2. Υπάρχει η αρχική υπό-λέξη ώστε να φουσκωθεί: > Η υπό-λέξη που φουσκώνουμε έχει μήκος το πολύ: p.

7 1.3. QRŸHSH TOU LŸHMMATOS ŸANTLHSHS 7 An upìjesh sumpèrasma. Η διατύπωση του Λήμματος άντλησης είναι της μορφής A B και όχι της μορφής A B. Η μοναδική υπόθεση του λήμματος είναι η κανονικότητα της γλώσσας και οι ιδιότητες 1, 2, 3 έπονται ως συμπέρασμα. Ομως, αν για μια προς εξέταση γλώσσα L και για κάθε μακρουλή λέξη w L με μήκος w > p ισχύουν οι ιδιότητες 1, 2, 3 τότε αυτό δεν συνεπάγεται ότι η γλώσσα L είναι κανονική. Για παράδειγμα ας θεωρήσουμε ότι είναι αληθινή η παρακάτω πρόταση: Αν είμαστε στην Ελλάδα όλες οι μέρες είναι ηλιόλουστες. Πείτε ότι μας κλείνουν τα μάτια και μας μεταφέρουν σε μια άγνωστη χώρα (η οποία μπορεί να είναι και η Ελλάδα). Ακόμα και αν μας φανούν ηλιόλουστες όλες οι μέρες της άγνωστης χώρας, από αυτό και μόνο, δεν είναι σωστό να συμπεράνουμε ότι η χώρα που οδηγηθήκαμε είναι η Ελλάδα (διότι η προς εξέταση χώρα μπορεί να μην έχει όμορφες παραλίες). Προσοχή όμως, αν βρούμε έστω και μία συννεφιασμένη μέρα τότε αυτό σίγουρα σημαίνει ότι η χώρα δεν είναι η Ελλάδα. Αυτή είναι ακριβώς και η χρησιμότητα του λήμματος της άντλησης: η εύρεση έστω και μίας λέξης που παραβιάζει τις ιδιότητες 1, 2, 3 μας οδηγεί με ασφάλεια στο συμπέρασμα ότι η προς εξέταση γλώσσα δεν είναι κανονική. 1.3 Qr sh tou L mmatoc 'Antlhshc Το Λήμμα το χρησιμοποιούμε για να δείξουμε ότι μια προς εξέταση γλώσσα B δεν είναι κανονική. Αυτό το επιτυγχάνουμε: υποθέτοντας ότι η B είναι κανονική, συνεπώς θα υπάρχει ο φυσικός αριθμός p που χαρακτηρίζει το μήκος της άντλησης προσπαθούμε να βρούμε μια κακιά μακρουλή λέξη s = B, s p και να διακρίνουμε τις δυνατές μορφές 1 1,..., m m, μήκους p, που μπορεί να έχει η προς φούσκωμα υπό-λέξη της κακιάς λέξης s B φουσκώνουμε i φορές, για κατάλληλο φυσικό i, κάθε μορφή: 1 i 1,..., m i m και δείχνουμε ότι οι φουσκωμένες λέξεις 1 i 1,..., m i m δεν ανήκουν στην γλώσσα B (άτοπο) DeÐte ìti gl ssa B = {0 n 1 n : n 0} eðnai mh kanonik Υποθέτουμε ότι η B είναι κανονική και έστω p το μήκος άντλησης που λόγω του Λήμματος Άντλησης υπάρχει. Πρέπει να βρούμε μια κακιά λέξη s = B, που να είναι αρκετά μακρουλή s > p, ώστε φουσκώνοντας την i φορές να καταλήξουμε σε λέξη s(i) B. Αυτό είναι άτοπο, διότι αν B κανονική γλώσσα τότε κάθε μακρουλή λέξη με μήκος > p όσο και να φουσκώσει πρέπει να ανήκει στη B. Σε αυτή την περίπτωση η κακιά λέξη s είναι εύκολο να ανακαλυφθεί. Λόγω της μορφής των λέξεων της γλώσσας B, όπου έχουμε ίσο-μοίρασμα των 0ς και 1ς, το παραμικρό φούσκωμα υπολέξης θα δημιουργήσει λέξη που καταστρέφει το ισομοίρασμα. Εστω η κακιά λέξη: s = 0 p 1 p B, με s > p Το τμήμα της s προς φούσκωμα μπορεί να είναι: = ώστε 0 < = k p. Δηλαδή το αποτελείται μόνο από 0ς. Τότε η i θα περιέχει (i 1) k περισσότερα 0 ς από τα αντίστοιχα 1 ς, δηλαδή δεν ανήκει στην B για κάθε i 2. = ώστε 0 < = k p. Δηλαδή το αποτελείται μόνο από 1 ς. Τότε η i θα περιέχει (i 1) k περισσότερα 1 ς από τα αντίστοιχα 0 ς, δηλαδή δεν ανήκει στην B για κάθε i 2. (Ο έλεγχος αυτός είναι καταχρηστικός, διότι p, και άρα υποχρεωτικά = ) = ώστε 0 < = k p. Δηλαδή το αποτελείται από 0 ς ακολουθούμενα από 1 ς.

