ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 5: ΕΚΓΑΡΣΙΑ-ΔΙΕΥΘΥΝΣΗΣ ΔΥΝΑΜΙΚΗ
|
|
- Έλλη Αγγελίδου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 5: ΕΚΓΑΡΣΙΑ-ΔΙΕΥΘΥΝΣΗΣ ΔΥΝΑΜΙΚΗ
2 Εγκάρσιες-διεύθυνσης εξισώσεις κίνησης Αποσυζευγμένες εξισώσεις εγκάρσιας - διεύθυνσης μη συμμετρικής κίνησης: m v Y v v Y p + mw e p Y r mu e r mgψsinθ e + mgφcosθ e = Y δa δ a + Y δr δ r I x p I xz r L v v L p p L r r = L δa δ a + L δr δ r I z r I xz p N v v N p p N r r = N δa δ a + N δr δ r Εγκάρσιες-διεύθυνσης εξισώσεις κίνησης, που αναφέρονται στους άξονες του ανέμου και οριζόντια ομαλή πτήση (Θ e α e = 0, W e = 0), στο χώρο κατάστασης: v p r φ = y v y p y r y φ l v l p l r l φ n v n p n r n φ v p r φ + y δ a l δ a n δ a y δr l δ r n δ r 0 0 δ a δ r
3 Απόκριση σε εντολές ελέγχου Συναρτήσεις μεταφοράς ως προς τα πηδάλια κλίσης: v v s δ a s = N δ a s Δ s p s δ a s = N p δ a s Δ s r s δ a s = N r δ a s Δ s φ s δ a s = N φ δ a s Δ s όπου Τ: χρονική σταθερά, ω: φυσική συχνότητα χωρίς απόσβεση [rad/sec], ζ: συντελεστής απόσβεσης, d (dutch): δείκτης ολλανδικής περιστροφής, r (roll): δείκτης υποχώρησης της περιστροφής, s (spiral): δείκτης σπειροειδούς. k v (s + 1/T β1 )(s + 1/T β2 ) = (s + 1/T s )(s + 1/T r )(s 2 + 2ζ d ω d s + ω 2 d ) k p s(s 2 + 2ζ φ ω φ s + ω 2 φ ) = (s + 1/T s )(s + 1/T r )(s 2 + 2ζ d ω d s + ω 2 d ) k r (s + 1/T ψ )(s 2 + 2ζ ψ ω ψ s + ω 2 ψ ) = (s + 1/T s )(s + 1/T r )(s 2 + 2ζ d ω d s + ω 2 d ) k φ (s 2 + 2ζ φ ω φ s + ω 2 φ ) = (s + 1/T s )(s + 1/T r )(s 2 + 2ζ d ω d s + ω 2 d )
4 Απόκριση σε εντολές ελέγχου Συναρτήσεις μεταφοράς ως προς το πηδάλιο εκτροπής: όπου Τ: χρονική σταθερά, v v s δ r s = N δ r s Δ s p s δ r s = N p δ r s Δ s r s δ r s = N r δ r s Δ s φ s δ r s = N φ δ r s Δ s = k v(s + 1/T β1 )(s + 1/T β2 )(s + 1/T β3 ) (s + 1/T s )(s + 1/T r )(s 2 + 2ζ d ω d s + ω d 2 ) k p s(s + 1/T φ1 )(s + 1/T φ2 ) = (s + 1/T s )(s + 1/T r )(s 2 + 2ζ d ω d s + ω 2 d ) k r (s + 1/T ψ )(s 2 + 2ζ ψ ω ψ s + ω 2 ψ ) = (s + 1/T s )(s + 1/T r )(s 2 + 2ζ d ω d s + ω 2 d ) k φ (s + 1/T φ1 )(s + 1/T φ2 ) = (s + 1/T s )(s + 1/T r )(s 2 + 2ζ d ω d s + ω 2 d ) ω: φυσική συχνότητα χωρίς απόσβεση [rad/sec], ζ: συντελεστής απόσβεσης, d (dutch): δείκτης ολλανδικής περιστροφής, r (roll): δείκτης υποχώρησης της περιστροφής, s (spiral): δείκτης σπειροειδούς.
5 Η χαρακτηριστική εξίσωση Όταν οι ρίζες των πολυωνύμων που προκύπτουν από τον χώρο κατάστασης, εκφραστούν συναρτήσει των χρονικών σταθερών, των λόγων απόσβεσης και των φυσικών συχνοτήτων τότε λαμβάνονται άμεσα οι απαιτούμενες πληροφορίες που χαρακτηρίζουν τη δυναμική της απόκρισης. Ο κοινός παρονομαστής των συναρτήσεων μεταφοράς αποτελεί το χαρακτηριστικό πολυώνυμο, το οποίο με τη σειρά του περιγράφει τα χαρακτηριστικά ευστάθειας του αεροσκάφους. Οι μορφές των αποκρίσεων, καθορίζονται από τον κοινό παρονομαστή και «χρωματίζονται» από τους διαφορετικούς κάθε φορά αριθμητές. Ο αριθμητής δεν παίζει κανένα ρόλο στον καθορισμό της ευστάθειας ενός γραμμικού συστήματος.
6 Η χαρακτηριστική εξίσωση Εγκάρσιο-διεύθυνσης χαρακτηριστικό πολυώνυμο Για ένα κλασσικό αεροσκάφος είναι 4 ου βαθμού και εξισώνοντας το με το μηδέν αποτελεί τη χαρακτηριστική εξίσωση: Δ s = As 4 + Bs 3 + Cs 2 + Ds + E = 0 η οποία παραγοντοποιείται σε τρία ζεύγη ριζών: s + 1 T s s + 1 T r s 2 + 2ζ d ω d s + ω d 2 = 0 Διακρίνονται τρεις μορφές κίνησης: Μορφή του σπειροειδούς (spiral mode): Μη ταλαντωτική μορφή που περιγράφεται από την 1 η πραγματική ρίζα. Μορφή υποχώρησης της περιστροφής (roll subsidence): Επίσης μη ταλαντωτική μορφή και περιγράφεται από τη 2 η πραγματική ρίζα. Μορφή της ολλανδικής περιστροφής (dutch roll): Ταλαντωτική μορφή και περιγράφεται από το ζεύγος των μιγαδικών ριζών.
