ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 9: Θερμοδυναμική αερίων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 9: Θερμοδυναμική αερίων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών"

Transcript

1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 9: Θερμοδυναμική αερίων Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

2 Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι ο ορισμός του ιδανικού αερίου με βάση το χημικό δυναμικό η κατάστρωση της καταστατικής εξίσωσης των ιδανικών αερίων και η ανάλυση των εφαρμογών τους καθώς και η περιγραφή του ιδανικού αερίου μίγματος. Εξετάζονται επίσης οι αποκλίσεις από την ιδανική συμπεριφορά και εισάγονται ορισμένες αναπαραστάσεις για τις καταστατικές εξισώσεις των πραγματικών (μη ιδανικών) αερίων.

3 Περιεχόμενα ενότητας Θερμοδυναμική αερίων Το μοντέλο του ιδανικού αερίου αποκλίσεις από την ιδανική συμπεριφορά Πραγματικά αέρια Μοριακές αλληλεπιδράσεις Παράγοντας συμπιεστότητας Καταστατική εξίσωση ral και a er Waals Πτητικότητα Φαινόμενο Joule-homso κρυογενική Γραμμομοριακές ιδιότητες Συντελεστής πτητικότητας πραγματικών αερίων 3

4 Ενδεικτική βιβλιογραφία Χημική Θερμοδυναμική Σ. Μπογοσιάν Ελληνικό Ανοικτό Πανεπιστήμιο Πάτρα

5 9 Θερμοδυναμική αερίων

6 Το ιδανικό αέριο Ορισμός: Ένα αέριο θα λέγεται ιδανικό όταν το χημικό δυναμικό του μ δίνεται από τη σχέση 0 R l όπου το μ 0 αναφέρεται σε μια επιλεγμένη («πρότυπη») πίεση 0 και είναι συνεπώς συνάρτηση μόνο της Τ. Η πρότυπη πίεση είναι συνήθως η ατμοσφαιρική πίεση. Έτσι γράφουμε: 0 ( ) R l 0 () αδιάστατη / 0 O oρισμός αυτός οδηγεί στη γνωστή καταστατική εξίσωση των ιδανικών αερίων. Παραγωγίζουμε την () ως προς : 0 ( ) l R R 6

7 αλλά και άρα R R Εσωτερική ενέργεια και ενθαλπία ιδανικού αερίου U U αρα αποκλειστικές συναρτήσεις της Τ U 0 R H 0 0 αντικαθιστούμε την μέσα στη μερική παράγωγο H όμοια: 0 Για ιδανικά αέρια: Η U και η Η εξαρτώνται μόνο από τη θερμοκρασία 7

8 Άσκηση Ένα kg νερού θερμαίνεται και εξατμίζεται με βρασμό στους 00 ο C υπό ατμοσφαιρική πίεση. Να υπολογιστούν τα q w ΔU ΔΗ ΔG και ΔS. Η θερμότητα εξάτμισης στους 00 ο C είναι 40.6 kj mol -. R= 8.34 J mol - K -. Λύση: = 000/8 = moles q = 40.6 = 55.6 kj ΔΗ = q = 55.6 kj O όγκος των υδρατμών που προκύπτουν από την εξάτμιση είναι: Δ = (g)-(l) (g) 8

9 Το έργο οφείλεται στην εκτόνωση αυτού του όγκου (g) = 55.55moles 0.08atm. L. mol K 373K atm Aρα w= = -Δ= -699 atm.l= kj R 699 L ΔU = q + w = = kj q ΔS = = kj K - G = H S (υπό σταθ. Τ) ΔG = ΔH ΔS=55.6 (373)(6.047) = 0 kj 9

10 Εφαρμογές της καταστατικής εξίσωσης θερμοχωρητικότητες Εξαρτώνται μόνο από την Τ: επιπλέον: C του ιδανικού αερίου C C C R U H c c U H R Ισόθερμες και αντιστρεπτές διεργασίες Εφόσον Τ = σταθ θα έχουμε: ΔU = c ΔΤ = 0 και q = -w c c u h u h w αντιστρεπτή διεργασία q w R R Θερμότητα που απορροφάται l R l Έργο που εκτελείται από το αέριο 0

11 Έργο αδιαβατικής μεταβολής Το έργο σε μια αδιαβατική μεταβολή είναι: w U c και ολοκληρώνουμε δεχόμενοι ότι c f () w c c ( ) R Παρατήρηση: το έργο που κάνει το αέριο είναι -w

12 Έργο αδιαβατικής και αντιστρεπτής (ισεντροπικής) μεταβολής s u =0 Η βασική θερμοδυναμική εξίσωση για κλειστό σύστημα mol ιδανικού αερίου: Για ιδανικό αέριο s c c u l l R c R c l l c R c R c c R c c

13 Άσκηση Για mole ιδανικού αερίου με σταθερό c = 3 cal mol - K - να υπολογιστούν οι ακόλουθες θερμοδυναμικές ποσότητες για τις εξής αντιστρεπτές διεργασίες: α) Ισόθερμη εκτόνωση από L σε 0 L στους 300 Κ (w q Δu Δh Δs =;). β) Αδιαβατική εκτόνωση από L σε 8 L αρχίζοντας στους 300 Κ (w q Δu Δh Δs ΔΤ =;). Λύση: εφόσον οι διεργασίες είναι αντιστρεπτες: Για ένα mole ιδανικού αερίου: R α) Ισόθερμη (ΔΤ=0) και αντιστρεπτή διεργασία ιδανικού αερίου w R l 38cal U c 0 ΔU = q + w q = 38 cal H c ΔΗ = ΔU + Δ() = ΔU + Δ(R)= = 0 ΔS = q - 38 S 4.6 cal K

14 β) Αδιαβατική και αντιστρεπτή q=0 Τ = 300 Κ = L =8 L εξ = ΔS = 0 S c l 76 K R l 0 4 K c l R l U c U w 675 cal ΔΗ = ΔU + Δ() = ΔU + Δ(R)=-5 cal ή εναλλακτικά: H c c R H 5 cal 4

