In I t n r t o r d o u d c u ti t on o n to t o Rob o o b t o i t c M ot o i t on o n Planning 1
|
|
- Τυρώ Παπαντωνίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Introduction to Robotic Motion Planning 1
2 Robot Planning & Control Architecture Trajectory Generator Trajectory (i.e. geometry +time) d d ( t) ( ) Control: Trajectory / Interaction u Robot, & h t, f µ Robot Environment Path (i.e. geometry ) ( ) [ 0,1] τ i s s i ( ) s [ 0,1] h s Path Planner Task ( ) ( ) τ i 0, τ i 1 i= 1, K, N Task Planner User Reuirements & Specifications 2
3 Το Πρόβληµα του Προγραµµατισµού της Κίνησης Robots accomplish tasks by moving in the workspace How can we accomplish automated motion planning? How to move given an initial and a final pose / posture (i.e. position + orientation) and the robot workspace) 3
4 Το Πρόβληµα του Προγραµµατισµού της Κίνησης Motion Planning is uite more involved than obstacle avoidance. Computational complexity is a central issue in motion planning. 4
5 Motion Planning Issues This simple assembly is defined by the 3 composing parts and a seuence of 2 spatial relations. Every relation can be defined as a set of elementary relationships between geometric features e.g. FaceΑof obj. 1 must fit faceβof obj. 2", Shaft C of obj. 3 fits hole D of obj. 1" Then it can be translated to a uantitative formulation e.g. using a homogeneous transformation 5
6 The Basic Motion Planning Problem Α : solid object (robot) moving in the subspace W (work- space) of the euclidean spacer N, where N = 2 or 3. Α is a «free object», i.e. there is no motion constraint. Α Α W R 2 6
7 The Basic Motion Planning Problem B 1, B 2,, B m solid objects distributed over W. B i are called obstacles. The geometry ofα, B 1, B 2,, B m and the positions of B i in W are accurately known. Α B 2 Α B 3 B 1 B 2 B 1 W R 2 7
8 The Basic Motion Planning The problem is: Initial position and orientation Problem Considering an initial position & orientation and a final position & orientation of Α in W, produce a path τ defining a continuous seuence of positions and orientations of Α avoiding collisions with B, i, starting from the initial position & orientation and arriving at the final position & orientation. Report failure of determining such a path. Α B 2 Α B 3 B 1 B 2 Final position and orientation B 1 W R 2 8
9 The configuration space F A, F W : Cartesian systems attached at A and W. The posture of A is the position and orientation of F A wrt F W. The subset of W, occupied by A, at posture, is A(). The configuration space C of A is the space of all postures of A C= {( x, y) W, θ + F W [ π, π]} Α() F θ A x = y θ W R 2 is used here to denote the posture of a robot. It should not 9 be confused with the, previously used, DOFs of a robotic mechanism.
10 Η έννοια της πορείας (path) A path of A from the initial posture init to goal is a continuous mapping τ(s):[0,1] C withτ(0)= init andτ(1)= goal. Continuity of τ(s) means : ( ( ) ( ( )) ) [ ] ( ) α A s 0,1 lim max α τ s α τ s = 0 0 s s α Α 0 0 Obviously, the position of each α A depends on the posture = τ(s), of A. A being a «free object» means that if there are no obstacles then every path defined as above is feasible. Limitations: If s parameterization is wrt arc length then point rotations are not allowed Other types of parameterization (e.g. time) do not allow decomposition to path and trajectory planning. τ(s 0 ) α s=s 0 s=0 τ(s 0 +ds) α s=s 0 +ds s=0 s=1 α ds=0 10 α s=1
11 The Basic Motion Planning Problem cont. Initial position and orientation Α B 2 Α B 3 B 1 B 2 Final position and orientation B 1 W R 2 11
12 Τα Εµπόδια στο Χώρο Στάσεων An obstacle B i in workspace W, is represented in C by CB = { C / A( ) I B } i called «C-obstacle». U i= 1 CB «C-obstacle space» «Free space» i : «free pose». U Free path between two (free) poses init & goal : a continuous mapping i Configuration space C of A: i.e. the space of all postures of A 1 C free = C \ CBi = { C / A( ) I ( Bi ) } i= 1 i= 1 C free A( 1 ) B i τ(s):[0,1] C free, τ(0)= init and τ(1)= goal. U B j CB j CB CB j j A( 2 ) CB i CB CB C C C free i i free free