7 Η χαρακτηριστική εξίσωση Eξισώσεις κίνησης στο σωματόδετο σύστημα αναφοράς Xαρακτηριστικό πολυώνυμο 5ης τάξης : s s + 1 s + 1 s 2 + 2ζ T s T d ω d s + ω 2 d = 0 r Οι μορφές της ευστάθειας εξακολουθούν να ορίζονται με τον ίδιο τρόπο. Η μηδενική ρίζα, προκύπτει από την προσθήκη της γωνίας εκτροπής ψ, στην εξίσωση κατάστασης και υποδεικνύει ουδέτερη ευστάθεια ως προς την εκτροπή ή αλλιώς ως προς την πορεία (heading) που ακολουθεί το αεροσκάφος. Η επιπλέον πληροφορία απλά μας δίνει την ένδειξη ότι το αεροσκάφος δεν έχει συγκεκριμένη γωνία εκτροπής ή πορείας (αυθαίρετη). Καθώς οι μορφές της ευστάθειας δεν είναι τόσο διακριτές, υφίσταται μεγαλύτερη σύζευξη ή αλληλεπίδραση των μορφών σε σχέση με την περίπτωση της διαμήκους δυναμικής.
8 Η μορφή υποχώρησης της περιστροφής Μη ταλαντωτικό εγκάρσιο χαρακτηριστικό το οποίο συνήθως είναι σημαντικά αποσυζευγμένο από τη μορφή του σπειροειδούς και της ολλανδικής περιστροφής. Γι αυτό, περιγράφεται από μια πραγματική ρίζα του χαρακτηριστικού πολυωνύμου, ενώ εμφανίζεται ως ένα εκθετικό χαρακτηριστικό καθυστέρησης στην κίνηση περιστροφής. Όπως ορίστηκε η θετική περιστροφή, σημαίνει ότι η δεξιά πτέρυγα κινείται προς τα κάτω. Υποτίθεται ότι το αεροσκάφος πετά σε αντισταθμισμένη πτήση με τις πτέρυγες οριζόντιες. Όταν το αεροσκάφος δεχτεί μια διαταραχή θετικής ροπής περιστροφής L θα ξεκινήσει να στρέφεται με γωνιακή επιτάχυνση p = φ
9 Η μορφή υποχώρησης της περιστροφής Ορίζοντας δείκτες 1 και 2, για τη δεξιά (κατερχόμενη) και την αριστερή (ανερχόμενη) ως προς τον πιλότο πτέρυγα αντίστοιχα, τότε κατά τη θετική περιστροφική κίνηση: Η κάθε πτέρυγα βλέπει μια συνιστώσα v n = p y της ολικής ταχύτητας V T, που είναι κάθετη στο επίπεδό της. Αυξάνεται η γωνία πρόσπτωσης της κατερχόμενης, δεξιάς πτέρυγας. Αντίστοιχα μειώνεται η γωνία πρόσπτωσης της ανερχόμενης αριστερής πτέρυγας. Η διαφορική άνωση που δημιουργείται, προκαλεί με τη σειρά της, την εμφάνιση μιας περιστροφικής ροπής επαναφοράς. Η διαφορική οπισθέλκουσα που δημιουργείται, προκαλεί με τη σειρά της ροπή εκτροπής, αλλά αυτή είναι τόσο μικρή ώστε μπορεί να αγνοηθεί. Μετά τη διαταραχή ο ρυθμός περιστροφής p αυξάνεται εκθετικά έως ότου η διορθωτική ροπή εξισορροπήσει τη ροπή που προκάλεσε η διαταραχή και το αεροσκάφος αποκτήσει τελικά ένα σταθερό ρυθμό περιστροφής. Πρακτικά είναι περισσότερο μεταβατική παρά συνεχόμενη κίνηση. Έχει σταθεροποιητικό ρόλο. Γι αυτό μερικές φορές ονομάζεται και «απόσβεση της περιστροφής» (damping in roll). Σε ένα συμβατικό αεροσκάφος, παρουσιάζεται στον πιλότο ως μια καθυστέρηση στην απόκριση των πηδαλίων ως προς την κλίση του αεροσκάφους, που εξαρτάται κατά μεγάλο βαθμό από τη ροπή αδράνειας I x, καθώς και από τις αεροδυναμικές ιδιότητες της πτέρυγας, Τ r ~ 1 sec.
10 Η μορφή του σπειροειδούς Το σπειροειδές (spiral mode), είναι επίσης μη ταλαντωτικό και καθορίζεται από την άλλη πραγματική ρίζα στο χαρακτηριστικό πολυώνυμο. Έχει συνήθως αργή εξέλιξη, ενώ εμπλέκονται περίπλοκες συζευγμένες κινήσεις ως προς την εκτροπή, την κλίση και την πλαγιολίσθηση. Τα χαρακτηριστικά αυτής της μορφής εξαρτώνται σε μεγάλο βαθμό από την εγκάρσια στατική ευστάθεια, καθώς και από τη στατική ευστάθεια διεύθυνσης του αεροσκάφους.