15 Άσκηση Ένα mole ιδανικού αερίου για το οποίο c = 0.88 και c =.56 J mol - K - εκτονώνεται αδιαβατικά και αντιστρεπτά από πίεση 300 kpa σε τελική πίεση 00 kpa σε μια συσκευή κυλίνδρουεμβόλου. Αν Τ = 590 Κ προσδιορίστε τις Τ Δu Δh και w. Λύση: Αδιαβατική και αντιστρεπτή διεργασία ιδανικού αερίου S c S 0 Εδώ γνωρίζουμε τα όρια μεταβολής της πίεσης οπότε θα χρησιμοποιήσουμε την l R l c l Rl 38K U c K 38590K -65 J mol.56 J mol 5

16 Αδιαβατική: ΔU = w = 65 J mol - H c K K J mol 0.88 J mol 6

17 Άσκηση 000 mol ιδανικού αερίου με c = 0.88 J mol - K - και c = 9.0 J mol - K - βρίσκονται σε αρχική πίεση = 0.3 kpa και θερμοκρασία Τ = 95 Κ. ) o αέριο θερμαίνεται υπό σταθερό όγκο στους 335 Κ. Να υπολογιστούν οι ποσότητες ΔU ΔH ΔS q και w ) o αέριο θερμαίνεται αντιστρεπτά υπό σταθερή πίεση στους 335 Κ. Να υπολογιστούν οι ποσότητες ΔU ΔH ΔS q και w ( atm = 0.3 kpa R = 8.34 J mol - K - =.987 cal mol - K - ) Λύση: ) U c (335 95) 835. kj ΔΗ = Δ(U + ) = ΔU+ RΔ = 68 kj Υπό σταθερό όγκο: 335 S C l c l kj K w 0 q + w = ΔU άρα q = ΔU 7

18 ) Τα ΔU ΔΗ εξαρτώνται μόνο από τη ΔΤ: U c (335 95) 835. kj ΔΗ = Δ(U + ) = ΔU+ RΔ = 68 kj Υπό σταθερή πίεση: l 335 l 95 S C c 3.7kJ K w R 33 kj q = ΔH 8

19 Άσκηση Δείγμα ιδανικού αερίου αργού (Ar) πίεσης atm και θερμοκρασίας 5 ο C εκτονώνεται αντιστρεπτά και αδιαβατικά από αρχικό όγκο 500 cm 3 σε τελικό όγκο 000 cm 3. Υπολογίστε την τελική θερμοκρασία (Τ ) το έργο εκτόνωσης (w) και τη ΔU. Δίνεται το c =.48 J mol - K -. Λύση: Για μια αντιστρεπτή και αδιαβατική (ισεντροπική) διεργασία ιδανικού αερίου έχω: S c l R l 0 c l R l R c K αρα 9

20 Το έργο σε μια αδιαβατική μεταβολή είναι: δw = U = c w = c ( - ) = atm 0.5L atm L K mol 98.5 K J K mol 88 K 98.5 K - = -8 J Επειδή q=0 ΔU = w = -8 J. 0

21 Άσκηση Ποσότητα υδρογόνου βρίσκεται μέσα σε κύλινδρο εφοδιασμένο με έμβολο διατομής 50 cm. O αρχικός όγκος του αερίου (που θεωρείται ιδανικό) σε θερμοκρασία 5 ο C και πίεση atm είναι 500 cm 3. Υπολογίστε τη μεταβολή της εντροπίας όταν το έμβολο υποχωρεί (δηλ. έχουμε εκτόνωση του αερίου) ισοθερμοκρασιακά κατά 0 cm. Λύση: Η ΔS για μεταβολές ιδανικών αερίων δίνεται από: S c l R l S R l Τ=σταθ S c l R l S R l () ()

22 Μας εξυπηρετεί η () γιατί ξέρουμε τα όρια μεταβολής της =/R=[( atm)(0.5 L)]/[(0.08 atm L mol - K - )(98 K)]=0.04 O όγκος αυξάνεται κατά 50 cm 0 cm=500 cm 3 άρα = Η () δίνει :ΔS= (0.04 mol)(8.34 J mol - K - )l = 0.4 J K -

23 Άσκηση Υπολογίστε τη ΔS όταν ιδανικό αέριο Ar σε θερμοκρασία 5 ο C πίεση atm και όγκο 500 cm 3 εκτονώνεται σε όγκο 000 cm 3 ενώ ταυτόχρονα θερμαίνεται στους 00 ο C. Δίνεται το c =.48 J mol - K -. Λύση: atm 0.5L atm L K mol 98.5 K mol S Εδώ γνωρίζουμε τα όρια μεταβολής των Τ. Θα χρησιμοποιήσουμε την: c l R l ΔS = (0.004 mol)(8.34 J mol - K - )l + + (0.004 mol)(.48 J mol - K - )l(373/98) = 0.75 J K -. 3

24 Αποκλίσεις από την αέρια συμπεριφορά α) σε υψηλές πιέσεις υπερισχύουν οι απωστικές δυνάμεις μεταξύ των μορίων και το αέριο συμπιέζεται δυσκολότερα από ένα ιδανικό αέριο όπου αγνοούμε τις δυνάμεις αυτές β) σε ενδιάμεσες πιέσεις υπερισχύουν οι ελκτικές δυνάμεις μεταξύ των μορίων και το αέριο είναι ευκολότερα συμπιέσιμο από ένα ιδανικό αέριο γ) σε χαμηλές πιέσεις οι μέσες αποστάσεις των μορίων είναι τέτοιες που μπορούν να αγνοηθούν οι διαμοριακές αλληλεπιδράσεις και το αέριο να συμπεριφέρεται ιδανικά. 4