13 Παράδειγµα Robot A (triangle) freely translating without changing orientation. F A : coordinate frame attached at A. The pose of A can be represented by the coordinates of F A wrt F W i.e. =(x,y). Thus, the configuration space of A is C=R 2. The C-obstacle CB i is the set of all those that can be approached by F A without collision of A with B i. CB i is obtained by enlarging obstacle B i using A as it moves from posture 0 to 1, 2, 3, 4, 5, 6 following the direction of red arrows Path planning of A wrt B i is euivalent to motion planning of the specific corner of A wrt CB i. 13
14 Roadmap: visible path Visible path in 2-D space with polygonal obstacles. The graph nodes are the initial and final poses and the vertices of the obstacles. Two nodes are connected only if their line segment does not intersect the obstacles. 14
15 Roadmap: ιάγραµµα Voronoi Voronoi diagram for a configuration space of polygonal C-obstacles. The free space is bounded by a rectangle. 15
16 Accurate Cell Decomposition Free space and obstacles (fig. α). 1 st step : decomposition of free space in trapezoidal and traingular cells (fig. β). 2 nd step : connectivity graph (fig. γ) and search over it to find a path (bold line). 16
17 Accurate Cell Decomposition cont. The path on the connectivity graph defines the cell seuence. 3 rd step from the cell seuence to a free path using an optimization criterion. 17
18 Approximate Cell Decomposition The free space bounded by an outer suare and 3 polygons (fig. α). R is decomposed in 4 eual suares. If a suare is wholly found in the free space or in the C-obstacle space then it is not decomposed further. Otherwise it is decomposed in 4 suare until a specific resolution is achieved. The result is presented on fig. β. White cells are not located in the C-obstacle space. Black cells are located in the C-obstacle space. Grey cells are intersected by the C-obstacle space. This is a "uadtree decomposition. The bold face line represents a free channel. 18
19 Introduction to Artificial Potential Basic Idea Free Space C free Fields) The point robot moves following the model & = u We consider A virtual (positive) charge on the robot found at C free A virtual (negative) charge on the destination goal results to an attractive potential ϕ attr ( ) on the robot found at C free virtual (positive) charges on the obstacles CB i introduce repulsive potential ϕ ( ) on the robot found at C free, rep And we obtain an artificial potential field ( ) ( ) + ( ) ϕ ϕ ϕ attr rep (hoping that) it will lead the robot to goal based on the control law ( ) & = u= ϕ 19
20 Τεχνητά υναµικά Πεδία: Παράδειγµα 2-D space with 2 polygonal obstacles (fig. Α). Fig. β represents the attractive potential φ attr () due to final posture goal. goal Fig. γ represents the repulsive potential φ rep () due to C-obstacles. Fig. δ represents φ()=φ attr ()+φ rep () Fig. ε represents the euipotential line of the tatal potential and the path obtained using stepest descent. & = ϕ ( ) Fig. ζ represents the vector field found at each point of the free space. 20
21 Artificial Potential Fields: Simulation Example The positive robot is led to the negative destination avoiding the positive obstacle 21
22 Artificial Potential Fields: Steepest Descent 3 2 [ ] T = x y : robot position 1 0 & = u ϕ(, d ): Potential Function ϕ u = K 22
23 Artificial Potential Fields: Do they always work? The positive robot is NOT lead to the negative destination because it is trapped in a local minimu due to the positive obstacle 23
24 Artificial Potential Fields: Why they do not always work? 3 2 ϕ u= K ϕ = 0 24