11 Η μορφή του σπειροειδούς Διεγείρεται επίσης μετά από μια διαταραχή της ροπής περιστροφής L, που η θετική φορά ορίζει ως κατερχόμενη τη δεξιά πτέρυγα και προκαλεί μια διαταραχή πλαγιολίσθησης β. Υποθέτοντας ότι το αεροσκάφος πετά αντισταθμισμένο σε οριζόντια πτήση: Η ροπή διαταραχής L, προκαλεί την εμφάνιση μια μικρής κλίσης γωνίας φ. Εφόσον δεν υπάρξει κάποια διορθωτική ενέργεια από τον πιλότο η κλίση προκαλεί πλαγιολίσθηση με ταχύτητα v ( εικόνα (a) ). Πλαγιολίσθηση Γωνία πρόσπτωσης β στο κάθετο σταθερό (fin) Δημιουργία άνωσης Ροπή εκτροπής Ν, η οποία τείνει να επαναφέρει την κεφαλή του αεροσκάφους προς τη διεύθυνση της πλαγιολίσθησης. Εκτροπή Διαφορική άνωση κατά μήκος του εκπετάσματος Ανάλογη ροπή περιστροφής L Δεξιά πτέρυγα κατέρχεται περαιτέρω επιδεινώνοντας το φαινόμενο, όπως φαίνεται στις εικόνες (b) και (c). Η επίδραση της δίεδρης γωνίας Γ, λειτουργεί διορθωτικά με τη δημιουργία αντίθετης ροπής L λόγω της πλαγιολίσθησης. Η άνωση στο κάθετο σταθερό, που συνήθως έχει σημείο εφαρμογής λίγο πάνω από τον άξονα Οx, προκαλεί επίσης μια μικρή διορθωτική ροπή.
12 Η μορφή του σπειροειδούς Η επίδραση του κάθετου σταθερού, και η επίδραση της δίεδρης γωνίας πρέπει να αλληλοεξουδετερώνονται. Όταν η επίδραση της δίεδρης γωνίας υπερνικά την επίδραση του κάθετου σταθερού, η μορφή του σπειροειδούς είναι ευσταθής, ενώ όταν συμβαίνει το αντίθετο το σπειροειδές είναι ασταθές. Αυτοί οι παράγοντες είναι σχεδόν ισοδύναμοι και το σπειροειδές καθίσταται σχεδόν ουδέτερα ευσταθές. Συνήθως η χρονική του σταθερά είναι πολύ μεγάλη (T s 100 sec). Ευσταθές σπειροειδές: Η πτέρυγα επιστρέφει στον ορίζοντα πολύ αργά μετά από τη διαταραχή. Ασταθές σπειροειδές: Ο ρυθμός της απόκλισης είναι επίσης πολύ αργός. Ουδέτερα ευσταθές σπειροειδές: Το αεροσκάφος εκτελεί μια στροφή με σταθερή κλίση. Κατά συνέπεια το ασταθές σπειροειδές (σπειροειδής βύθιση-spiral departure) είναι δυνατόν να επιτραπεί με την προϋπόθεση ότι η χρονική σταθερά T s είναι επαρκώς μεγάλη. Κατά τη σπειροειδή βύθιση, τα οπτικά ερεθίσματα (visual cues) από τον περιβάλλοντα χώρο-έδαφος, καθίστανται τα σημαντικότερα εφόδια που έχει ο πιλότος για να αντιληφθεί την κατάσταση.
13 Η μορφή της ολλανδικής περιστροφής Κλασσική αποσβενόμενη ταλάντωση ως προς την εκτροπή περί τον άξονα Οz που εμφανίζει σύζευξη με την περιστροφή και σε λιγότερο βαθμό με την πλαγιολίσθηση. Τα χαρακτηριστικά της περιγράφονται από το ζεύγος των μιγαδικών ριζών στο χαρακτηριστικό πολυώνυμο. Επειδή οι ροπές αδρανείας πρόνευσης και εκτροπής έχουν παρόμοιο μέγεθος, οι συχνότητες της ολλανδικής περιστροφής και της μικρής περιόδου είναι παρόμοιες. Όμως, επειδή το κάθετο σταθερό είναι λιγότερο αποτελεσματικό ως αποσβεστήρας σε σχέση με το οριζόντιο σταθερό, η απόσβεση της είναι συνήθως μη επαρκής. Η μορφή αυτή ονομάστηκε έτσι, επειδή η κίνηση του αεροσκάφους μοιάζει με τη ρυθμική κίνηση ενός Ολλανδού παγοδρόμου στα παγωμένα κανάλια της Ολλανδίας.
14 Η μορφή της ολλανδικής περιστροφής Η φυσική της μπορεί να γίνει ευκολότερα αντιληπτή, αν φανταστούμε το αεροσκάφος σαν να είναι αναρτημένο ως προς τη διεύθυνση από ένα ελατήριο που επενεργεί περί τον άξονα Οz. Τα χαρακτηριστικά δυσκαμψίας του ελατηρίου είναι αεροδυναμικά και προσδιορίζονται σε μεγάλο βαθμό από το κάθετο σταθερό. Αεροσκάφος σε αντισταθμισμένη ευθυγραμμη οριζόντια πτήση Εφαρμόζεται μια ροπή διαταραχής Ν, ως προς την εκτροπή: Η αεροδυναμική δυσκαμψία του κάθετου σταθερού, προκαλεί μια διορθωτική ροπή εκτροπής -Ν που καταλήγει στην κλασσική ταλάντωση. Όταν η ταλάντωση αυτή αναπτυχθεί πλήρως, η σχετική ταχύτητα του αέρα πάνω από τη δεξιά και την αριστερή πτέρυγα, μεταβάλλεται ανάλογα, με ταλαντωτικό τρόπο. και προκαλεί ταλαντωτικές διαφορικές μεταβολές της άνωσης και της οπισθέλκουσας. Αυτή η αεροδυναμική σύζευξη προκαλεί μια ταλάντωση ως προς την περιστροφή, που υστερεί της ταλάντωσης ως προς την εκτροπή κατά 90. Διαφοράς φάσης Η πτέρυγα που προηγείται κατέρχεται ενώ η πτέρυγα που οπισθοχωρεί ανέρχεται.