8 8KEFŸALAIO 1. TO LŸHMMA THS ŸANTLHSHS GIA MH KANONIKŸES GLŸWSSES Τότε η i θα περιέχει ίσο πλήθος 1 ς και 0 ς, όμως για κάθε i 2 δημιουργεί εναλλαγές από 0 ς και 1 ς και συνεπώς δεν ανήκει στην B. (Ο έλεγχος αυτός είναι καταχρηστικός, διότι p, και άρα υποχρεωτικά = ) DeÐte ìti gl ssa C = {w : w èqei Ðso pl joc apì 0'c kai 1'c} eðnai mh kanonik Υποθέτουμε ότι η C είναι κανονική και έστω p το μήκος άντλησης που λόγω του Λήμματος Άντλησης υπάρχει. Πρέπει να βρούμε μια κακιά λέξη s = C, που να είναι αρκετά μακρουλή s > p, ώστε φουσκώνοντας την i φορές να καταλήξουμε σε λέξη s(i) C. Αυτό είναι άτοπο, διότι αν C κανονική γλώσσα τότε κάθε μακρουλή λέξη με μήκος > p όσο και να φουσκώσει πρέπει να ανήκει στη C. Εστω η κακιά λέξη: s = 0 p 1 p C, με s > p Στόχος μας είναι να φθάσουμε σε άτοπο, δηλαδή να δείξουμε ότι η λέξη μπορεί να γραφεί s = ώστε η φουσκωμένη λέξη i C για κάποιο i 0. Ενα έμπειρο, μα βιαστικό μάτι, θα παρατηρούσε ότι κάθε φούσκωμα i διατηρεί ίσα τα πλήθη των 0 1 και 1 ς στην s, όπως δηλαδή ήταν προ του φουσκώματος. Ούπς! δεν φαντάζει για άτοπο. Ομως, η ιδιότητα 3 του Λήμματος Άντλησης μας λέει ότι p. Άρα η υπό-λέξη της κακιάς λέξης s = 0 p 1 p πρέπει να έχει μόνο 0 ς και συνεπώς το φούσκωμα της σε s(i) θα αυξήσει τα 0 ς και άρα s(i) C. Παρατήρηση. Σε αυτό το σημείο είναι σημαντικό να δείξουμε πόσο σημαντική είναι η σωστή επιλογή της κακιάς λέξης. Αν επιλέξουμε για παράδειγμα την λέξη s = (01) p = C, με s > p Τότε έχουμε τις εξής επιλογές για την προς φούσκωμα υπολέξη : 1. = (01) j για j > 0, δηλαδή s = (01) p = (01) k (01) j (01) t, ώστε k + j + t = p για j > 0 και k, t 0. Εδώ δεν μπορούμε να πετύχουμε άτοπο, διότι για κάθε i 0 η φουσκωμένη υπολέξη i = ( (01) j) i περιέχει ίσο πλήθος από 0ς και 1ς, επειδή η = (01) j περιέχει ίσο πλήθος από 0ς και 1ς. Άρα προκύπτει η λέξη s(i) = i θα ανήκει στην C για κάθε i = 1(01) j για j 0, δηλαδή s = (01) p = (01) k 0 1(01) j (01) t, ώστε k + j + t = p 1 για j > 0 και k, t 0. Εδώ μπορούμε να πετύχουμε άτοπο. Διότι για κάθε i 2 η φουσκωμένη λέξη i = ( 1(01) j) i δεν περιέχει ίσο πλήθος από 0ς και 1ς, επειδή η = 1(01) j δεν περιέχει ίσο πλήθος από 0ς και 1ς. Άρα η λέξη s(i) = i δεν θα ανήκει στην C για κάθε i = 1(01) j 0 για j 0, δηλαδή s = (01) p = (01) k 0 1(01) j 0 1(01) t, ώστε k + j + t = p 2 για j > 0 και k, t 0. Εδώ δεν μπορούμε να πετύχουμε άτοπο, διότι για κάθε i 0 η φουσκωμένη υπολέξη i = ( 1(01) j 0 ) i περιέχει ίσο πλήθος από 0ς και 1ς, επειδή η = 1(01) j 0 περιέχει ίσο πλήθος από 0ς και 1ς. Άρα λέξη s(i) = i θα ανήκει στην C για κάθε i = (01) j 0 για j 0, δηλαδή s = (01) p = (01) k (01) j 0 1(01) t, ώστε k + j + t = p 1 για j > 0 και k, t 0. Εδώ μπορούμε να πετύχουμε άτοπο. Διότι για κάθε i 2 η φουσκωμένη λέξη i = ( (01) j 0 ) i δεν περιέχει ίσο πλήθος από 0ς και 1ς, επειδή η = (01) j 0 δεν περιέχει ίσο πλήθος από 0ς και 1ς. Άρα η λέξη s(i) = i δεν θα ανήκει στην C για κάθε i 2.

9 1.3. QRŸHSH TOU LŸHMMATOS ŸANTLHSHS 9 Στις περιπτώσεις 2 και 4 πετυχαίνουμε να φτάσουμε σε άτοπο, γιατί το έχει άνισο αριθμό 0ς και 1ς. Στις άλλες δύο περιπτώσεις δεν μπορούμε να πετύχουμε άτοπο. Δεν μπορούμε λοιπόν να εγγυηθούμε ότι κάποια από αυτές τις περιπτώσεις δεν θα ισχύσει και κατά συνέπεια δεν είμαστε σε θέση να ολοκληρώσουμε την απόδειξη χρησιμοποιώντας αυτή την επιλογή της κακιάς λέξης DeÐte ìti gl ssa F = {ww : w {0, 1} } eðnai mh kanonik Υποθέτουμε ότι η F είναι κανονική και έστω p το μήκος άντλησης που λόγω του Λήμματος Άντλησης υπάρχει. Πρέπει να βρούμε μια κακιά λέξη s = F, που να είναι αρκετά μακρουλή s > p, ώστε φουσκώνοντας την i φορές, για κάποιο κατάλληλο i, να καταλήξουμε σε λέξη s(i) F. Αυτό είναι άτοπο, διότι υποθέσαμε ότι η F είναι κανονική γλώσσα και τότε κάθε μακρουλή λέξη με μήκος > p όσο και να φουσκώσει πρέπει να ανήκει στη F. Εστω η κακιά λέξη 1 : s = 0 p 10 p 1 F, με s > p Στόχος μας είναι να φθάσουμε σε άτοπο, δηλαδή να δείξουμε ότι η λέξη μπορεί να γραφεί s = ώστε η φουσκωμένη λέξη i C για κάποιο i 0. Επειδή η συνθήκη 3 του Λήμματος Αντλησης λέει ότι p συμπεραίνουμε ότι η προς φούσκωση υπό-λέξη αποτελείται μόνο από 0 ς. Συνεπώς για i = 2 η φουσκωμένη λέξη F DeÐte ìti gl ssa D = {1 n2 : n 0} eðnai mh kanonik Υποθέτουμε ότι η D είναι κανονική και έστω p το μήκος άντλησης που λόγω του Λήμματος Άντλησης υπάρχει. Πρέπει να βρούμε μια κακιά λέξη s = D, που να είναι αρκετά μακρουλή s > p, ώστε φουσκώνοντας την i φορές, για κάποιο κατάλληλο i, να καταλήξουμε σε λέξη s(i) D. Αυτό είναι άτοπο, διότι υποθέσαμε ότι η D είναι κανονική γλώσσα και τότε κάθε μακρουλή λέξη με μήκος > p όσο και να φουσκώσει πρέπει να ανήκει στη D. Το κλειδί για να κατασκευάσουμε την κακιά λέξη s = είναι να παρατηρήσουμε πως κλιμακώνονται τα μήκη των λέξεων της D. Τα μήκη κλιμακώνονται τετραγωνικά, δηλαδή: 0, 1 = 1 2, 4 = 2 2, 9 = 3 2, 16 = 4 2, 25 = 5 2, 36 = 6 2, 49 = 7 2,..., n 2, (n + 1) 2,..., Παρατηρούμε ότι όσο μεγαλώνει το τρέχον μήκος n μιας λέξης, οι λέξεις του αμέσως μεγαλύτερου μήκους (n + 1) 2 έχουν μεγάλη διαφορά από τις αντίστοιχες του αμέσως μικρότερου μήκους. Με άλλα λόγια, το (n + 1) 2 είναι πολύ μεγάλο σε σχέση με το n 2. Λαμβάνοντας υπόψιν αυτό το φαινόμενο, στόχος μας είναι καταφέρουμε να βρούμε κατάλληλο i για μια κακιά λέξη s = D, ώστε η s(i) = i να έχει τετραγωνικό μήκος s(i) = n 2 μα αν τη φουσκώσουμε 1 φορά ακόμη η s(i + 1) = i+1 να αποκτήσει μήκος s(i + 1) < (n + 1) 2 και συνεπώς να μην ανήκει στην D. Δηλαδή για να αποτύχει το φούσκωμα κατά 1 φορά πρέπει να ισχύει η ανίσωση: i+1 i = m koc: n 2 + m koc: n 2 οφείλει να είναι < (n + 1) 2 n 2 = 2n + 1 = 2 i + 1 (1.1) m koc: n 2 1 Το κουμπί είναι η έξυπνη επιλογή της κακιάς λέξης. Για παράδειγμα η υποψήφια κακιά λέξη s = 0 p 0 p F όσο και να φουσκώσει παραμένει στην F.

