Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί
|
|
- Ωσαννά Αθανασιάδης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Παράρτημα ο : Μιγαδικοί Αριθμοί Παράρτημα ο : Μετασχηματισμός Lplce Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Παράρτημα 5 ο : Τυποποιημένα σήματα εισόδου Παράρτημα 6 ο : Χρονική απόκριση συστημάτων ης τάξης Παράρτημα 7 ο : Χρονική απόκριση συστημάτων ης τάξης Παράρτημα 8 ο : Προδιαγραφές μεταβατικής απόκρισης Παράρτημα 9 ο : Αρμονική απόκριση συστημάτων ης και ης τάξης Παράρτημα 0 ο : Διάγραμμα BODE βασικών παραγόντων Παράρτημα ο : Περιθώριο ενίσχυσης και φάσης Παράρτημα ο : Γεωμετρικός Τόπος Ριζών(ΓΤΡ) Παράρτημα 3ο: Κριτήριο ROUTH
2 Παράρτημα ο: Μιγαδικοί αριθμοί 3 Μιγαδικοί αριθμοί 3 Καρτεσιανή, Εκθετική και Πολική αναπαράσταση μιγαδικών αριθμών 4 3 Αριθμητικές πράξεις μιγαδικών αριθμών 5 4 Συγκεντρωτικός πίνακας τύπων για τους μιγαδικούς 6 Παράρτημα ο : Μετασχηματισμός Lplce 7 Ιδιότητες του Μετασχηματισμού Lplce 7 Μετασχηματισμοί Lplce βασικών συναρτήσεων 8 Παράρτημα 3ο : Αντίστροφος μετασχηματισμός Lplce 3 Περίπτωση διακεκριμένων πόλων 3 Περίπτωση πολλαπλών πόλων Παράρτημα 4ο: Μετασχηματισμοί δομικών διαγραμμάτων 3 Παράρτημα 5ο: Τυποποιημένα σήματα εισόδου 4 Παράρτημα 6ο: Χρονική απόκριση συστημάτων ης τάξης 5 Παράρτημα 7ο: Χρονική απόκριση συστημάτων ης τάξης 6 Παράρτημα 8ο: Προδιαγραφές μεταβατικής απόκρισης 7 Παράρτημα 9ο: Αρμονική απόκριση συστημάτων ης & ης τάξης 9 Παράρτημα 0ο: Διάγραμμα BODE βασικών παραγόντων Παράρτημα ο: Περιθώριο ενίσχυσης και φάσης 5 Παράρτημα ο: Γεωμετρικός Τόπος Ριζών(ΓΤΡ) 6 Κανόνες προσεγγιστικής χάραξης του ΓΤΡ 7 Παράρτημα 3ο: Κριτήριο ROUTH 8 3 Ειδικές περιπτώσεις για την συμπλήρωση του πίνακα 9
3 Παράρτημα ο : Μιγαδικοί αριθμοί Μιγαδικοί αριθμοί Είναι γνωστό ότι η δευτεροβάθμια εξίσωση () έχει λύση στο πεδίο των πραγματικών αριθμών, εάν η διακρίνουσα () Στην περίπτωση αυτή η τιμές των ριζών προκύπτουν από τη σχέση x, β ± = (3) α Εάν Δ<0 η (3) δεν έχει έννοια στο πεδίο των πραγματικών αριθμών, διότι ο υπολογισμός της τετραγωνικής ρίζας ενός αρνητικού αριθμού είναι πράξη αδύνατη πχ Έστω ότι έχουμε να λύσουμε την εξίσωση: (4) Χρησιμοποιώντας την σχέση (3) θα έχουμε: (5) Άρα θα έχουμε