15 Η μορφή της ολλανδικής περιστροφής Η κίνηση υποδηλώνεται από το ίχνος που σημειώνουν τα ακροπτερύγια ως προς τον ορίζοντα: Συνήθως ελλειπτικό. Συνθήκη ευστάθειας ολλανδικής περιστροφής: φ max ψ max < 1 Απαιτείται κυρίως η ύπαρξη ενός μεγάλου κάθετου σταθερού στο αεροσκάφος. Δυστυχώς αυτό αντιτίθεται στην απαίτηση για ευσταθές σπειροειδές όπως έγινε εμφανές προηγουμένως. Μέση λύση κατά τη σχεδίαση: Συνήθως προτιμάται ελαφρώς ασταθές σπειροειδές και ολλανδική περιστροφή με φτωχή απόσβεση. Η πολυπλοκότητα της υπονοεί ότι εκτός του κάθετου σταθερού υφίστανται και άλλοι αεροδυναμικοί παράγοντες που καθορίζουν τα χαρακτηριστικά της. Γενικά, είναι εξαιρετικά δύσκολο να ποσοτικοποιηθούν όλοι οι παράγοντες που διαμορφώνουν τα χαρακτηριστικά της ολλανδικής περιστροφής.
16 Μοντέλα μειωμένης τάξης Απώλεια ακρίβειας λόγω της έντονης σύζευξης των μορφών. Πρακτική σημασία: Περαιτέρω κατανόηση της μηχανικής της κίνησης κατά το εγκάρσιο επίπεδο και το επίπεδο διεύθυνσης. Αναφερόμενοι στους άξονες του ανέμου, το χαρακτηριστικό πολυώνυμο: Δ s = As 4 + Bs 3 + Cs 2 + Ds + E = 0 Στα συμβατικά αεροσκάφη, οι συντελεστές A, B, C, D και E δεν μεταβάλλονται σημαντικά με τις συνθήκες πτήσης. Τυπικά: - Α, Β είναι σχετικά μεγάλοι ενώ οι D και E είναι πολύ συχνά κοντά στο μηδέν. - Β>>Α και E<<D. Προσεγγιστικά: s + 1 T r s + B A και s + 1 T s s + E D Για το ζεύγος των μιγαδικών ριζών που περιγράφουν την ολλανδική περιστροφή, δεν υφίστανται τέτοιες απλές προσεγγιστικές λύσεις.
17 Η προσέγγιση της περιστροφής 1) Μικρές διαταραχές H μορφή της υποχώρησης της περιστροφής, εμπλέκει μόνο κίνηση περιστροφής με πολύ μικρή σύζευξη ως προς την πλαγιολίσθηση ή την εκτροπή: v = r = 0 και y v = y p = y r = y φ = n v = n p = n r = n φ = 0 Άρα p φ = l p l φ 1 0 2) Σύστημα αξόνων του ανέμου l φ = 0. p φ + l δ a 0 0 l δr δ a δ r 3) Μετασχηματίζοντας κατά Laplace και υποθέτοντας ότι το πηδάλιο διεύθυνσης διατηρείται σταθερό δ r = 0: p s δ a s = l δ a k p s l p s + 1 T r Ικανοποιητική ακρίβεια για 1 2 sec της απόκρισης περιστροφής ως προς τα πηδάλια κλίσης. 4) Αντικαθιστώντας τις συντετμημένες αεροδυναμικές παραγώγους ευστάθειας και παρατηρώντας ότι: I x I xz και I z I xz Χρονική σταθερά της μορφής υποχώρησης της περιστροφής: T r I x L p
18 Η προσέγγιση του σπειροειδούς 1) Αργή εξέλιξη σπειροειδούς Υποτίθεται ότι οι v, p και r είναι ψευδοστατικές σε σχέση με την κλίμακα χρόνου της μορφής αυτής. v = p = r = 0 2) Στους άξονες ανέμου και με τα χειριστήρια σταθεροποιημένα, έτσι ώστε η κίνηση να θεωρηθεί μη εξαναγκασμένη: l φ = n φ = 0 και δ a = δ r = 0 Άρα φ = y v y p y r y φ l v l p l r 0 n v n p n r ) Επιλύονται οι πρώτες 3 γραμμές ως προς τις v και r. 4) Ισχύουν: φ = p και y v, y p y r, y φ 5) Μετασχηματίζοντας κατά Laplace: v p r φ φ s s + y φ l r n v l v n r y r l v n p l p n v φ φ s s + 1 T s = 0
19 Η προσέγγιση του σπειροειδούς 6) Συναρτήσει των αεροδυναμικών παραγώγων ευστάθειας και επειδή ισχύουν: Y r mue y r U e V T e, y φ = g Προσεγγιστική έκφραση για τη χρονική σταθερά του σπειροειδούς: T s U e L v N p L p N v g L r N v L v N r V Te L vn p L p N v g L r N v L v N r H συνθήκη ώστε το σπειροειδές να είναι ευσταθές (Τ s >0), μπορεί να απλοποιηθεί στην κατά προσέγγιση κλασική απαίτηση: L v N r > L r N v Δηλαδή, η επίδραση της δίεδρης γωνίας ( L v ) και η απόσβεση ως προς την εκτροπή ( N r ),πρέπει να είναι μεγάλες ενώ η ακαμψία ως προς την εκτροπή ( N v ), πρέπει να είναι μικρή.