25 Μοριακές αλληλεπιδράσεις Πραγματικά (μη ιδανικά αέρια) Ρόλος απωστικών και ελκτικών δυνάμεων μεταξύ των μορίων Μοριακές αλληλεπιδράσεις σε χαμηλές πιέσεις: οι αποστάσεις μεταξύ των μορίων είναι τέτοιες που αγνοούνται οι αλληλεπιδράσεις. Το αέριο συμπεριφέρεται ιδανικά σε ενδιάμεσες πιέσεις: υπερισχύουν οι ελκτικές δυνάμεις μεταξύ των μορίων. Το αέριο συμπιέζεται ευκολότερα από ένα ιδανικό αέριο σε υψηλές πιέσεις: υπερισχύουν οι απωστικές δυνάμεις μεταξύ των μορίων. Το αέριο συμπιέζεται δυσκολότερα από ένα ιδανικό αέριο Η συμπεριφορά αυτή αναπαρίσταται με τον παράγοντα συμπιεστότητας 5

26 Παράγοντας συμπιεστότητας Z R Για ιδανικά αέρια: Ζ = 0 ο C Η απόκλιση του Ζ από τη μονάδα εκφράζει την απόκλιση από την ιδανική συμπεριφορά σε χαμηλές πιέσεις: Z (ιδανική συμπεριφορά) σε ενδιάμεσες πιέσεις: Z (υπερισχύουν οι ελκτικές δυνάμεις το αέριο συμπιέζεται ευκολότερα: υ < υ ιδαν ) σε υψηλές πιέσεις: Z (υπερισχύουν οι απωστικές δυνάμεις το αέριο συμπιέζεται δυσκολότερα: υ > υ ιδαν ) 6

27 Καταστατικές εξισώσεις πραγματικών αερίων Α. Καταστατικές εξισώσεις vral (Κammerlgh Oes) Περιγράφουν σημαντικές αποκλίσεις από ιδανική συμπεριφορά B C R... B C κλπ: δεύτερος τρίτος κλπ συντελεστής vral Εξαρτώνται από την Τ Συχνά λαμβάνεται υπόψη μόνο ο Β. Υπάρχει δε μια θερμοκρασία όπου Β = 0 (Θερμοκρασία Boyle B ) R B Για αρκετά μεγάλη περιοχή πιέσεων 7

28 Β. Καταστατική εξίσωση a er Waals Για λίγο πάνω από την ατμοσφαιρική: ο μη μηδενικός όγκος των μορίων του αερίου περιορίζει ουσιαστικά τον «διαθέσιμο όγκο» από σε ( b) Έτσι μπορούμε να «διορθώσουμε» την εξίσωση των ιδανικών αερίων: ( b) R αποκλίσεις σε σχέση με την πίεση : εξαρτάται από R συχνότητα κρούσεων με τοιχώματα ένταση της κάθε κρούσης b Οι ελκτικές δυνάμεις μειώνουν και τις δύο Άρα η πίεση θα μειώνεται ανάλογα με το τετράγωνο της πυκνότητας / R a ή b R b a 8

29 Εξάρτηση της U από Αποδείξτε ότι ένα αέριο που ακολουθεί την καταστατική εξίσωση (80) έχει μια εσωτερική ενέργεια (αλλά όχι ενθαλπία) που είναι αποκλειστική συνάρτηση της Τ σε περιοχή συνθηκών όπου η παράμετρος b θεωρείται σταθερή. Μέθοδος: Αρκεί να δείξουμε ότι U 0 Απάντηση: Χρησιμοποιούμε την πρώτη θερμοδυναμική καταστατική εξίσωση U και αντικαθιστούμε την πίεση στο μερικό διαφορικό U R - b 0 9

30 Πτητικότητα Στην περίπτωση του ιδανικού αερίου και σε σταθερή θερμοκρασία το χημικό δυναμικό είναι γραμμική συνάρτηση του λογαρίθμου της πίεσης. Για τα πραγματικά αέρια εισάγουμε ένα είδος υποθετικής πίεσης που θα την ονομάσουμε πτητικότητα f και που θα έχει ως χαρακτηριστική ιδιότητα να ικανοποιεί μια σχέση της μορφής: Πτητικότητα πραγματικού αερίου: 0 ( ) R l f f=f() και f για 0 30

31 Υπολογισμός πτητικότητας - Θα αναπτύξουμε τώρα μια σχέση με την οποία θα είναι δυνατός ο υπολογισμός της πτητικότητας από πειραματικά δεδομένα 0 ( ) R l f όπου f = f(). Παραγωγίζουμε ως προς υπό Τ σταθερό και έχουμε: f 0 R ( ) l Το αριστερό μέλος ισούται με υ ενώ ο πρώτος όρος του ου μέλους είναι μηδέν. Άρα : Υπό σταθερή θερμοκρασία: υ = Rlf Aφαιρούμε τώρα και από τα δύο μέλη της σχέσης αυτής την ποσότητα Rl και παίρνουμε: l f R Υπό σταθερή θερμοκρασία: 3

32 Υπολογισμός πτητικότητας - Μπορούμε τώρα να ολοκληρώσουμε αυτή τη σχέση από = 0 (όπου θα έχουμε και f = 0) έως = (όπου f = f): l f f R l 0 0 l f R 0 Η παραπάνω εξίσωση δίνει την πτητικότητα σε πίεση και θερμοκρασία Τ με τη βοήθεια του ολοκληρώματος που μπορεί να υπολογιστεί από πειραματικά δεδομένα. Εισάγοντας δε το συντελεστή συμπιεστότητας έχουμε: l f Z - 0 Επομένως ο λόγος f/ υπολογίζεται είτε α) με γραφική ολοκλήρωση με τη βοήθεια διαγράμματος (Ζ - )/ ως προς είτε β) με άμεση αναλυτική ολοκλήρωση εάν ξέρουμε τα υ ή Ζ υπό μορφή εκθετικών σειρών της πίεσης. Η ολοκλήρωση είναι πολύ εύκολη και δίνει: l f b R 3