10 10KEFŸALAIO 1. TO LŸHMMA THS ŸANTLHSHS GIA MH KANONIKŸES GLŸWSSES Παρατηρούμε ότι αν η κακιά λέξη είναι s = = 1 p2 με μήκος s = p 2, από συνθήκη 3 του Λήμματος Άντλησης έχουμε s = p 2. Συνεπώς, για να ισχύει η Ανίσωση (1.1), πρέπει να θέσουμε i = p 4 ώστε το 2 i + 1 να υπερβεί το p 2 και κατ επέκταση το DeÐte ìti gl ssa E = {0 i 1 j : i > j} eðnai mh kanonik Σε αυτό το παράδειγμα, αντί να φουσκώσουμε τη κακιά λέξη s = = 0 p+1 1 p, θα τη ξεφουσκώσουμε. Επειδή p το τμήμα θα αποτελείται μόνο από 0 ς. Οπότε για κάθε i > 0 η φουσκωμένη s(i) = i πάντα θα έχει περισσότερα 0 ς από 1 ς και συνεπώς θα ανήκει στην γλώσσα E. Ενα έμπειρο μάτι παρατηρεί ότι για i = 0 η ξεφουσκωμένη s(0) = E (γιατί; ; ;) DeÐte ìti gl ssa A = {a(ab) n c n : n 0} den eðnai kanonik Εστω ότι η A είναι κανονική και p το μήκος άντλησης. Θεωρούμε τη λέξη s = a(ab) p c p A Επειδή s = 3p + 1 p, σύμφωνα με το Λήμμα Άντλησης υπάρχουν,, έτσι ώστε να ισχύουν οι ιδιότητες (i) s = (ii) 0 < p και (iii) για κάθε i N, i A. Επειδή p, η συμβολοσειρά δεν περιέχει το χαρακτήρα c. Σχηματικά: s = a(ab) p }{{} c p Διακρίνουμε περιπτώσεις για την μορφή του ώστε να αντιληφθούμε την μορφή του. 1. Αν = a. Τότε = ε είναι η κενή συμβολοσειρά και = a, δηλαδή: s = }{{} ɛ Αλλά τότε η λέξη s(0) = 0 = (ab) p c p A. }{{} a (ab) p c p 2. Αν = a(ab) q, q p. Τότε s = a(ab) q (ab) p q c p και διακρίνουμε τις υπο-περιπτώσεις = a. Τότε s = a }{{} Φουσκώνουμε για i = 2 και λαμβάνουμε (ab) q : =2q>0 (ab) p q c p s(2) = 2 = a(ab) 2q (ab) p q c p Παρατηρούμε ότι για να ανήκει η s(2) στην A θα πρέπει να είναι της μορφής a(ab) p c p, δηλαδή θα πρέπει να ισχύει ότι p = 2q + p q q = 0, άτοπο διότι = 2q > 0. = a(ab) t, 0 < t < q. Τότε (ab) t { }} { s = a } ab {{... ab } (ab) q t : =2(q t)>0 (ab) p q c p Για να ανήκει στη γλώσσα A η s(0) = 0 = a(ab) t (ab) p q c p θα πρέπει να είναι της μορφής a(ab) p c p, δηλαδή θα πρέπει να ισχύει p = t + p q t = q, οπότε = (ab) q t = ε, άτοπο, διότι > 0.