20 Η προσέγγιση της ολλανδικής περιστροφής 1) Παραδοχή: Η κίνηση δεν εμπλέκει καμία ανάλογη κίνηση του αεροσκάφους ως προς την κλίση, επειδή η μορφή αυτή είναι κυρίως μια ταλάντωση ως προς την εκτροπή, ενώ η περιστροφή προκαλείται, ως δευτερεύων φαινόμενο, από την αεροδυναμική σύζευξη: p = p = φ = φ = 0 2) Αναφερόμαστε στους άξονες του ανέμου και τα χειριστήρια θεωρούνται σταθεροποιημένα, ώστε η κίνηση να μην είναι εξαναγκασμένη: l φ = n φ = 0 και δ a = δ r = 0 Άρα v r = y v y r v n v n r r 3) Η χαρακτηριστική εξίσωση που προκύπτει: Δ d s = s 2 n r + y v s + n r y v n v y r
21 Η προσέγγιση της ολλανδικής περιστροφής 4) Αντικαθιστώντας τις συντετμημένες εκφράσεις, και θεωρώντας: Y r mu e ώστε y r U e V T e 5) Θεωρώντας επίσης ότι συνήθως Ι x, I z Ι xz Οι προσεγγιστικές ιδιότητες απόσβεσης και συχνότητας της μορφής: 2ζ d ω d N r + Y v I z m ω 2 d N r Y v I z m V N v N v Te V I Te z I z Η N r αναφέρεται ως η παράγωγος ευστάθειας της απόσβεσης εκτροπής και η N v αναφέρεται ως η παράγωγος ακαμψίας εκτροπής. Τόσο η μια όσο και η άλλη, εξαρτώνται από τον αεροδυναμικό σχεδιασμό και από τον λόγο όγκου V F του κάθετου σταθερού.
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 4: ΔΙΑΜΗΚΗΣ ΔΥΝΑΜΙΚΗ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 4: ΔΙΑΜΗΚΗΣ ΔΥΝΑΜΙΚΗ ΣΥΝΟΨΗ Απόκριση σε εντολές ελέγχου Η χαρακτηριστική εξίσωση Ταλάντωση πρόνευσης μικρής περιόδου Το φυγοειδές Μοντέλα χαμηλότερης τάξης Η προσέγγιση της
5: ΕΓΚΑΡΣΙΑ ΔΥΝΑΜΙΚΗ Σύνοψη Προαπαιτούμενη γνώση 1. Απόκριση σε εντολές ελέγχου
5: ΕΓΚΑΡΣΙΑ ΔΥΝΑΜΙΚΗ Σύνοψη Το κεφάλαιο πραγματεύεται την ανάλυση της εγκάρσιας δυναμικής και τα μοντέλα χαμηλότερης τάξης με τα οποία μπορεί να προσεγγιστεί. Η ανάλυση που πραγματοποιείται είναι αντίστοιχη
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3B: ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΠΟΣΥΖΕΥΓΜΕΝΕΣ ΕΞΙΣΩΣΕΙΣ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3B: ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΠΟΣΥΖΕΥΓΜΕΝΕΣ ΕΞΙΣΩΣΕΙΣ ΣΥΝΟΨΗ Μόνιμη κατάσταση και κατάσταση διαταραχής Γραμμικοποίηση των κινηματικών και των αδρανειακών όρων Γραμμικοποίηση
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 6: ΔΙΑΜΗΚΕΙΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 6: ΔΙΑΜΗΚΕΙΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ Εισαγωγή Μοντελοποίηση αεροδυναμικών φαινομένων: Το σημαντικότερο ίσως ζήτημα στη μελέτη της δυναμικής πτήσης: Αναγνώριση
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συστήματα αξόνων του αεροσκάφους Κίνηση αεροσκάφους στην ατμόσφαιρα Απαιτούνται κατάλληλα συστήματα αξόνων για περιγραφή της.
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συστήματα αξόνων του αεροσκάφους Κίνηση αεροσκάφους στην ατμόσφαιρα Απαιτούνται κατάλληλα συστήματα αξόνων για την περιγραφή
ΔΙΑΜΗΚΗΣ ΔΥΝΑΜΙΚΗ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΣΤΟ MATLAB
ΔΙΑΜΗΚΗΣ ΔΥΝΑΜΙΚΗ ΕΠΙΛΥΣΗ ΕΞΙΣΩΣΕΩΝ ΚΙΝΗΣΗΣ ΑΕΡΟΔΥΝΑΜΙΚΕΣ ΠΑΡΑΓΩΓΟΙ ΕΥΣΤΑΘΕΙΑΣ ΠΡΟΣΟΜΟΙΩΣΗ ΣΤΟ MATLAB Γραμμικοποίηση των κινηματικών και των αδρανειακών όρων H απλοποιημένες εκφράσεις για τους αδρανειακούς
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 2: ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΑΝΤΙΣΤΑΘΜΙΣΗ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 2: ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΑΝΤΙΣΤΑΘΜΙΣΗ Ισορροπία και ευστάθεια Κατάσταση ισορροπίας: F = 0 και M g = 0 Tο αεροσκάφος διατηρείται σε κατάσταση σταθερής ομαλής πτήσης. Ευστάθεια:
δ p = 0 { } = [ q m u m w m q m } δ e (4.1)
4: ΔΙΑΜΗΚΗΣ ΔΥΝΑΜΙΚΗ Σύνοψη Από τη στιγμή που έχουν διαμορφωθεί οι εξισώσεις κίνησης μικρών διαταραχών του αεροσκάφους και έγινε η αποσύζευξή τους σε διαμήκεις και εγκάρσιες, μπορούν πλέον να μελετηθούν