33 Φαινόμενο Joule-homso Διέλευση αερίου ρεύματος από περιοχή υψηλής πίεσης σε περιοχή χαμηλής πίεσης διαμέσου πορώδους διαφράγματος μέσα σε σωλήνα με αδιαβατικά τοιχώματα το φαινόμενο διαφοροποιέιται ανάλογα με την έκταση και το χαρακτήρα της απόκλισης από την ιδανική συμπεριφορά για το αέριο. Μπορεί να οδηγήσει σε ψύξη ή θέρμανση του αερίου (κρυογενική). η διεργασία είναι ισενθαλπική. Έτσι η μεταβολή της Τ σαν αποτέλεσμα της αλλαγής στην υπό σταθερή Η αναπαρίσταται με την ακόλουθη μερική παράγωγο J h h συντελεστής Joule homso h με τη βοήθεια των h και c h 33

34 Συντελεστής Joule-homso - Κρυογενική παίρνουμε J c h μηδέν για ιδανικά αέρια Γενικά όμως έχουμε: δεν μεταβάλεται η Τ h ( ) και άρα J c Έτσι επειδή <0 για να έχουμε ψύξη (<0) θα πρέπει ο J να είναι θετικός και αυτό εξασφαλίζεται σε θερμοκρασίες όπου συντελεστής θερμικής διαστολής έτσι υπάρχει μια θερμοκρασία (θερμοκρασία αναστροφής) για την οποία 0 J 34

35 Γραμμομοριακές και Μερικές Γραμμομοριακές Ιδιότητες U S H A G Αναφέρονται στο σύνολο του Συστήματος Αναζητούμε τώρα τη συνεισφορά του κάθε συστατικού στην ολική ιδιότητα Για ένα συστατικό: U S Γραμμομοριακή ιδιότητα: Αρα η () δίνει: u s () u U u u s s και μάλιστα mole του συστατικού S s κλπ u s u s =0 35

36 Με ανάλογο τρόπο: u s h s a s g s Οι γραμμομοριακές ποσότητες δεν εξαρτώνται από το μέγεθος του Συστήματος. Είναι εντατικές ιδιότητες Μερικές γραμμομοριακές ιδιότητες σε πολυσυστατικά συστήματα Αναζητούμε ανάλογες ποσότητες π.χ. για να εκφράσουμε τις ολικές ιδιότητες π.χ. U ως άθροισμα συνεισφορών του κάθε συστατικού. Δηλ. έτσι ώστε U u και γενικά: Y y Ορίζουμε τη μερική γραμμομοριακή τιμή της Υ για το συστατικό ως: y Y j Y y u 36

37 37 Γενικά μπορούμε να γράψουμε: Y Y Y Y Y Y j...) ( Θα ολοκληρώσουμε υπό σταθερά y Y Τέχνασμα ολοκλήρωσης: Η Υ είναι εκτατική ιδιότητα. Έτσι αν το αρχικό Σύστημα μεγαλώσει k φορές η Υ θα γίνει ky και τα θα γίνουν k έτσι k y Y k y Y ) ( y Y Που πιστοποιεί ακριβώς ότι ο ορισμός που δώσαμε εξασφαλίζει ότι η Υ μπορεί να εκφραστεί σε όρους που υποδηλώνουν τη συνεισφορά του κάθε συστατικού στην ολική ιδιότητα

38 38 j j U u j H h j S s j A a j G g u U h H s S a A g G

39 Σχέσεις μερικών παραγώγων του μ Μεταξύ των μερικών γραμμομοριακών ιδιοτήτων ισχύουν οι ίδιες σχέσεις που έχουμε μεταξύ των αντιστοίχων εκτατικών ολικών ιδιοτήτων: Π.χ. H U και παραγωγίζοντας ως προς υπό σταθερά : h u Ανάλογα παίρνουμε: a u s και g h s () Ξεκινώντας τώρα από την: G S 39

40 40 οι τρείς τελευταίες σχέσεις μπορούν να γραφούν και για καθαρό συστατικό s / h για καθαρό συστατικό γράφουμε δύο σχέσεις του Maxwell: και συνδυάζοντας με την (): j h και με αναδιάταξη των όρων: s S j j j j / h j για συστατικά μείγματος

41 4 Να εξαγάγετε τις βασικές θερμοδυναμικές εξισώσεις για τις μερικές γραμμομοριακές ιδιότητες Λύση: Ξεκινάμε από τη βασική θερμοδυναμική εξίσωση της U: g a h u s u s u s u s s u u s u S U Άσκηση

42 4 Ομοίως εξάγονται και οι άλλες: s u s h s a s g

43 Πτητικότητα πραγματικού αερίου 0 Για το ιδανικό αέριο είδαμε ότι: ( ) R l () Η σχέση αυτή παύει να ισχύει για τα πραγματικά αέρια Ενδείκνυται όμως η διατήρηση της μορφής της () με την εισαγωγή της πτητικότητας Χημικό δυναμικό πραγματικού αερίου 0 ( ) R l f f :πτητικότητα f f ( ) f 0 43

44 Υπολογισμός πτητικότητας Α. Προσεγγιστικά η πτητικότητα υπολογίζεται ως: Όπου είναι η πραγματική πίεση και ιδαν η πίεση που θα είχε εάν συμπεριφερόταν ιδανικά f Β. 0 ( ) R l f f f ( ) παραγωγίζουμε ως προς υπό : σταθερό R 0 ( ) R l =0 f R l f R l f R l l R l f f αρα R l Τ=σταθ R 44