11 1.3. QRŸHSH TOU LŸHMMATOS ŸANTLHSHS 11 = a(ab) t a, 0 < t < q. Τότε (ab) t a { }} { s = a } ab. {{.. aba } b(ab) q t 1 : =2(q t) 1>0 (ab) p q c p Ομως η λέξη s(0) = 0 = a(ab) t a(ab) p q c p δεν μπορεί να ανήκει στη γλώσσα A. 3. Αν = a(ab) q a και = b(ab) p q 1 c p, σχηματικά: Διακρίνουμε πάλι τις παρακάτω υπο-περιπτώσεις. s = a(ab) q a b(ab) p q 1 c p Αν = a, τότε εργαζόμαστε όπως προηγούμενα. Αν = a(ab) t, 0 < t < q οπότε = (ab) q t a, = b(ab) p q 1 c p, σχηματικά: s = a(ab) t (ab) q t a b(ab) p q 1 c p Παρατηρούμε ότι δεν μπορεί να ανήκει στην A η λέξη s(0) = 0 = a(ab) t b(ab) p q 1 c p. Αν = a(ab) t a, 0 < t < q οπότε = b(ab) q t 1 a, = b(ab) p q 1 c p, σχηματικά: s = a(ab) t a b(ab) q t 1 a b(ab) p q 1 c p Παρατηρούμε ότι για να ανήκει στην A η λέξη s(0) = 0 = a(ab) t ab(ab) p q 1 c p θα πρέπει να έχουμε p = p q 1 + t + 1 δηλαδή q = t, πράγμα που είναι σε αντίθεση με την υπόθεση της υπο-περίπτωσης που εξετάζουμε. Συμπεραίνουμε ότι η A δεν είναι κανονική 'Estw L h gl ssa sto alfˆbhto {a, b} pou orðetai anadromikˆ wc e c: L 0 = {ab} L n+1 = L n {b L n } {ab L n } L = n L n DeÐte ìti h L den eðnai kanonik. Υποθέτουμε ότι η L είναι κανονική και έστω p το μήκος άντλησης. Θα προσπαθήσουμε να βρούμε κακιά λέξη s που παράγεται από τους κανόνες της γλώσσας L ώστε αν φουσκωθεί να μην ανήκει στην γλώσσα και να καταλήξουμε σε άτοπο. Εστω ότι η κακιά λέξη είναι της μορφής s = (ab) sp όπου s 0 = 1, s n+1 = 2s n + 1 και s L (δηλαδή η s παράγεται από το ab με διαδοχικές εφαρμογές του κανόνα ab) και το μήκος της είναι s = 2s p > s p p

12 12KEFŸALAIO 1. TO LŸHMMA THS ŸANTLHSHS GIA MH KANONIKŸES GLŸWSSES Η λέξη θα αποτελείται από τα μέρη: όπου κάθε μέρος είναι δυνατόν να έχει την μορφή: s = (ab) r a t s =, 0 < p b t (ab) m r t a j =2m+j p b j (ab) s p m j με 0 r m, 0 t, j 1. Διαισθητικά, για να καταλάβουμε την άνω μορφή, αρκεί να δούμε ότι το προς φούσκωμα μέρος μπορεί να είναι T 1 ab... abt 2 όπου T 1 {ɛ, b} και T 2 {ɛ, a}. Θεωρούμε τη φουσκωμένη λέξη s(2) = 2 = (ab) r a t b t (ab) m r t a j b t (ab) m r t a j b j (ab) sp m j Η s(2) δεν είναι της μορφής b, ούτε μπορεί να είναι της μορφής wabw με w της μορφής bvv, γιατί όλες αυτές οι λέξεις αρχίζουν με b. Επομένως η s(2) μπορεί μόνο να παράγεται από το ab με διαδοχικές εφαρμογές του κανόνα ab. Επομένως πρέπει t = j {0, 1} Κάνοντας με προσοχή της πράξεις στην άνω μορφή έχουμε: s(2) = (ab) s p+(m r) = (ab) s n για κάποιο n > p, n = p + i, δηλαδή s n = s p+i s p+1 (όπου r < m, αλλιώς = ε) άρα: που είναι άτοπο. s p+1 s n = s p + (m r) s p + m < s p + p 2s p < 2s p + 1 = s p 'Estw L h gl ssa sto alfˆbhto {a, b} pou orðetai anadromikˆ wc e c: 1. a L 2. Αν L a 2 b L 3. L μόνο από τα 1, 2, άνω. EÐnai h L kanonik? Εύκολα βρίσκουμε ότι οι λέξεις της γλώσσας L έχουν την γενική μορφή: L = {(a 3 b) 2n 1 a n 0} Υποθέτουμε ότι η L είναι κανονική και έστω p το μήκος άντλησης. Θα προσπαθήσουμε να βρούμε κακιά λέξη s που παράγεται από τους κανόνες της γλώσσας L ώστε αν φουσκωθεί να μην ανήκει στην γλώσσα και να καταλήξουμε σε άτοπο. Εστω ότι η κακιά λέξη είναι της μορφής Θα δείξω ότι δεν μπορεί να γραφεί ως s = (a 3 b) 2p 1 a, με s p s =, 0 < p

13 1.3. QRŸHSH TOU LŸHMMATOS ŸANTLHSHS 13 ώστε η λέξη Παρατηρώ ότι s(2) = L s = 4 (2 p 1) + 1 = 4 2 p 3 Οποιαδήποτε λέξη L με μήκος > s πρέπει να έχει μήκος τουλάχιστον όσο το αμέσως μεγαλύτερο μήκος από το s = 4 2 p 3, δηλαδή μήκος 4 2 p+1 3. Ομως η s(2) αντιβαίνει αυτό τον κανόνα, διαισθητικά, αυξάνει λίγο σε σχέση με την s. Διότι παρόλο που s(2) > s έχουμε s(2) < 4 2 p+1 3. Για να το δούμε αυτό, αρκεί να παρατηρήσουμε ότι s(2) = s + όπου p και άρα s(2) 4 2 p 3+p < 2 p+1 3. Άτοπο.

14 14KEFŸALAIO 1. TO LŸHMMA THS ŸANTLHSHS GIA MH KANONIKŸES GLŸWSSES

15 Kefˆlaio 2 To L mma thc 'Antlhshc gia gl ssec mh aneˆrthtec sumfraomènwn 2.1 Diaisjhtik parousðash tou L mmatoc me Dèntro Paragwg c Ας παρατηρήσουμε το άνω και κάτω δέντρο του Σχήματος 2.1. Το άνω δέντρο με κορυφή τη μεταβλητή T T R R u v T R R u v R v Sq ma 2.1: Ta fôlla tou ˆnw dèntrou paragwg c sqhmatðoun thn lèh s = uv. Ta fôlla tou kˆtw dèntrou paragwg c sqhmatðoun thn lèh s(2) = uv 2 2. σχηματίζει στα φύλλα του τη λέξη uv. Το υποδέντρο του με κορυφή τη πρώτη εμφάνιση της μεταβλητής 15