25 Navigation Functions: curing the Artificial Potential Fields Η NF φ()είναι µια ειδική µορφή συνάρτησης δυναµικού, η οποία έχει ένα µοναδικό ελάχιστο, το τελικό configuration G του ροµπότ.. ηλαδή αν το ροµπότ κινηθεί µε το νόµο ελέγχου. τότε t G u = ϕ ( ) Προφανώς, ως συνάρτηση δυναµικού, η συνάρτηση πλοήγησης χαρακτηρίζεται από µια συνάρτηση «ελκτικού» δυναµικού, που έλκει το ροµπότ προς το τελικό configuration G, και από µια συνάρτηση «απωστικού» δυναµικού,, που ορίζεται γύρω από τα εµπόδια του χώρου και ωθεί το ροµπότ µακριά από αυτά Η NF ορίζεται για χώρους που περιλαµβάνουν εµπόδια γνωστής γεωµετρίαςκαι βρίσκονται σε γνωστές, σταθερές θέσεις. 25
26 Navigation Functions: curing the Artificial Potential Fields Η απλούστερη µορφή χώρου είναι σφαιρικός χώρος, αποτελούµενος από µια µεγάλη σφαίρα που περιέχει µικρότερες σφαίρες στο εσωτερικό της, οι οποίες αναπαριστούν τα φυσικά εµπόδια. D 0 (0,ρ 0 ) Ο χώρος εργασίας (workspace) του ροµπότ οριοθετείται από τον κυκλικό δίσκο D 0 (0,ρ 0 ) στον οποίο περιέχονται Μ (µικροί) D j ( j,ρ j ) κυκλικοί D j ( j,ρ j ) δίσκοι, που οριοθετούν τα εµπόδια. Τα j, ρ j είναι γνωστά. Οι µικροί δίσκοι δεν τέµνονται µεταξύ τους και βρίσκονται εξολοκλήρου µέσα στο µεγαλύτερο δίσκο. Oελεύθερος χώρος W free, στον οποίο µπορεί να κινηθεί το ροµπότ αποφεύγοντας τη σύγκρουση µε τα εµπόδια, προκύπτει αν από το χώρο εργασίας Wαφαιρεθεί ο συνολικός χώρος των 26 εµποδίων. ρ 0 ρ j
27 Navigation Functions: curing the Artificial Potential Fields Οι Rimon και Koditschek απέδειξαν ότι η NFφ()πρέπει να πληροί συγκεκριµένες µαθηµατικές ιδιότητες, ώστε να εγγυάται τη σύγκλιση του ροµπότ στο επιθυµητό configuration, µε ταυτόχρονη αποφυγή των εµποδίων του χώρου. Η συνάρτηση πρέπει να περιλαµβάνει Ελκτικό υναµικό: Συνάρτηση απόστασης από το τελικό σηµείο γ = ( ) - G Έλκει το ροµπότ στο µοναδικό ελάχιστο της συνάρτησης (το τελικό 2κ configuration), µε κτην «ενταση της έλξης», και Απωστικό δυναµικό: ωθεί το ροµπότ µακριά από τα όρια των εµποδίων. 27
28 Navigation Functions: curing the Artificial Potential Fields Απωστικό υναµικό: Συνάρτηση εµποδίων D 0 (0,ρ 0 ) Παράγων από όρια workspace β ( ) = ρ0 2 ( ) ( D% ) β = ρ β = ρ 0 ρ j Παράγοντες από εµπόδια β ( ) 2 2 j = - j ρ j β = ρ β % = 0 β > 0 ( 2 ) ( D ) ( D ) j j j j j j j D j ( j,ρ j ) Συνολική «Συνάρτηση Εµποδίων» β M = ( ) ( ) i= 0 β i 28
29 Navigation Functions: curing the Artificial Potential Fields Αν επιλεχθεί ως Συνάρτηση Πλοήγησης (Navigation Function NF )η 2κ ελκτικό δυναµικό ( ) ˆ ϕ ( ) = = απωθητικό δυναµικό β ( ) παρατηρείστε ότι ( ) ( ) γ = M i= 0 - G ˆ ϕ = 0 = lim ˆ ϕ = j= 0,1, K, M G D% Επειδη θέλουµε το πεδίο τιµών της NF να είναι το [0,1], προτείνουµε την NF : ϕ ' = σ o ˆ ϕ= σ( ˆ ϕ) όπου x σ ( x ) 1+ x Εποµένως παίρνουµε την αναλυτική συνάρτηση ϕ ' = σ o ˆ ϕ = σ ˆ ϕ = j ( ) γ β+ γ ( ) ( ) G ϕ j β i ( ) ϕ ' = 0 = ' D% = 1 j= 0,1, K, M 29
30 Navigation Functions: curing the Artificial Potential Fields Η αναζητούµενη NFφ()πρέπει να είναι συνάρτηση Morse : δηλ. στα κρίσιµα σηµεία της (δηλ. στα σηµεία που ϕ( ) = 0 ) 2 πρέπει ϕ( ) 0 (Γιατί?). 1 κ Η συνάρτηση ϕ= σ oϕ ' όπου σ d( x) x είναι d 1 γ κ 2κ - G ϕ = σ ˆ d oσ oϕ = = M γ + β 2κ - G βi( ) + i= 0 και αποδεικνύενται ότι υπάρχει Ν, όπου όταν κ Ν, η φ()είναι συνάρτηση Morse και εποµένως είναι συνάρτηση πλοήγησης. & = u u= K ϕ( ) Έτσι, όταν η είσοδος στο σύστηµα είναι το ροµπότ συγκλίνει στο τελικό configuration, δηλ. t G, ξεκινώντας σχεδόν από οποιαδήποτε αρχική συνθήκη, µε 30 ταυτόχρονη αποφυγή των εµποδίων. 1 κ
31 Navigation Functions: curing the Artificial Potential Fields Η σύγκλιση στο τελικό configuration είναι από «σχεδόν όλες» τις αρχικές συνθήκες. Αυτό συµβαίνει γιατί κάθε εµπόδιο του χώρου εισάγει τουλάχιστον ένα σηµείο σάγµατος (saddle point) στη NF, που είναι όµως σηµείο ασταθούςισορροπίας.. Η µεθοδολογία κατάστρωσης των συναρτήσεων πλοήγησης επεκτείνεται και εφαρµόζεται σε χώρους που περιέχουν εµπόδια (ή σύνολα επικαλυπτόµενων εµποδίων) µε γεωµετρία αστεροειδούς. Με χρήση κατάλληλων συµµόρφων µετασχηµατισµών, ένας τέτοιος χώρος µετασχηµατίζεται σε σφαιρικό και, αντίστοιχα, όταν ευρεθεί η συνάρτηση πλοήγησης του σφαιρικού κόσµου µετασχηµατίζεται κατάλληλα σε συνάρτηση πλοήγησης τού πραγµατικού κόσµου. Έτσι, οι συναρτήσεις πλοήγησης εφαρµόζονται επιτυχώς στον προγραµµατισµό της πορείας ενός ροµπότ σε έναν πραγµατικό κόσµο που περιλαµβάνει εµπόδια αρκετά πολύπλοκης γεωµετρίας. 31