45 Άσκηση Δύο οβίδες Α και Α με παχιά χαλύβδινα τοιχώματα όγκου L η καθεμιά συνδέονται με στρόφιγγα Σ και μπορούν να εκκενωθούν μέσω της Σ. Γεμίζουμε την Α στους 300 Κ με ένα mole αερίου Κr Κλείνουμε την Σ και εκκενώνουμε την Α. Με τις Σ και Σ κλειστές περιβάλουμε πρώτα τις οβίδες με αδιαβατικά τοιχώματα στους 300 Κ και μετά ανοίγουμε τη Σ ώστε το αέριο να κατανεμηθεί γρήγορα μεταξύ των οβίδων. Υποθέτοντας ότι το αέριο Κr υπακούει την εξίσωση va er Waals με α= atm cm 6 mol - b= 40 cm 3 mol - και c = 3 cal mol - K - (ανεξάρτητο της Τ) υπολογίστε τα ΔU ΔS και ΔΤ. Λύση: ανοίγοντας τη Σ θα έχουμε εκτόνωση έναντι μηδενικής πίεσης. w=0 Eπιπλέον λόγω αδιαβατικών τοιχωμάτων: q=0 άρα ΔU = 0 U U U 0 45

46 46 0 c a ( =) c a c α Δ Δ 4.75 K c S Για την εντροπία b R l l c b b R S ΔS =.3 cal mol - K -

47 Άσκηση Για ένα αέριο που ακολουθεί την εξίσωση va er Waals βρείτε τις μερικές παραγώγους της ως προς και Τ. Λύση: R b a R a 3 b R b 47

48 48 Άσκηση Λύση: Για να διευκολυνθούμε στην ολοκλήρωση της διαφορικής εξίσωσης θα πρέπει να κάνουμε μια «βολική» επιλογή οριακών συνθηκών Ολοκληρώνουμε από =0 (όπου f =0) έως = (όπου f =f) R f f l l 0 0 () και με εισαγωγή του Ζ Z f l 0 Να ολοκληρώσετε την ανωτέρω σχέση για να καταστεί υπολογίσιμος ο λόγος f/

49 Άσκηση Να υπολογίσετε τον λογάριθμο του f/ για ενα πραγματικό αέριο που ακολουθεί την καταστατική εξίσωση ( b) R Λύση: l f Θα ξεκινήσουμε από την ολοκληρωμένη μορφή () που βρήκαμε στην προηγούμενη ασκηση: 0 R Η καταστατική μας εξίσωση για mole: αρα l l f f 0 b R R b R l f ( b) 0 b R R R b 49

50 Άσκηση Ένα γραμμομόριο αερίου βρίσκεται υπό πίεση = 00 atm και καταλαμβάνει όγκο = 300 cm 3 στους 300 Κ. Να υπολογιστεί η πτητικότητα του αερίου Λύση: θα χρησιμοποιήσουμε τη σχέση f R - - mol 0.08 atm L mol K 300 K 0.3 L 8 atm f 00 atm 8 atm atm 50

51 Άσκηση 000 mol ιδανικού αερίου με c = 0.88 J mol - K - και c = 9.0 J mol - K - βρίσκονται σε αρχική πίεση = 0.3 kpa και θερμοκρασία Τ = 305 Κ. Το αέριο εκτονώνεται αδιαβατικά μέχρι τριπλασιασμού του όγκου του. Να υπολογιστούν οι ποσότητες ΔS w και η ΔΤ στις περιπτώσεις: α) αντιστρεπτής εκτόνωσης (ΔS α w α ΔΤ α ) β) μη αντιστρεπτής εκτόνωσης εντός κενού δοχείου (ΔS κ w κ ΔΤ κ ) ( atm=0.3 kpa R=8.34 J mol - K - =.987 cal mol - K - =0.08 atm L mol - K - ). Λύση: Α) Η διεργασία είναι αδιαβατική: q =0 Για μια αντιστρεπτή και αδιαβατική (ισεντροπική) διεργασία ιδανικού αερίου έχω: S c l R l 0 c l Rl 5

52 R c K ΔΤ α = -08 K Αρα: w U c =(000 mol)(0.88 J mol - K - )(-08 K) =-55 kj Β) αδιαβατική διεργασία: q = 0 Eκτόνωση εντός κενού δοχείου: w κ = 0 Άρα: ΔU = q + w = 0 Aρα: ΔΤ κ = 0 (ιδανικό αέριο με σταθερή U) S c l - K R l R l Rl kj 5

53 Άσκηση Για mole ιδανικού αερίου με σταθερό c = 3 cal mol - K - να υπολογιστούν οι ακόλουθες θερμοδυναμικές ποσότητες για τις εξής αντιστρεπτές διεργασίες: α) Ισoβαρής εκτόνωση από L σε L αρχίζοντας Στους 300 Κ (w q Δu Δh ΔΤ =;). β) Ισόχωρη θέρμανση από 300 Κ σε 600 Κ (w q Δu Δh=;). Λύση: Α) Ισοβαρής και αντιστρεπτή εκτόνωση: εξ = = σταθερή Δ = 0 R K w R 600 cal - mol 300 K U c U 900 cal - mol 53

54 ΔU=q + w q U w q 500 cal - mol ΔΗ=q = 500 cal mol - Β) Ισόχωρη θέρμανση από Τ = 300 Κ σε Τ = 600 Κ Δ=0 w 0 U c U 900 cal - mol ΔU = q + w = q = cal mol ΔΗ = ΔU + Δ() = ΔU + Δ(R) - H 500 cal mol 54

55 Άσκηση Θεωρούμε ένα ιδανικό αέριο με c =0.88 J mol - K - και c = 9.0 J mol - K -. Η αρχική κατάσταση του αερίου είναι 00 kpa και 95 K. α) 000 moles του αερίου θερμαίνονται υπό σταθερό όγκο στούς 355 Κ. Υπολογίστε τα ΔU ΔH ΔS q και w. β) 000 moles του αερίου θερμαίνονται από την αρχική τους κατάσταση υπό σταθερή πίεση στους 355 Κ. Υπολογίστε τα ΔU ΔH ΔS q και w αν η διεργασία είναι αντιστρεπτή. Λύση: Για ένα ιδανικό αέριο με σταθερές θερμοχωρητικότητες: U c H c S c l Rl S c l Rl 55