16 16KEFŸALAIO 2. TO LŸHMMA THS ŸANTLHSHS GIA GLŸWSSES MH ANEXŸARTHTES SUMFRAZ R σχηματίζει στα φύλλα του τη λέξη v (παρατηρήστε ότι το υποδέντρο αυτό δεν έχει στα φύλλα του τις υπολέξεις u και ). Πιο χαμηλά εμφανίζεται η δεύτερη εμφάνιση της μεταβλητής R και δημιουργεί υποδέντρο με τη λέξη στα φύλλα του (παρατηρήστε ότι το υποδέντρο αυτό δεν έχει στα φύλλα του τις υπολέξεις v και ). Αν στο άνω δέντρο, ακριβώς μετά από τη δεύτερη εμφάνιση της R, τοποθετήσουμε όλο το υποδέντρο που υπάρχει ακριβώς μετά την πρώτη εμφάνιση της R, τότε θα λάβουμε το κάτω δέντρο. Με αυτό το τρόπο στο κάτω δέντρο στα φύλλα του εμφανίζονται οι υπολέξεις: uvv = uv ParadeÐgmata me to L mma thc 'Antlhshc DeÐte ìti gl ssa B = {a n b n c n : n 0} den eðnai aneˆrthth sumfraomènwn. Εστω ότι η B είναι ΓΑΣ και έστω ο φυσικός p που είναι το μήκος της άντλησης. Επιλέγω για υποψήφια κακιά λέξη την: s = a p b p c p = uv B και θα δείξω ότι για κατάλληλο i δεν μπορεί να φουσκωθεί, καταλήγοντας σε άτοπο. Αν τα v, περιέχουν μόνο ένα είδος γραμμάτων δεν μπορούν να περιέχουν ταυτόχρονα τα a, b ή b, c. Συνεπώς η uv 2 2 δεν μπορεί να περιέχει το ίδιο πλήθος από a, b, c. Αν τα v, περιέχουν δύο είδη γραμμάτων η uv 2 2 μπορεί να περιέχει το ίδιο πλήθος από a, b, c, όμως δεν μπορεί να τα εμφανίζει με την σωστή σειρά (δηλαδή θα δημιουργούνται μη επιτρεπόμενες εναλλαγές από γράμματα) DeÐte ìti gl ssa C = {a i b j c k : 0 i j k} den eðnai aneˆrthth sumfraomènwn. Εστω ότι η C είναι ΓΑΣ και έστω ο φυσικός p που είναι το μήκος της άντλησης. Επιλέγουμε για υποψήφια κακιά λέξη την: s = a p b p c p = uv C και θα δείξω ότι για κατάλληλο i δεν μπορεί να φουσκωθεί, καταλήγοντας σε άτοπο. 1. Εστω ότι τα v, περιέχουν μόνο ένα είδος γραμμάτων, δηλαδή είναι της μορφής a... a ή b... b ή c.... Συνεπώς ένα είδος γραμμάτων από τα a, b, c δεν μπορεί να εμφανίζεται ταυτόχρονα στα v και. Αν το είδος a δεν εμφανίζεται ταυτόχρονα στα v και, τότε η λέξη s(0) = uv 0 0 = θα εμφανίζει ίδιο πλήθος a με την s όμως τα b και c οφείλουν να μειωθούν. Αν το είδος b δεν εμφανίζεται ταυτόχρονα στα v και, τότε το είδος a η b πρέπει να εμφανίζεται στα v,, διότι v > 0. Αν το είδος c εμφανίζεται στα v,, τότε η λέξη s(0) = uv 0 0 περιέχει περισσότερα b από c και άρα δεν ανήκει στην C. Αν το είδος a εμφανίζεται, τότε η λέξη s(2) = uv 2 2 περιέχει περισσότερα a από b και άρα δεν ανήκει στην C. Αν το είδος c δεν εμφανίζεται ταυτόχρονα στα v και, τότε η λέξη s(2) = uv 2 2 περιέχει περισσότερα a ή b από c, και άρα δεν ανήκει στην C. 2. Αν τα v, περιέχουν περισσότερο του ενός είδους γραμμάτων τότε η uv 2 2 μπορεί να περιέχει το ίσο πλήθος από a, b, c, όμως δεν μπορεί να τα εμφανίζει με την σωστή σειρά (δηλαδή θα δημιουργούνται μη επιτρεπόμενες εναλλαγές από γράμματα).

17 2.2. PARADEŸIGMATA ME TO LŸHMMA THS ŸANTLHSHS DeÐte ìti gl ssa D = {ww : w {0, 1} } den eðnai aneˆrthth sumfraomènwn. Εστω ότι η D είναι ΓΑΣ και έστω ο φυσικός p που είναι το μήκος της άντλησης. Επιλέγουμε για υποψήφια κακιά λέξη την: s = 0 p 10 p 1 = uv C και θα δείξω ότι για κατάλληλο i δεν μπορεί να φουσκωθεί, καταλήγοντας σε άτοπο. Ομως η λέξη s μπορεί να φουσκωθεί, αν γραφεί ως εξής: 0 p 1 0 p 1 { }} { { }} { 0 }. {{.. 0 } }{{} 0 }{{} 1 }{{} 0 } 0. {{.. 0 } u v Πρέπει να βρούμε οπωσδήποτε άλλη κακιά λέξη. Ας δοκιμάσουμε το: s = 0 p 1 p 0 p 1 p = uv C και ας προσέξουμε την συνθήκη v p του Λήμματος. 1. Εστω ότι το τμήμα v εμφανίζεται στο αριστερό μισό τμήμα της s. Τότε η φουσκωμένη λέξη s(2) = uv 2 2 σπρώχνει ένα 1 στη πρώτη θέση του δεύτερου μισού της s(2), άρα η s(2) δεν μπορεί να είναι της μορφής ww. 2. Εστω ότι το τμήμα v εμφανίζεται στο δεξιό μισό τμήμα της s. Τότε η φουσκωμένη λέξη s(2) = uv 2 2 σπρώχνει ένα 0 στη τελευταία θέση του πρώτου μισού της s(2), άρα η s(2) δεν μπορεί να είναι της μορφής ww. 3. Τέλος, έστω ότι το τμήμα v εμφανίζεται κεντρικά στην s. Τότε η λέξη s(0) = uv 0 0 έχει μορφή 0 p 1 i 0 j 1 p, όπου τα i, j δεν μπορούν να είναι ταυτόχρονα ίσα με p. Άρα η s(0) δεν μπορεί να είναι της μορφής ww.