δύο ρίζες, που δεν μπορούν να ονομαστούν "αριθμοί" διότι εμφανίζεται η πράξη, που όπως είπαμε ποιο πάνω είναι πράξη αδύνατη στο πεδίο των πραγματικών αριθμών Η παραπάνω εκφράσεις που περιλαμβάνουν τους πραγματικούς αριθμούς, 3 και την, είναι η ποιο απλή περίπτωση αδύνατης πράξης στο πεδίο των πραγματικών αριθμών Τέτοιες εκφράσεις λοιπόν δεν μπορούν να ονομάζονται "αριθμοί", και θα τους ονομάζουμε "μιγαδικούς αριθμούς" Για διευκόλυνση ορίζουμε: (6) Στο σύμβολο " j " δίνουμε το όνομα της φανταστικής μονάδας και με βάση την (6) θα έχουμε: 3
4 Παρατηρούμε ότι οι δυνάμεις του j περιοδικά παίρνουν τις ίδιες τέσσερις τιμές: j, -, - j, +, έτσι αν έχουμε το j υψωμένο σε οποιαδήποτε δύναμη, μπορούμε να υπολογίσουμε το αποτέλεσμα, αρκεί να διαιρέσουμε τον εκθέτη του j με το 4 και το υπόλοιπο που θα προκύψει να το θεωρήσω εκθέτη του j Έτσι αν το υπόλοιπο Υ είναι: πχ έστω ότι θέλω να υπολογίσω τη τιμή του j 8 Το 8 διαιρούμενο με το 4 δίνει Υ= και άρα ακολουθώντας την διαδικασία που αναφέραμε προηγουμένως θα έχουμε: Ένας φανταστικός αριθμός ορίζεται σαν γινόμενο της φανταστικής μονάδας j με έναν πραγματικό αριθμό Για το λόγο αυτό μπορούμε να γράψουμε έναν φανταστικό αριθμό σαν j ω όπου ω είναι ένας πραγματικός αριθμός Ένας μιγαδικός αριθμός είναι το άθροισμα ενός πραγματικού αριθμού και ενός φανταστικού αριθμού όπως φαίνεται στην επόμενη σχέση (7) Όπου σ και ω είναι πραγματικοί αριθμοί Το σ είναι το πραγματικό μέρος και το ω το φανταστικό και χρησιμοποιούμε τη διατύπωση Καρτεσιανή, Εκθετική και Πολική αναπαράσταση μιγαδικών αριθμών Ο μιγαδικός αριθμός μπορεί να αναπαρασταθεί γραφικά στο μιγαδικό επίπεδο, σαν ένα σημείο του επιπέδου με συντεταγμένες (σ, j ω ): όπου σ είναι η τιμή πάνω στον οριζόντιο άξονα, που εκφράζει το πραγματικό μέρος του μιγαδικού αριθμού και ω η τιμή στον κάθετο άξονα (φανταστικός άξονας), που εκφράζει το φανταστικό μέρος του μιγαδικού αριθμού Εικόνα α 4