56 α) ΔU = (000 mol)(0.88 J mol - K - ) ( K) = 53 kj ΔH = (000 mol)(9.0 J mol - K - ) ( K) = 75 kj c l Rl - - S 000 mol 0.88 J mol K l w 0 και από τον ο Νόμο: q = ΔU = 53 kj = J K - β) ΔU = (000 mol)(0.88 J mol - K - ) ( K) = 53 kj ΔH = (000 mol)(9.0 J mol - K - ) ( K) = 75 kj S 000 mol 9. J mol K l c l Rl 95 =5406. J K - Για αντιστρεπτή διεργασία υπό σταθερή πίεση έχουμε: q = ΔΗ = 75 kj Και από τον ο Νόμο: ΔU = q + w w = ΔU q = = 53 kj 75 kj = kj 56

57 Αναφορές Όλες οι εικόνες είναι από το βιβλίο Χημική Θερμοδυναμική Σ. Μπογοσιάν Ελληνικό Ανοικτό Πανεπιστήμιο Πάτρα

58 Τέλος Ενότητας

59 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 59

60 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση

61 Σημείωμα Αναφοράς Coyrght Πανεπιστήμιο Πατρών. Καθηγητής Σογομών Μπογοσιάν. «Θερμοδυναμική Ι». Έκδοση:.0. Πάτρα 05. Διαθέσιμο από τη δικτυακή διεύθυνση: htts://eclass.uatras.gr/courses/cmng80/ 6

62 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creatve Commos Αναφορά Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [] ή μεταγενέστερη Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες διαγράμματα κ.λ.π. τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [] htt://creatvecommos.org/lceses/by-c-sa/4.0/ Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση εφόσον αυτό του ζητηθεί. 6

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η ανάπτυξη μαθηματικών

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 4: Πρώτος Θερμοδυναμικός Νόμος Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 10: Ισορροπίες φάσεων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 10: Ισορροπίες φάσεων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 0: Ισορροπίες φάσεων Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η παρουσίαση και η εξέταση της ισορροπίας ανάμεσα

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 3: Μηδενικός Νόμος - Έργο. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 3: Μηδενικός Νόμος - Έργο. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 3: Μηδενικός Νόμος - Έργο Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 6: Εντροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 6: Εντροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 6: Εντροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών εννοιών και η

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή του παράγοντα της

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 1: Βασικά χαρακτηριστικά της Θερμοδυναμικής. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 1: Βασικά χαρακτηριστικά της Θερμοδυναμικής. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 1: Βασικά χαρακτηριστικά της Θερμοδυναμικής Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση α: Συντελεστής Joule Thomson (Τζουλ Τόμσον ) Αθανάσιος Τσεκούρας Τμήμα Χημείας Θεωρία 3 Μετρήσεις 6 3 Επεξεργασία Μετρήσεων 6 Σελίδα Θεωρία Η καταστατική εξίσωση

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 2: Θερμοδυναμικές συναρτήσεις Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή νέων θερμοδυναμικών συναρτήσεων

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΑΕΡΙΟ VAN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΕΡΙΟ AN DER WAALS ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΑΣΚΗΣΗ Αέριο an der Waals ν moles συμπιέζεται ισόθερμα από

Διαβάστε περισσότερα

Εφαρμοσμένη Θερμοδυναμική

Εφαρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Θερμοδυναμική Ενότητα 2: Ιδιότητες Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 2 η - Α ΜΕΡΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1) Κατανόηση των εννοιών:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Άσκηση 1β: Ενθαλπία εξατμίσεως Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3 2. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 Σελίδα 2 1. Θεωρία Σύμφωνα με τον κανόνα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Αδιαβατικές μεταβολές στην ατμόσφαιρα - Ασκήσεις Αδιαβατικών μεταβολών (2ο φυλλάδιο) Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 11: Μίγματα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 7: Εντροπία - Ισοζύγια εντροπίας Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση : Προσδιορισμός μοριακής μάζας με ζεσεοσκοπία Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 4 Σελίδα 1. Θεωρία

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 4: Μερικός γραμμομοριακός όγκος Αθανάσιος Τσεκούρας Τμήμα Χημείας . Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων... 5 4. Τελικά αποτελέσματα... 7 Σελίδα

Διαβάστε περισσότερα

Εφαρμοσμένη Θερμοδυναμική

Εφαρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Θερμοδυναμική Ενότητα 4: Πρώτος νόμος της θερμοδυναμικής Εφαρμογή σε κλειστά συστήματα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 10: Ψυκτικά κύκλα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Ενότητα 11: Κύκλα ατμού Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

ΠΙΝΑΚΕΣ. Θερμοδυναμική 2012 Σελίδα 292

ΠΙΝΑΚΕΣ. Θερμοδυναμική 2012 Σελίδα 292 ΠΙΝΑΚΕΣ 2012 Σελίδα 292 Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες: Ιδανικά αέρια Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc.

Διαβάστε περισσότερα

ΧΗΜΕΙΑ. Ενότητα 16: Χημική Ισορροπία. Ντεϊμεντέ Βαλαντούλα Τμήμα Χημείας. Χημική ισορροπία

ΧΗΜΕΙΑ. Ενότητα 16: Χημική Ισορροπία. Ντεϊμεντέ Βαλαντούλα Τμήμα Χημείας. Χημική ισορροπία ΧΗΜΕΙΑ Ενότητα 16: Χημική Ισορροπία Ντεϊμεντέ Βαλαντούλα Τμήμα Χημείας Χημική ισορροπία Χημική ισορροπία είναι η κατάσταση στην οποία φθάνει το μίγμα μιας αντίδρασης όταν η ταχύτητα της αντίδρασης προς

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 8: Θερμοδυναμικά κύκλα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

V P P. [3] (α) Να δειχθεί ότι για ένα υδροστατικό σύστημα ισχύει: P V

V P P. [3] (α) Να δειχθεί ότι για ένα υδροστατικό σύστημα ισχύει: P V ΘΕΡΜΟΔΥΝΑΜΙΚΗ (ΦΥΣΙΚΗ I) 1 [1] Θεωρώντας την εσωτερική ενέργεια ενός υδροστατικού συστήματος σα συνάρτηση των Τ και, αποδείξτε τις παρακάτω εξισώσεις: d d dq (1) β () β κ ) ( κ () [] Θεωρώντας την εσωτερική

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA.