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a m b n c p m,n,p 0 και είτε m + n = p είτε m = n + p } (β) { xx rev yy rev x, y {a,b}

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 6: Μη Κανονικές Γλώσσες ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 6: Μη Κανονικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά Το Λήμμα της Άντλησης για κανονικές γλώσσες Παραδείγματα 1 Πότε μια γλώσσα δεν είναι κανονική;

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Μη Ασυμφραστικές Γλώσσες (2.3) Λήμμα Άντλησης για Ασυμφραστικές Γλώσσες Παραδείγματα

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a k b m c n k < m ή m > 2n, όπου k,m,n 0 } Μια γραμματική για τη γλώσσα έχει ως εξής:

Διαβάστε περισσότερα

Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α.

Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α. Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α. Δύο Π.Α. Μ 1 και Μ 2 είναι ισοδύναμα ανν L(M 1 ) = L(M 2 ). Έστω Μ = (Q, Σ, q 0, Δ, F) μη Αιτ. Π.Α. Για κάθε κατάσταση q Q, ορίζουμε ως Ε(q) Q το σύνολο των καταστάσεων

Διαβάστε περισσότερα

Φροντιστήριο 7 Λύσεις

Φροντιστήριο 7 Λύσεις Άσκηση 1 Θεωρείστε το πιο κάτω αυτόματο στοίβας: Φροντιστήριο 7 Λύσεις (α) Να εξηγήσετε με λόγια ποια γλώσσα αναγνωρίζεται από το αυτόματο. (β) Να δώσετε τον τυπικό ορισμό του αυτομάτου. (γ) Να δείξετε

Διαβάστε περισσότερα

Mh apofasisimèc gl ssec. A. K. Kapìrhc

Mh apofasisimèc gl ssec. A. K. Kapìrhc Mh apofasisimèc gl ssec A. K. Kapìrhc 15 Maòou 2009 2 Perieqìmena 1 Μη αποφασίσιμες γλώσσες 5 1.1 Ανάγω το πρόβλημα A στο B................................. 5 1.2 Αναγωγές μη επιλυσιμότητας..................................

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { a i b j c k d m i, j, k, m 0 και i + j = k + m } (β) { uxvx rev u,v,x {0,1,2} + και όλα

Διαβάστε περισσότερα

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα.

Άσκησηη 1. (α) Το αυτόματο. (γ) Να δείξετε όλα aabbb. Λύση. λέξεις. αυτόματο. (β) Τυπικά. μεταβάσεων δ. ορίζεται. (γ) Θα δείξουμε τα. ΕΠΛ211: : Θεωρία Υπολογισμού και Πολυπλοκότητα Φροντιστήριο 7 Λύσεις Άσκησηη 1 Θεωρήστε το πιο κάτω αυτόματο στοίβας: (α) Να εξηγήσετε με λόγια ποια γλώσσαα αναγνωρίζεται από τοο αυτόματο. (β) Να δώσετε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { w {(, )} * οι παρενθέσεις στην w είναι ισοζυγισμένες } (β) { a k b m c 2m a k k > 0,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων 1 Λύσεις Άσκηση 1 Έστω αλφάβητο Σ και γλώσσες Λ 1, Λ 2 επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις. Σε περίπτωση που μια σχέση ισχύει να

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) {0 n 1 n n > 0} {0 n 1 2n n > 0} (β) {w {a,b} * η w ξεκινά και τελειώνει με το ίδιο σύμβολο

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά (2.3) Το Λήμμα της Άντλησης για ασυμφραστικές γλώσσες (2.3.1) Παραδείγματα 1 Πότε μια

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { xyxy rev x {a, b}, y {a, b} * } (α) Μια γραμματική για τη γλώσσα έχει ως εξής: S as a

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 3 Λύσεις Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { x x η τιμή της αριθμητικής έκφρασης 10 2n + 10 n + 1, n 1} (β) { a i b j c k d m i, j,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Ορίζουμε τη συναρμογή δύο γλωσσών Α και Β ως ΑΒ = { uv u A, v B }. (α) Έστω Α = {α,β,γ} και Β =. Να περιγράψετε τη γλώσσα ΑΒ. (β) Θεωρήστε τις γλώσσες L, M και N. Να δείξετε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 3 Λύσεις

Σειρά Προβλημάτων 3 Λύσεις Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) { xyw 1w 2 x, y {a, b}, w 1 = a n, w 2 = b 2n, όπου, αν x=y=a, τότε n = 2k, διαφορετικά

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 18: Λήμμα Άντλησης για ΓΧΣ Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012

ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης. Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 ΗΥ180: Λογική Διδάσκων: Δημήτρης Πλεξουσάκης Φροντιστήριο 8 Επίλυση για Horn Clauses Λογικός Προγραμματισμός Τετάρτη 9 Μαΐου 2012 Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης

HY Λογική Διδάσκων: Δ. Πλεξουσάκης HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w w = (ab) 2m b m (ba) m, m 0 } (β) Να διατυπώσετε

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές Εισαγωγή στην Επιστήμη των Υπολογιστών 4ο εξάμηνοσ.h.m.μ.y. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές Στάθης Ζάχος Συνεργασία: Κωστής Σαγώνας Επιμέλεια:

Διαβάστε περισσότερα

H mèjodoc Sturm. Mˆjhma AkoloujÐec Sturm

H mèjodoc Sturm. Mˆjhma AkoloujÐec Sturm Mˆjhma 2 H mèjodoc Sturm Το θεώρημα του Sturm μας δίνει έναν τρόπο καταμέτρησης των πραγματικών ριζών ενός πολυωνύμου σε δοσμένο διάστημα που τηρεί κάποιες συνθήκες. Εισάγουμε την έννοια της ακολουθίας

Διαβάστε περισσότερα

Ασκήσεις από παλιές εξετάσεις

Ασκήσεις από παλιές εξετάσεις Άσκηση 2 - Τελική εξέταση 2012 Ασκήσεις από παλιές εξετάσεις (α) [10 μονάδες] Να μετατρέψετε το πιο κάτω NFA σε ένα ισοδύναμο DFA χρησιμοποιώντας την κατασκευή που μελετήσαμε στο μάθημα. a a q 0 a, ε q