5 Ένας άλλος τρόπος αναπαράστασης του μιγαδικού αριθμού s είναι να χρησιμοποιήσουμε την απόσταση από την αρχή των αξόνων και την γωνία θ, όπως φαίνεται στην Εικόνα β Η εκθετική μορφή γράφεται: (8) Όπου (9) Και (0) To r ονομάζεται μέτρο του s και ορίζεται σαν, Η γωνία θ ονομάζεται όρισμα και μπορεί να αναπαρασταθεί σαν σε πολική μορφή ως εξής: Έτσι μπορούμε να αναπαραστήσουμε τον μιγαδικό αριθμό () Στην Eικόνα γ(στο πάνω μέρος της σελίδας) φαίνεται η αναπαράσταση του μιγαδικού Εκθετική μορφή Πολική μορφή 3 Αριθμητικές πράξεις μιγαδικών αριθμών Ο μιγαδικός αριθμός ονομάζεται συζυγής μιγαδικός του s και η πολική του μορφή είναι Έστω ότι έχουμε τους μιγαδικούς και Οι πράξεις της πρόσθεσης, του πολλαπλασιασμού και της διαίρεσης μεταξύ των δύο αριθμών, δίνουν τα παρακάτω αποτελέσματα Πρόσθεση: Πολλαπλασιασμός : Ή 5
6 Διαίρεση : 4 Συγκεντρωτικός πίνακας τύπων για τους μιγαδικούς α/α, Μέτρο μιγάδα 3 4 5, πρόσθεση μιγαδικών 6, αφαίρεση μιγαδικών 7, πολλαπλασιασμός μιγαδικών 8, διαίρεση μιγαδικών 6
7 Παράρτημα ο : Μετασχηματισμός Lplce Ιδιότητες του Μετασχηματισμού Lplce Στον πίνακα που ακολουθεί παρουσιάζονται οι ιδιότητες του μετασχηματησμού Lplce Α/Α
8 , Θεώρημα αρχικής τιμής 9, Θεώρημα τελικής τιμής Μετασχηματισμοί Lplce βασικών συναρτήσεων Στον πίνακα που ακολουθεί παρουσιάζονται οι μετασχηματισμοί Lplce βασικών συναρτήσεων Α/Α 3 t 4 Θετικός αριθμός 8
9 5 s 6 Θετικός αριθμός Θετικός αριθμός
10
11
12 Παράρτημα 3 ο : Αντίστροφος μετασχηματισμός Lplce Ο αντίστροφος μετασχηματισμός είναι η διαδικασία υπολογισμού της συναρτήσεως f(t) όταν γνωρίζουμε την συνάρτηση F(s) 3 Περίπτωση διακεκριμένων πόλων Έστω η συνάρτηση Γράφουμε τη συνάρτηση στην παρακάτω μορφή αφού υπολογίσουμε τις ρίζες του παρονομαστή που ονομάζονται και πόλοι της συνάρτησης Υπολογίζουμε τις τιμές των συντελεστών k i από τη σχέση Χρησιμοποιώντας τις ιδιότητες του μετασχηματισμού Lplce και το μετασχηματισμό Lplce των βασικών συναρτήσεων γίνεται: f( t) = ke + ke + + k e pt pt pt είναι είτε πραγματικοί είτε μιγαδικοί αριθμοί 3 Περίπτωση πολλαπλών πόλων Εάν η συνάρτηση έχει πολλαπλές ρίζες (πόλους), τότε οι συντελεστές k ij που αντιστοιχούν στην πολλαπλή ρίζα υπολογίζονται ως εξής : όπου i, εκφράζει την ρίζα (απλή ή πολλαπλή) της οποίας τον συντελεστή υπολογίζουμε όπου j, εκφράζει την θέση του συντελεστή k της πολλαπλής ρίζας με τιμές από μέχρι r όπου r, ο αριθμός που εκφράζει την πολλαπλότητα της ρίζας
13 Παράρτημα 4 ο : Μετασχηματισμοί δομικών διαγραμμάτων Οι μετασχηματισμοί των δομικών διαγραμμάτων παρουσιάζονται στον πίνακα που ακολουθεί α/α ΑΡΧΙΚΟ ΔΙΑΓΡΑΜΜΑ ΙΣΟΔΥΝΑΜΟ ΔΙΑΓΡΑΜΜΑ