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA. Άσκηση 1 Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο διάγραμμα p V του σχήματος. (α) Αν δίνονται Q ΑΒΓ = 30J και W BΓ = 20J, να βρεθεί η μεταβολή της εσωτερικής

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ 103 Α. ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΚΕΦΑΛΑΙΟ 4 Ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ 1. Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο ακόλουθο διάγραμμα P-V. α. Αν δίνονται Q ΑΒΓ

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Παράδειγμα Κύκλου με αναθέρμανση. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Παράδειγμα Κύκλου με αναθέρμανση. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ενότητα 6: Παράδειγμα Κύκλου με αναθέρμανση Γεώργιος Κ Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ Ναυπηγός Μηχανολόγος Μηχανικός MSc Διασφάλιση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ακαδημαϊκό έτος 34 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ" ΟΔΗΓΙΕΣ ΓΙΑ ΤΗΝ ΕΚΠΟΝΗΣΗ,

Διαβάστε περισσότερα

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ

ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ ΜΑΘΗΜΑ: «ΓΕΝΙΚΗ ΧΗΜΕΙΑ» Α ΕΞΑΜΗΝΟ (ΧΕΙΜΕΡΙΝΟ) Διδάσκουσα: ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑΤΟΣ ΧΗΜΕΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Cmmns. Για

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 3: Ιδανικά Αέρια, συντελεστής συμπιεστότητας, ειδικές θερμότητες Χατζηαθανασίου Βασίλειος Καδή Στυλιανή

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (16): θερμοδυναμική Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΣΚΗΣΗ 1 Μία θερμική μηχανή λειτουργεί μεταξύ των θερμοκρασιών T h 400 Κ και T c με T c < T h Η μηχανή έχει απόδοση e 0,2 και αποβάλλει στη δεξαμενή χαμηλής θερμοκρασίας θερμότητα

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 1 η ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1): Διάκριση μεταξύ ιδανικών και

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Παράδειγμα 1. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 5: Παράδειγμα 1. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ενότητα : Παράδειγμα Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 6 : Διάσταση των ουσιών σε υδατικά διαλύματα. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 6 : Διάσταση των ουσιών σε υδατικά διαλύματα. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας ΥΔΡΟΧΗΜΕΙΑ Ενότητα 6 : Διάσταση των ουσιών σε υδατικά διαλύματα Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας Σκοποί ενότητας Κατανόηση της αυτοδιάστασης του νερού και της διάλυσης των αερίων

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 2: Εισαγωγή στον βέλτιστο έλεγχο Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ΑΣΚΗΣΗ 1 Το δοχείο του σχήματος είναι απομονωμένο (αδιαβατικά τοιχώματα). Το διάφραγμα χωρίζει το δοχείο σε δύο μέρη. Το αριστερό μέρος έχει όγκο 1 και περιέχει ιδανικό αέριο

Διαβάστε περισσότερα

Θερμοδυναμική. Ενότητα 3: Ασκήσεις στη Θερμοδυναμική. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ

Θερμοδυναμική. Ενότητα 3: Ασκήσεις στη Θερμοδυναμική. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Θερμοδυναμική Ενότητα 3: Ασκήσεις στη Θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ. Κινητική Θεωρία Αερίων. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ Κινητική Θεωρία Αερίων Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Νόμος του Boyle: με τον όγκο. Η πίεση ορισμένης ποσότητας αερίου του οποίου η θερμοκρασία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 19: Η συνάρτηση Green για την κυματική εξίσωση και θεώρημα Poynting Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει

Διαβάστε περισσότερα

Θερμοδυναμική Ενότητα 7:

Θερμοδυναμική Ενότητα 7: Θερμοδυναμική Ενότητα 7: 3 ος νόμος Θερμοδυναμικής -Συναρτήσεις έργου - Εξάτμιση ισορροπίας - Ασκήσεις Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Διαδοση θερμοτητας και εργο είναι δυο τροποι με τους οποιους η ενεργεια ενός θερμοδυναμικου συστηματος μπορει να αυξηθει ή να ελαττωθει. Δεν εχει εννοια

Διαβάστε περισσότερα

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 4: Θερμοδυναμικά δεδομένα. Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 4: Θερμοδυναμικά δεδομένα. Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας ΥΔΡΟΧΗΜΕΙΑ Ενότητα 4: Θερμοδυναμικά δεδομένα Ζαγγανά Ελένη Σχολή: Θετικών Επιστημών Τμήμα : Γεωλογίας Σκοποί ενότητας Εισαγωγικές έννοιες της Θερμοδυναμικής Κατανόηση των εννοιών της εντροπίας, ενθαλπίας

Διαβάστε περισσότερα

ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Ενότητα 12: Κύκλα αερίου Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛΕΣ ΙΣΟΧΩΡΗ ΜΕΤΑΒΟΛΗ

ΜΕΤΑΒΟΛΕΣ ΙΣΟΧΩΡΗ ΜΕΤΑΒΟΛΗ Δοχείο περιέχει ιδανικό αέριο υπό πίεση Ρ 1 =2atm και θερμοκρασία Τ 1 =300Κ. Αφαιρούμε με κάποιο τρόπο από το δοχείο 0,8Kg αερίου οπότε η πίεση στο δοχείο γίνεται Ρ 2 =0,95atm και η θερμοκρασία Τ 2 =285Κ.