Διαβάστε περισσότερα

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1)

x 2 + y 2 = z 2 x = 3, y = 4, z = 5 x 2 + y 2 = z 2 (2.1) Πυθαγόρειες Τριάδες Χριστίνα Ιατράκη Ημερομηνία παράδοσης -10-014 1 Εισαγωγικά Ορισμός 1.1 Πυθαγόρεια τριάδα καλείται κάθε τριάδα ακέραιων (x, y, z) που είναι μη τετριμμένη λύση της εξίσωσης Μια τέτοια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Παρασκευή, 17 Μαρτίου 2017 Διάρκεια : 9.00 10.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Σάββατο, 15 Μαρτίου 2014 Διάρκεια : 9.30 11.30 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6 Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 3η ενότητα: Αυτόματα και Τυπικές Γραμματικές http://www.corelab.ece.ntua.gr/courses/ Αυτόματα Τρόπος κωδικοποίησης αλγορίθμων. Τρόπος περιγραφής συστημάτων πεπερασμένων

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΝΑΤΟ ΜΑΘΗΜΑ, 5-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα μιλήσουμε για την έννοια της περιοχής, η οποία έχει κεντρικό ρόλο στη μελέτη της έννοιας του ορίου (ακολουθίας και συνάρτησης). Αν > 0, ονομάζουμε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 15-10-13 Μ. Παπαδημητράκης. 1 Παράδειγμα. Ως εφαρμογή της Αρχιμήδειας Ιδιότητας θα μελετήσουμε το σύνολο { 1 } A = n N = {1, 1 n 2, 1 } 3,.... Κατ αρχάς το σύνολο A έχει προφανώς

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αυτόματα Στοίβας (2.2) Τυπικός Ορισμός Παραδείγματα Ισοδυναμία με Ασυμφραστικές

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων)

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων) ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 7: Ασυμφραστικές Γλώσσες (Γλώσσες Ελεύθερες Συμφραζομένων) Τι θα κάνουμε σήμερα Εισαγωγικά Ασυμφραστικές Γραμματικές (2.1) Τυπικός Ορισμός Της Ασυμφραστικής

Διαβάστε περισσότερα

11 OktwbrÐou 2012. S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

11 OktwbrÐou 2012. S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc Mˆjhma 7 0 11 OktwbrÐou 2012 Orismìc sunart sewn mèsw orismènwn oloklhrwmˆtwn To orismèno olokl rwma prosfèrei ènan nèo trìpo orismoô sunˆrthshc afoô to orismèno olokl rwma mia suneqoôc sunˆrthshc f (t),

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΠΕΜΠΤΟ ΜΑΘΗΜΑ, 17-10-13 Μ. Παπαδημητράκης. 1 Την προηγούμενη φορά αναφέραμε (και αποδείξαμε στην περίπτωση n = 2) το θεώρημα που λέει ότι, αν n N, n 2, τότε για κάθε y 0 υπάρχει μοναδική μηαρνητική

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις. Σε περίπτωση που μια σχέση ισχύει να το αποδείξετε,

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 4. Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα 9,19 Φεβρουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μοντέλα Υπολογισμού Μη Ντετερμινιστικό Πεπερασμένα Αυτόματα: Διαφορά

Διαβάστε περισσότερα

Θεωρία Υπολογισμού. Ασκήσεις. Δρ. Τζάλλας Αλέξανδρος, Καθηγητής Εφαρμογών. Τμ. Μηχανικών Πληροφορικής Τ.Ε.

Θεωρία Υπολογισμού. Ασκήσεις. Δρ. Τζάλλας Αλέξανδρος, Καθηγητής Εφαρμογών. Τμ. Μηχανικών Πληροφορικής Τ.Ε. , Καθηγητής Εφαρμογών Τμ. Μηχανικών Πληροφορικής Τ.Ε. Άρτα, Μάιος 25 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητα Ενδιάμεση Εξέταση Ημερομηνία : Κυριακή, 15 Μαρτίου 2015 Διάρκεια : 15.00 17.00 Διδάσκουσα : Άννα Φιλίππου Ονοματεπώνυμο:

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 8: Ιδιότητες Γραμματικών χωρίς Συμφραζόμενα Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Παραδείγματα (2) Διανυσματικοί Χώροι

Παραδείγματα (2) Διανυσματικοί Χώροι Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΠΡΩΤΟ ΜΑΘΗΜΑ, 8-10-13 Μ. Παπαδημητράκης. 1 Κατ αρχάς θα δούμε μια πολλή απλή πρόταση. 0xx x x ΠΡΟΤΑΣΗ. Έστω ότι ο έχει την εξής ιδιότητα: x για κάθε x > 0. Τότε 0. Απόδειξη. Για να καταλήξουμε

Διαβάστε περισσότερα

1 Arq thc Majhmatik c Epagwg c

1 Arq thc Majhmatik c Epagwg c Μαθηματικός Λογισμός Ι Φθινόπωρο 0 Σημειώσεις 7-0- Μ. Ζαζάνης Arq thc Majhati c Epagwg c Θα συμβολίζουμε το σύνολο των ϕυσικών αριθμών, {,,,...} με το σύμβολο N. Το σύνολο των ϕυσικών αριθμών, συμπεριλαμβανομένου

Διαβάστε περισσότερα

Εισαγωγικά Παραδείγματα: Παρατηρήσεις:

Εισαγωγικά Παραδείγματα: Παρατηρήσεις: 1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 1: Εισαγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΣΕ 39 ΜΑΘΗΜΑΤΑ

ΑΝΑΛΥΣΗ 1 ΣΕ 39 ΜΑΘΗΜΑΤΑ ΑΝΑΛΥΣΗ ΣΕ 39 ΜΑΘΗΜΑΤΑ Μ. Παπαδημητράκης. ΠΡΩΤΟ ΜΑΘΗΜΑ Κατ αρχάς θα δούμε μια πολλή απλή πρόταση. l 0xx x x ΠΡΟΤΑΣΗ. Έστω ότι ο l έχει την εξής ιδιότητα: l x για κάθε x > 0. Τότε l 0. Απόδειξη. Για να

Διαβάστε περισσότερα

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κανονικές Γλώσσες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κανονικές Γλώσσες Κανονική γλώσσα αν

Διαβάστε περισσότερα

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Κατηγορία η Εύρεση μονοτονίας Τρόπος αντιμετώπισης:. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f( ) σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