14 Παράρτημα 5 ο : Τυποποιημένα σήματα εισόδου Στον πίνακα που ακολουθεί παρουσιάζονται τα τυποποιημένα σήματα εισόδου A/A ΟΝΟΜΑΣΙΑ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΕΞΙΣΩΣΗ ΜΕΤΑΣΧΗΜ LAPLACE ΜΟΝΑΔΙΑΙΑ ΒΗΜΑΤΙΚΗ ΣΥΝΑΡΤΗΣΗ u(t) ΜΟΝΑΔΙΑΙΑ ΒΗΜΑΤΙΚΗ ΣΥΝΑΡΤΗΣΗ δ(t) 3 ΜΟΝΑΔΙΑΙΑ ΑΝΑΡΡΙΧΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ r(t) 4 ΜΟΝΑΔΙΑΙΑ ΣΥΝΑΡΤΗΣΗ ΠΥΛΗΣ g(t) ή 5 ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ f(t) 4
15 6 ΗΜΙΤΟΝΟΕΙΔΗΣ ΣΥΝΑΡΤΗΣΗ f(t) Παράρτημα 6 ο : Χρονική απόκριση συστημάτων ης τάξης Στον παρακάτω πίνακα παρουσιάζεται η χρονική απόκριση συστημάτων πρώτης τάξης Α/Α ΕΙΔΟΣ ΔΙΕΓΕΡΣΗΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΜΟΝΑΔΙΑΙΑ ΒΑΘΜΙΔΑ x(t)= u(t)= ΜΟΝΑΔΙΑΙΑ ΑΝΑΡΡΙΧΗΣΗ x(t)= r(t)=t 3 ΜΟΝΑΔΙΑΙΑ ΚΡΟΥΣΗ x(t)=δ(t) 5
16 Παράρτημα 7 ο : Χρονική απόκριση συστημάτων ης τάξης Η χρονική απόκριση των συστημάτων δεύτερης τάξης παρουσιάζεται στον πίνακα που ακολουθεί ΤΥΠΟΣ ΕΙΣΟΔΟΥ x( t ) ΣΤΑΘΕΡΑ ΑΠΟΣΒΕΣΗΣ ζ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ y(t) ΜΟΝΑΔΙΑΙΑ ΒΗΜΑΤΙΚΗ ΣΥΝΑΡΤΗΣΗ x(t)=u(t)= 0< ζ < ΥΠΟ- ΑΠΟΣΒΕΣΗ ζ = ΚΡΙΣΙΜΗ ΑΠΟΣΒΕΣΗ ζ > ΥΠΕΡ - ΑΠΟΣΒΕΣΗ ζ =0 ΜΗΔΕΝΙΚΗ ΑΠΟΣΒΕΣΗ ΥΠΟ - ΑΠΟΣΒΕΣΗ ΜΟΝΑΔΙΑΙΑ ΑΝΑΡΡΙΧΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ x(t)=r(t)=t ζ = ΚΡΙΣΙΜΗ ΑΠΟΣΒΕΣΗ ζ > ΥΠΕΡ - ΑΠΟΣΒΕΣΗ ΜΟΝΑΔΙΑΙΑ ΚΡΟΥΣΤΙΚΗ ΣΥΝΑΡΤΗΣΗ x(t)=δ(t) 0< ζ < ΥΠΟ - ΑΠΟΣΒΕΣΗ ζ = ΚΡΙΣΙΜΗ ΑΠΟΣΒΕΣΗ ζ > ΥΠΕΡ - ΑΠΟΣΒΕΣΗ 6
17 Παράρτημα 8 ο : Προδιαγραφές μεταβατικής απόκρισης A/A ΣΥΜΒΟΛΙΣΜΟΣ - ΤΥΠΟΣ - ΟΝΟΜΑΣΙΑ : Χρόνος ανύψωσης : Χρόνος κορυφής 3 : Χρόνος αποκατάστασης 4 : Ποσοστό υπερύψωσης 5 : Μέγιστη τιμή της απόκρισης 6 : Σχέση μεταξύ ζ και M p 7 : Σχέση μεταξύ ω και t p 8 : Σχέση μεταξύ ω και M p 7
18 9 : ρίζες της ΧΕ 8
19 Παράρτημα 9 ο : Αρμονική απόκριση συστημάτων ης και ης τάξης Α/Α ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ ΑΡΜΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΓΕΘΗ (Ι) ΣΥΣΤΗΜΑ ΠΡΩΤΗΣ ΤΑΞΗΣ (ΙΙ) ΣΥΣΤΗΜΑ ΔΕΥΤΕΡΗΣ ΤΑΞΗΣ 9
20 ΙΣΧΥΕΙ ΓΕΝΙΚΑ: 0
21 Παράρτημα 0 ο : Διάγραμμα BODE βασικών παραγόντων Α/Α ΠΑΡΑΓΟΝΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ ΠΛΑΤΟΥΣ - ΦΑΣΗΣ Σταθερός όρος Κ M =0 logk