Διαβάστε περισσότερα

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1)

διαιρούμε με το εμβαδό Α 2 του εμβόλου (1) 1)Συνήθως οι πτήσεις των αεροσκαφών γίνονται στο ύψος των 15000 m, όπου η θερμοκρασία του αέρα είναι 210 Κ και η ατμοσφαιρική πίεση 10000 N / m 2. Σε αεροδρόμιο που βρίσκεται στο ίδιο ύψος με την επιφάνεια

Διαβάστε περισσότερα

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους

ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ. Μονάδες - Τάξεις μεγέθους ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 10 Μοριακή Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 (α) Να υπολογιστεί το ολικό πλάτος του κανονικοποιημένου δεσμικού

Διαβάστε περισσότερα

Θερμοδυναμική. Ενότητα 6: Εντροπία. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ

Θερμοδυναμική. Ενότητα 6: Εντροπία. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Θερμοδυναμική Ενότητα 6: Εντροπία Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 1: Εισαγωγή Ανδρέας Τερζής Σχολή Θετικών επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια σύντομη επανάληψη στις βασικές έννοιες της ηλεκτροστατικής.

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 7: Κατανομή ουσίας μεταξύ δύο διαλυτών και προσδιορισμός σταθεράς ισορροπίας αντιδράσεως Βασιλική Χαβρεδάκη Τμήμα Χημείας 1. Θεωρία... 3. Μετρήσεις... 5 3. Επεξεργασία

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 Θέμα 1 Με βάση τα θεωρήματα Carnot αποδείξτε

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο [1] Να βρεθεί ο αριθμός των ατόμων του αέρα σε ένα κυβικό μικρόμετρο (κανονικές συνθήκες και ιδανική συμπεριφορά) (Τ=300 Κ και P= 1 atm) (1atm=1.01x10 5 Ν/m =1.01x10 5 Pa). [] Να υπολογισθεί η απόσταση

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι

ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι ΦΥΣΙΚΟΧΗΜΕΙΑ ΤΡΟΦΙΜΩΝ Ι Ενότητα 3 η - Β ΜΕΡΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Όνομα καθηγητή: ΕΥΑΓΓΕΛΙΟΥ ΒΑΣΙΛΙΚΗ Τμήμα: Επιστήμης Τροφίμων και Διατροφής του Ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1) Κατανόηση των εννοιών:

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Εφαρμοσμένη Θερμοδυναμική

Εφαρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Θερμοδυναμική Ενότητα 5: Πρώτος νόμος της θερμοδυναμικής Εφαρμογή σε ανοικτά συστήματα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ

ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΑΝΤΙΣΤΡΕΠΤΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ ΘΕΩΡΙΑ Περιεχόμενα 1. Μελέτη Ισόχωρης μεταβολής 2. Μελέτη Ισοβαρής μεταβολής 3. Μελέτη Ισόθερμης μεταβολής 4.

Διαβάστε περισσότερα

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 7: Universal motor Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις

Φυσικοχημεία 2 Εργαστηριακές Ασκήσεις Φυσικοχημεία Εργαστηριακές Ασκήσεις Άσκηση 3: Προσδιορισμός συντελεστή ενεργότητας μέσω μετρήσεων διαλυτότητας Αθανάσιος Τσεκούρας Τμήμα Χημείας 1. Θεωρία... 3. Μετρήσεις... 4 3. Επεξεργασία Μετρήσεων...

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 12: Κλιματισμός Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 21: Δέλτα πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 21: Δέλτα πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 21: Δέλτα πηγάδι δυναμικού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει το δέλτα πηγάδι δυναμικού, το οποίο αποτελεί

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ 1 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 Θέμα 1 Επιλέγοντας το κατάλληλο διάγραμμα φάσεων για ένα πραγματικό

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο ΚΑΙ ο : 1. ΝΟΜΟΣ ΤΟΥ oyle:.=σταθ. για Τ =σταθ. για δύο καταστάσεις Α και Β : Α. Α = Β. Β (α)ισόθερμη εκτόνωση:αύξηση όγκου > και μείωση της πίεσης

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 12: Αρχή ελαχίστου του Pontryagin Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενοτήτων 5, 6 & 7 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενότητας 4 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική Κλασική Ηλεκτροδυναμική Ενότητα 14: Ολοκλήρωση πολυπολικής ανάπτυξης και διηλεκτρικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την πολυπολική

Διαβάστε περισσότερα

Αερισμός. Ενότητα 1: Αερισμός και αιμάτωση. Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής

Αερισμός. Ενότητα 1: Αερισμός και αιμάτωση. Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Αερισμός Ενότητα 1: Αερισμός και αιμάτωση Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Ολικός και κυψελιδικός αερισμός Η κύρια λειτουργία του αναπνευστικού συστήματος είναι

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Δ Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ 15949 Ποσότητα ιδανικού αέριου ίση με /R mol, βρίσκεται αρχικά σε κατάσταση ισορροπίας στην οποία έχει

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 8: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ) για συστήματα διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΝΤΡΟΠΙΑ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Θέμα Απομονωμένο σύστημα περνάει από κατάσταση με εντροπία S σε κατάσταση με εντροπία S. Αποδείξτε και σχολιάστε ότι ισχύει S S. Για οποιαδήποτε μηχανή (σύστημα που εκτελεί

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 82 ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ 1. Η πίεση του αέρα στα λάστιχα ενός ακίνητου αυτοκινήτου με θερμοκρασία θ 1 =7 ο C είναι P 1 =3 atm. Κατά την

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει κάποιες

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Παράδειγμα Κύκλου με Απομάστευση. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Παράδειγμα Κύκλου με Απομάστευση. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ενότητα : Παράδειγμα Κύκλου με Απομάστευση Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc.

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Ι Ενότητα 3: Καταστάσεις της Ύλης

ΧΗΜΕΙΑ Ι Ενότητα 3: Καταστάσεις της Ύλης ΧΗΜΕΙΑ Ι Ενότητα 3: Καταστάσεις της Ύλης Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας Περιεχόμενα Μαθήματος Καταστάσεις της ύλης Στερεά Υγρά Αέρια Φυσικές και Χημικές Ιδιότητες Αλλαγές Σύσταση της ύλης Καθορισμένες

Διαβάστε περισσότερα