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 2: ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΑΝΤΙΣΤΑΘΜΙΣΗ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 2: ΣΤΑΤΙΚΗ ΙΣΟΡΡΟΠΙΑ ΚΑΙ ΑΝΤΙΣΤΑΘΜΙΣΗ Ισορροπία και ευστάθεια Κατάσταση ισορροπίας: F = 0 και M g = 0 Tο αεροσκάφος διατηρείται σε κατάσταση σταθερής ομαλής πτήσης. Ευστάθεια:
Ε Μ Π Σ Χ Ο Λ Η Μ Η Χ Α Ν Ο Λ Ο Γ Ω Ν Μ Η Χ Α Ν Ι Κ Ω Ν Ι Ω Α Ν Ν Η Σ Α Ν Τ Ω Ν Ι Α Δ Η Σ 1: ΕΙΣΑΓΩΓΗ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ Ε Μ Π Σ Χ Ο Λ Η Μ Η Χ Α Ν Ο Λ Ο Γ Ω Ν Μ Η Χ Α Ν Ι Κ Ω Ν Ι Ω Α Ν Ν Η Σ Α Ν Τ Ω Ν Ι Α Δ Η Σ 1: ΕΙΣΑΓΩΓΗ Εισαγωγή Το μάθημα πραγματεύεται τα εξής βασικά θέματα: τη διαμόρφωση των
ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73
ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 73 ΚΕΦΑΛΑΙΟ 4 ΕΛΕΥΘΕΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 4.. Εισαγωγή Στο παρόν κεφάλαιο θα μελετηθούν οι ελεύθερες ταλαντώσεις συστημάτων που περιγράφονται
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)
Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το
ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55
ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 55 ΚΕΦΑΛΑΙΟ 3 ΚΑΤΑΣΤΡΩΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΠΟΛΥΒΑΘΜΙΩΝ ΣΥΣΤΗΜΑΤΩΝ 3.. Εισαγωγή Αναφέρθηκε ήδη στο ο κεφάλαιο ότι η αναπαράσταση της ταλαντωτικής
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 8Α: ΣΥΣΤΗΜΑΤΑ ΕΠΑΥΞΗΣΗΣ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 8Α: ΣΥΣΤΗΜΑΤΑ ΕΠΑΥΞΗΣΗΣ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ ΣΥΝΟΨΗ 1) ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ ΠΤΗΣΗΣ Συστήματα επαύξησης ευστάθειας και αυτόματοι πιλότοι Ρόλος συστημάτων επαύξησης της ευστάθειας 2) ΑΡΧΙΤΕΚΤΟΝΙΚΗ
Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος
Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος Εισαγωγή Ελεύθερη Ταλάντωση Μονοβάθμιου Συστήματος: Δ05-2 Μία κατασκευή λέγεται ότι εκτελεί ελεύθερη ταλάντωση όταν μετακινηθεί από τη θέση στατικής ισορροπίας
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ ΕΜΠ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΙΩΑΝΝΗΣ ΑΝΤΩΝΙΑΔΗΣ ΑΝΔΡΕΑΣ ΠΑΡΑΔΕΙΣΙΩΤΗΣ 1: ΕΙΣΑΓΩΓΗ Υλικό-Πληροφορίες Ιστοσελίδα Μαθήματος: http://courseware.mech.ntua.gr/ml23229/ Παρουσιάσεις
ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ
ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση
Θέμα 1 ο (Μονάδες 25) προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες ταλάντωσης των σημείων Α και Β του μέσου ισχύει:
ΙΓΩΝΙΣΜ ΦΥΣΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ 99 11 -- 1111 Θέμα 1 ο 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος που διαδίδεται προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 218-219 ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 219 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΘΕΜΑ 1 Διάρκεια εξέτασης 2 ώρες Υλικό σημείο κινείται ευθύγραμμα πάνω στον άξονα
Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα
Σύνθεση ή σύζευξη ταλαντώσεων;
Σύνθεση ή σύζευξη ταλαντώσεων; Σώμα Σ μάζας προσδένεται στο ένα άκρο οριζόντιου ελατηρίου σταθεράς το άλλο άκρο του οποίου είναι ακλόνητα στερεωμένο. Πάνω στο πρώτο σώμα στερεώνεται δεύτερο ελατήριο σταθεράς,
Ασκήσεις 6 ου Κεφαλαίου
Ασκήσεις 6 ου Κεφαλαίου 1. Μία ράβδος ΟΑ έχει μήκος l και περιστρέφεται γύρω από τον κατακόρυφο άξονα Οz, που είναι κάθετος στο άκρο της Ο με σταθερή γωνιακή ταχύτητα ω. Να βρεθεί r η επαγώμενη ΗΕΔ στη
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό.