1.2 Δραστηριότητα: Εισαγωγή στο όριο ακολουθίας

1.2 Δραστηριότητα: Εισαγωγή στο όριο ακολουθίας .2 Δραστηριότητα: Εισαγωγή στο όριο ακολουθίας Θέμα της δραστηριότητας Αυτή η δραστηριότητα εισάγει στην έννοια του Ορίου Ακολουθίας. Δυο φύλλα εργασίας οδηγούν τους μαθητές στον ορισμό της σύγκλισης μηδενικής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1),

i=1 i=1 i=1 (x i 1, x i +1) (x 1 1, x k +1), Κεφάλαιο 6 Συμπάγεια 6.1 Ορισμός της συμπάγειας Οπως θα φανεί στην αμέσως επόμενη παράγραφο, υπάρχουν διάφοροι τρόποι με τους οποίους μπορεί κανείς να εισάγει την έννοια του συμπαγούς μετρικού χώρου. Ο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, 10-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την συμμετρική ιδιότητα της Ιδιότητας Supremum. Η ΙΔΙΟΤΗΤΑ INFIMUM. Κάθε μη-κενό και κάτω φραγμένο σύνολο έχει μέγιστο κάτω φράγμα.

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή

Διαβάστε περισσότερα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΜΑΘΗΜΑ, 9-10-13 Μ. Παπαδημητράκης. 1 ΠΡΟΤΑΣΗ. Αν ισχύει y n για άπειρους n και x R και y n y R, τότε x y. Απόδειξη. Υποθέτουμε (για άτοπο) ότι y < x. Γνωρίζουμε ότι υπάρχει κάποιος αρκετά

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Λ, Λ 2, Λ επί του αλφάβητου αυτού. Να διερευνήσετε κατά πόσο ισχύει κάθε μια από τις πιο κάτω σχέσεις.

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσα χωρίς

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις Σειρά Προβλημάτων Λύσεις Άσκηση Έστω αλφάβητο Σ και γλώσσες Α, Β επί του αλφάβητου αυτού. Για κάθε μια από τις πιο κάτω περιπτώσεις να διερευνήσετε κατά πόσο Γ Δ, ή, Δ Γ, ή και τα δύο. Σε περίπτωση, που

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 036653 367784 Fax: 036405 e mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Paneistimiou (Εleftheriou Venizelou)

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { a 2n b n c 3n n 2 } : H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα {1010 2 10 3 10 n 1 10 n 1 n 1}. (β) Να διατυπώσετε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { R η R είναι μια κανονική έκφραση η οποία παράγει μια μη πεπερασμένη γλώσσα} (β) { G η G είναι μια CFG η οποία

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 5: Μη κανονικές γλώσσες Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ

Μεταγλωττιστές. Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Μεταγλωττιστές Ενότητα 2: Τυπικές γλώσσες (Μέρος 1 ο ) Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { w#z w, z {a,b}* και η z είναι υπολέξη της w}. Συγκεκριμένα,

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο

Διαβάστε περισσότερα

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλ

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλ Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Δομική επαγωγή Η ιδέα της μαθηματικής επαγωγής μπορεί να επεκταθεί και σε άλλες δομές εκτός από το σύνολο N

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

IV. Συνέχεια Συνάρτησης. math-gr

IV. Συνέχεια Συνάρτησης. math-gr IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής

Διαβάστε περισσότερα

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας Κουτσουπιάς Τροποποιήσεις: Σταύρος Κολλιόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Δομική επαγωγή Η ιδέα της μαθηματικής

Διαβάστε περισσότερα

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:

Διαβάστε περισσότερα

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1

n 5 = 7 ε (π.χ. ορίζοντας n0 = 1+ ε συνεπώς (σύμϕωνα με τις παραπάνω ισοδυναμίες) an 5 < ε. Επομένως a n β n 23 + β n+1 Θέμα 1 (α) Υποθέτουμε (προς απαγωγή σε άτοπο) ότι το σύνολο A έχει μέγιστο στοιχείο, έστω a = max A Τότε, εϕόσον a A, έχουμε a R Q και a M Ομως ο αριθμός μητρώου M είναι ρητός αριθμός, άρα (εϕόσον ο a

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Ευθέα Γινόμενα Ομάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 Ευθέα Γινόμενα Ομάδων Για την περαιτέρω ανάπτυξη τής θεωρίας θα χρειαστούμε

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Εισαγωγή στο Σχεδιασμό & την Ανάλυση Αλγορίθμων Εξέταση Ιουνίου 2015 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

sin(5x 2 ) sin(4x) e 5t 2 1 (ii) lim x 0 10x 3 (iii) lim (iv) lim. 10t sin(ax) = 1. = 1 1 a lim = sin(5x2 ) = 2. f (x) = sin x. = e5t 1 = 1 0 = 0.

sin(5x 2 ) sin(4x) e 5t 2 1 (ii) lim x 0 10x 3 (iii) lim (iv) lim. 10t sin(ax) = 1. = 1 1 a lim = sin(5x2 ) = 2. f (x) = sin x. = e5t 1 = 1 0 = 0. ΑΣΚΗΣΕΙΣ ΑΠΕΙΡΟΣΤΙΚΟΥ ΛΟΓΙΣΜΟΥ Ι, Φυλλάδιο 3 Λύσεις Ασκήσεων. Να υπολογίσετε τα παρακάτω όρια. sia) i) ποιες συνθήκες πρέπει να ισχύουν για τα a, β ώστε να έχει νόημα το όριο;) 0 siβ) si5 ) si4) cos cos

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, 6-12-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την απόδειξη του Θεωρήματος που διατυπώσαμε στο τέλος του προηγούμενου μαθήματος. Απόδειξη. [α] Θεωρούμε συνάρτηση f : A R και

Διαβάστε περισσότερα

Πρόταση. Αληθείς Προτάσεις

Πρόταση. Αληθείς Προτάσεις Βασικές έννοιες της Λογικής 1 Πρόταση Στην καθημερινή μας ομιλία χρησιμοποιούμε εκφράσεις όπως: P1: «Καλή σταδιοδρομία» P2: «Ο Όλυμπος είναι το ψηλότερο βουνό της Ελλάδας» P3: «Η Θάσος είναι το μεγαλύτερο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { D το D είναι ένα DFA το οποίο αποδέχεται όλες τις λέξεις στο Σ * } (α) Για να διαγνώσουμε το πρόβλημα μπορούμε

Διαβάστε περισσότερα