32 Navigation Functions: The Global info is the cure ϕ = = 0 d 32
33 Navigation Functions: curing the Artificial Potential Fields The robot is NOT trapped in a local minimum because its potential is based at glolal information. 33
34 Multiple Robots Centralized vs De-centralized planning 34
35 Articulated Robots Robotic manipulator: typical case. Fig. α : cartesian robot with 3 prismatic and 3 rotational joints. Fig. β : represents a robot with 6 rotational joints. 35
36 Articulated Robots cont. A seuence of postures for a planar 8-joint manipulator using the artificial potential fields approach. 36
37 Non-Holonomic Constraints Car-Robot A modeled as a rectangle. State of A described by 3 parameters (x,y,θ) R 2 [0,2π], with modulo 2π for angle θ. At every instant we have : -sinθ dx+cosθ dy=0 This is a non holonomic euality constraint. In general, φ φ max <π/2. 37
38 Non-Holonomic Constraints cont. Parallel parking for a nonholonomic car-robot. 38
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Εισαγωγή στις Συναρτήσεις Πλοήγησης (Navigation Functions - NF)
Εισαωή στις Συναρτήσεις Πλοήησης (Navigation Functions - NF) Οι συναρτήσεις πλοήησης είναι μια μεθοδολοία που εισήααν οι Rimon και Koditschek ια τον προραμματισμό κίνησης (motion planning) ενός ρομπότ,
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Εξερεύνηση χώρου από κινούμενα ρομπότ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Εξερεύνηση χώρου από κινούμενα ρομπότ Συγγραφέας: Παναγιώτου Λεωνίδας Ευθύμιος Επιβλέπων Καθηγητής: Αντώνιος Τζες Υποβάλλεται
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
LTL to Buchi. Overview. Buchi Model Checking LTL Translating LTL into Buchi. Ralf Huuck. Buchi Automata. Example
Overview LTL to Buchi Buchi Model Checking LTL Translating LTL into Buchi Ralf Huuck Buchi Automata Example Automaton which accepts infinite traces δ A Buchi automaton is 5-tuple Σ, Q, Q 0,δ, F Σ is a
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Ρομποτικά Συστήματα. Ενότητα 14: Area Coverage control techniques Αντώνιος Τζές Ευάγγελος Δερματάς Σχολή Πολυτεχνική Τμήμα ΗΜ&ΤΥ
Ρομποτικά Συστήματα Ενότητα 14: Area Coverage control techniques Αντώνιος Τζές Ευάγγελος Δερματάς Σχολή Πολυτεχνική Τμήμα ΗΜ&ΤΥ Σκοποί ενότητας Σκοπός της ενότητας είναι η παρουσίαση και εξοικείωση με
Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell
Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,
Σχέσεις, Ιδιότητες, Κλειστότητες
Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από
Distances in Sierpiński Triangle Graphs
Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation
Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα
Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 009-0, ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας ΕΝΟΤΗΤΑ : Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Σχεδιασμός Δρόμου Πλοήγηση (path-planning, navigation)
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
12. Radon-Nikodym Theorem
Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
CYLINDRICAL & SPHERICAL COORDINATES
CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate
EE 570: Location and Navigation
EE 570: Location and Navigation INS Initialization Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΟΜΕΑΣ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΟΜΕΑΣ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΤΥΠΩΜΑΤΩΝ ΣΕ ΣΙΔΗΡΟΔΡΟΜΙΚΕΣ ΔΙΑΒΑΣΕΙΣ ΔΙΠΛΩΜΑΤΙΚΗ
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα
Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 00-, ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας ΕΝΟΤΗΤΑ : Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Σχεδιασμός Δρόμου Πλοήγηση (path-planning, navigation) Αυτόνομα