Q1-1 Δύο προβλήματα Μηχανικής (10 Μονάδες) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Μέρος A. Ο Κρυμμένος Δίσκος (3.5 Μονάδες)
Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλαντώσεις Ονοματεπώνυμο Μαθητή: Ημερομηνία: 7-11-2016 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 218-219 ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΘΕΜΑ 1 Διάρκεια εξέτασης 2 ώρες Υλικό σημείο κινείται ευθύγραμμα πάνω στον άξονα x με ταχύτητα,
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 7: ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΠΤΗΣΗΣ ΚΑΙ ΕΥΚΟΛΙΑΣ ΧΕΙΡΙΣΜΟΥ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 7: ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΠΤΗΣΗΣ ΚΑΙ ΕΥΚΟΛΙΑΣ ΧΕΙΡΙΣΜΟΥ Εισαγωγή ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΠΤΗΣΗΣ ΚΑΙ ΕΥΚΟΛΙΑΣ ΧΕΙΡΙΣΜΟΥ ΑΕΡΟΣΚΑΦΟΥΣ: Οι ιδιότητες που περιγράφουν την ευκολία και την ακρίβεια
Α3. Σε κύκλωμα LC που εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις η ολική ενέργεια είναι α. ανάλογη του φορτίου του πυκνωτή
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΛΑ Β) ΠΑΡΑΣΚΕΥΗ 25 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΘΕΜΑ Α Στις ημιτελείς
Δυναμική Μηχανών I. Διάλεξη 9. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 9 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Η διάλεξη σε MATLAB/simulink για όσους δήλωσαν συμμετοχή θα γίνει στις 16/1/2014 στο PC LAB Δεν θα γίνει διάλεξη
ΦΥΣΙΚΗ θετικής τεχνολογικής κατεύθυνσης
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 04 ΦΥΣΙΚΗ θετικής τεχνολογικής κατεύθυνσης Α. γ. Α. β. Α. γ. Α4. β. Α. Α. Σωστό Β. Σωστό Γ. Λάθος Δ. Λάθος Ε. Σωστό ΘΕΜΑ Α ΘΕΜΑ Β Β.. Η ταχύτητα που έχει το αριστερό σώμα ακριβώς
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Ταλαντώσεις Χρόνος Εξέτασης: 3 ώρες Θέμα 1ο Στις παρακάτω ερωτήσεις 1-5 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου
A A N A B P Y A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Η ενέργεια ταλάντωσης ενός κυλιόμενου κυλίνδρου Στερεό σώμα με κυλινδρική συμμετρία (κύλινδρος, σφαίρα, σφαιρικό κέλυφος, κυκλική στεφάνη κλπ) μπορεί να
ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΧΩΡΙΣ ΑΠΟΣΒΕΣΗ ΑΣΚΗΣΗ 6.1
ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΧΩΡΙΣ ΑΠΟΣΒΕΣΗ ΑΣΚΗΣΗ 6. Σώμα μάζας gr έχει προσδεθεί στην άκρη ενός ελατηρίου και ταλαντώνεται επάνω σε οριζόντιο δάπεδο χωρίς τριβή. Εάν η σταθερά του ελατηρίου είναι 5N / και το πλάτος
Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου
Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση. Τις χρονικές στιγμές που το μέτρο της ταχύτητας του αντικειμένου είναι μέγιστο, το μέτρο
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. 1 3 υ υ 1 1. Το μέτρο της ταχύτητας του υλικού σημείου είναι σταθερό.
Τμήμα Ηλεκτρολόγων Μηχανικών ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΚΑΤΆ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΣΓ
Όταν κατά τη λειτουργία μιας ΣΓ η ροπή στον άξονα της ή το φορτίο της μεταβληθούν απότομα, η λειτουργία της παρουσιάζει κάποιο μεταβατικό φαινόμενο για κάποια χρονική διάρκεια μέχρι να επανέλθει στη στάσιμη
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που
Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης
Δυναμική Μηχανών I 5 5 Χρονική Απόκριση Συστημάτων 2 ης Τάξης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα
Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του
ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία
α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0.
ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ ΚΚυυρρι ιιαακκήή 1133 ΙΙααννοουυααρρί ίίοουυ 001133 Θέμα 1 ο (Μονάδες 5) 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος
1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ
Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά
Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: , /
Γ.Κονδύλη & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο:20-6.24.000, http:/ / www.akadimos.gr ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ 204 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιμέλεια Θεμάτων: Παπαδόπουλος Πασχάλης ΘΕΜΑ
υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.
υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός
Ευστάθεια συστημάτων
1. Ευστάθεια συστημάτων Ευστάθεια συστημάτων Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό να έχουμε ευσταθή
ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή
ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 4// ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ α) Για δεδομένη αρχική ταχύτητα υ, με ποια γωνία
ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που
Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα
Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης
Γενικές εξετάσεις 0 Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη
Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης
Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Το ελαστικο κωνικο εκκρεμε ς
Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012 ΘΕΜΑ Α A 1. Α 2. Α 3. Α 4. γ β γ γ Α 5. α. Σ β. Σ γ. Λ δ. Λ ε. Σ ΘΕΜΑ Β Β 1. Σωστή η απάντηση γ Αιτιολόγηση: Για την αρχική
Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου:
ΥΔΡΟΚΙΝΗΤΗ ΔΙΑΤΑΞΗ ΓΟΥΔΙ ΓΙΑ TΟ ΑΛΕΣΜΑ ΤΟΥ ΡΥΖΙΟΥ
ΥΔΡΟΚΙΝΗΤΗ ΔΙΑΤΑΞΗ ΓΟΥΔΙ ΓΙΑ TΟ ΑΛΕΣΜΑ ΤΟΥ ΡΥΖΙΟΥ A. Εισαγωγή Το ρύζι αποτελεί την κύρια τροφή στο Βιετνάμ. Προκειμένου να παρασκευαστεί λευκό ρύζι από το αναποφλείωτο ρύζι των οριζόνων, πρέπει να γίνει
ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Κεφάλαιο ΥΠΟΛΟΓΙΣΜΟΣ ΚΑΙ ΜΕΤΡΗΣΗ ΣΥΝΑΡΤΗΣΗΣ ΜΕΤΑΦΟΡΑΣ ΣΕ ΠΡΑΚΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Στη διαδικασία σχεδιασμού των Συστημάτων Αυτομάτου Ελέγχου, η απαραίτητη και η πρώτη εργασία που έχουμε να κάνουμε, είναι να
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ
ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται
Ψηφιακός Έλεγχος. 11 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1
Ψηφιακός Έλεγχος η διάλεξη Ψηφιακός Έλεγχος Άσκηση 3 Θεωρούμε το σύστημα διακριτού χρόνου της μορφής με A R, B R, C R nxn nx xn ( + ) + Cx( k) x k Ax k Bu k y k Υποθέτουμε ότι το διάνυσμα κατάστασης x(k)
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 8B: ΑΥΤΟΜΑΤΟΙ ΠΙΛΟΤΟΙ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 8B: ΑΥΤΟΜΑΤΟΙ ΠΙΛΟΤΟΙ Βασικά συστήματα αυτομάτων πιλότων «ΑΥΤΟΜΑΤΟΙ ΠΙΛΟΤΟΙ» (AUTOPILOTS): Αυτόματα συστήματα ελέγχου πτήσης (AFCS), που επιτρέπουν στον πιλότο να εκτελεί διάφορους
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε
ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.
ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα 4: Μέθοδος Μικρών Μεταβολών Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 2012
ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ 0 ΕΚΦΩΝΗΕΙ ΘΕΜΑ Α τις ηµιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία τη συµπληρώνει σωστά. Α. Κατά τη
ΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ ΑΣΚΗΣΗ Ένα αντικείμενο εκτελεί απλή αρμονική κίνηση με πλάτος 4, cm και συχνότητα 4, Hz, και τη χρονική στιγμή t= περνά από το σημείο ισορροπίας και κινείται προς τα δεξιά. Γράψτε
Δημήτρης Αγαλόπουλος Σελίδα 1
ΛΥΣΗ Δ1. Η ράβδος διαγράφει γωνία μέχρι να συγκρουστεί με το σώμα (Σ 1 ). Τη χρονική στιγμή t=0 βρίσκεται στην οριζόντια θέση (Α), την χρονική στιγμή t 1 γίνεται κατακόρυφη θέση (Γ) και συγκρούεται με
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ
Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός
(είσοδος) (έξοδος) καθώς το τείνει στο.
Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKTΩΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 1 ΟΕΦΕ 2009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ
Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί
Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ
Β ΛΥΚΕΙΟΥ - ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1. Ποια η σημασία των παρακάτω μεγεθών; Αναφερόμαστε στην κυκλική κίνηση. Α. Επιτρόχια επιτάχυνση: Β. Κεντρομόλος επιτάχυνση: Γ. Συχνότητα: Δ. Περίοδος: 2. Ένας τροχός περιστρέφεται
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
Θεωρητική μηχανική ΙΙ
ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό της
ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να
ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ : ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση Ένα σώμα εκτελεί απλή
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 24 ΑΠΡΙΛΙΟΥ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ΑΠΡΙΛΙΟΥ 018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που
ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
Κανάρη 6, Δάφνη Τηλ. 10 97194 & 10 976976 ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α Ι. Στις ερωτήσεις A1-A4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (Transfer function) ΜΑΘΗΜΑΤΙΚΑ ΜΟΝΤΕΛΑ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Βασικές Έννοιες Μέχρι στιγμής αντιμετωπίζαμε κάθε σώμα που μελετούσαμε την κίνηση του ως υλικό
Θεωρητική μηχανική ΙΙ
ΟΣΑ ΓΡΑΦΟΝΤΑΙ ΕΔΩ ΝΑ ΤΑ ΔΙΑΒΑΖΕΤΕ ΜΕ ΣΚΕΠΤΙΚΟ ΒΛΕΜΜΑ. ΜΠΟΡΕΙ ΝΑ ΠΕΡΙΕΧΟΥΝ ΛΑΘΗ. Θεωρητική μηχανική ΙΙ Να δειχθεί ότι αν L x, L y αποτελούν ολοκληρώματα της κίνησης τότε και η L z αποτελεί ολοκλήρωμα της
Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά
ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΛΙΝΔΡΙΚΗΣ ΚΑΤΑΣΚΕΥΗΣ ΛΟΓΩ ΔΙΝΩΝ Γ. Σ. ΤΡΙΑΝΤΑΦYΛΛΟΥ ΚΑΘΗΓΗΤΗΣ ΕΜΠ Διατύπωση των εξισώσεων Θεωρούμε κύλινδρο διαμέτρου D, μήκους l, και μάζας m. Ο κύλινδρος συγκρατειται
ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) U β A
Σελίδα 1 από 5 ΔΙΑΓΩΝΙΣΜΑ 05 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3 ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α και
ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017
ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται
website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 17 Μαρτίου 2017 1 Βασικά μεγέθη Μηχανικών
ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,
ΕΓΚΑΡΣΙΑ ΗΠΙΑ ΔΙΑΤΑΡΑΧΗ ΣΕ ΤΕΝΤΩΜΕΝΗ ΕΛΑΣΤΙΚΗ ΧΟΡΔΗ ΔΙΑΔΙΔΕΤΑΙ ΩΣ ΚΥΜΑ;
ΕΓΚΑΡΣΙΑ ΗΠΙΑ ΔΙΑΤΑΡΑΧΗ ΣΕ ΤΕΝΤΩΜΕΝΗ ΕΛΑΣΤΙΚΗ ΧΟΡΔΗ ΔΙΑΔΙΔΕΤΑΙ ΩΣ ΚΥΜΑ; K. EYTAΞΙΑΣ H KYMATIKH EΞΙΣΩΣΗ ΚΑΘΕ ΣΥΝΑΡΤΗΣΗ ΤΗΣ ΜΟΡΦΗΣ y, f y, g ΠΕΡΙΓΡΑΦΕΙ ΜΙΑ ΔΙΑΤΑΡΑΧΗ ΠΟΥ ΟΔΕΥΕΙ ΠΡΟΣ ΤΑ ΔΕΞΙΑ / AΡΙΣΤΕΡΑ ΑΝΑΛΛΟΙΩΤΗ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - Γ ΛΥΚΕΙΟΥ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Να επιλέξετε την σωστή απάντηση στις παρακάτω προτάσεις: 1. Σε μια φθίνουσα ταλάντωση,
Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός.
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Βασικές Έννοιες Η επιστήμη της Φυσικής συχνά μελετάει διάφορες διαταραχές που προκαλούνται και διαδίδονται στο χώρο.
ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΠΕΜΠΤΗ 3 ΙΟΥΝΙΟΥ 2004 ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που
Προτεινόμενα θέματα για τις εξετάσεις 2011
Προτεινόμενα θέματα για τις εξετάσεις 011 Τάξη: Γ Γενικού Λυκείου Μάθημα: Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΘΕΜΑ Α Α1-A4 Να επιλέξετε τη σωστή από τις απαντήσεις Α1. Ένα σώμα μάζας είναι στερεωμένο