22 Όρος της μορφής 3 Όρος της μορφής ή ή
23 Όρος της μορφής 4 ή ή 3
24 Παράρτημα ο : Περιθώριο ενίσχυσης και φάσης Α/Α ΟΝΟΜΑΣΙΑ ΤΥΠΟΣ - ΣΧΟΛΙΑ ΠΕΡΙΘΩΡΙΟ ΕΝΙΣΧΥΣΗΣ (Kg) ΠΕΡΙΘΩΡΙΟ ΦΑΣΗΣ (φ α ) 4
25 Παράρτημα ο : Γεωμετρικός Τόπος Ριζών(ΓΤΡ) Ο (ΓΤΡ) είναι μια γραφική απεικόνιση των θέσεων των πόλων του κλειστού συστήματος στο μιγαδικό επίπεδο-s για όλες τις τιμές της παραμέτρου Κ (κέρδος) του συστήματος Είναι γνωστό ότι οι θέσεις των πόλων της συνάρτησης μεταφοράς στο μιγαδικό επίπεδο επηρεάζουν τη μεταβατική απόκριση του συστήματος καθώς και την ευστάθειά του Για το σύστημα κλειστού βρόγχου όπως αυτό εικονίζεται στο σχήμα που ακολουθεί ισχύουν οι παρακάτω σχέσεις: R (s) + E(s) G(s) C(s) - Z(s) H(s) Σχήμα 3 G ολ C( s) G( s) ( s) = = R( s) + G( s) H ( s) ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ (ΣΜ) G (s) ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (ΣΜ) ΤΟΥ ΚΛΑΔΟΥ ΔΡΑΣΗΣ H (s) ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (ΣΜ) ΤΟΥ ΚΛΑΔΟΥ ΑΝΑΔΡΑΣΗΣ G (s)h(s) ΣΥΝΑΡΤΗΣΗ ΜΕΤΑΦΟΡΑΣ (ΣΜ) ΑΝΟΙΚΤΟΥ ΒΡΟΓΧΟΥ + G(s)H(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ + G(s)H(s) = 0 ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΕΞΙΣΩΣΗ (ΧΕ) Αν η συνάρτηση μεταφοράς (ΣΜ) ανοικτού βρόγχου είναι της μορφής: τότε η ΣΜ του συστήματος θα είναι: (s + z )(s + z ) (s + zm ) G(s)H(s) = K (s + p )(s + p ) (s + p ) = N(s) K D(s) C(s) R(s) G(s) = + G(s)H(s) G(s) = N(s) + K D(s) = G(s)D(s) D(s) + KN(s) από την παραπάνω σχέση παρατηρούμε ότι η μεταβολή των τιμών της παραμέτρου Κ επηρεάζει τις τιμές των ριζών της ΧΕ του συστήματος με αποτέλεσμα τη μετατόπισή τους πάνω στο 5
26 μιγαδικό επίπεδο Αυτό μας επιτρέπει να δημιουργήσουμε ένα διάγραμμα πάνω στο μιγαδικό επίπεδο που θα είναι το σύνολο των σημείων που θα είναι ρίζες της ΧΕ του συστήματος αν η παράμετρος Κ πάρει όλες τις τιμές από το 0 μέχρι το + Το διάγραμμα που προκύπτει όταν το Κ πάρει τιμές μεταξύ του - και του μηδενός ονομάζεται συμπληρωματικός ΓΤΡ Από την ΧΕ προκύπτουν τα παρακάτω: + G(s)H(s) = G(s)H(s) = G (s)h(s) = 0 ( G(s)H(s) = (µ + ) π, µ = 0, ±, ±, Συνθήκη φάσης για το ΓΤΡ m i= K j= s + z i s + p j = Συνθήκη μέτρου για το ΓΤΡ Η παραπάνω σχέση μας επιτρέπει να υπολογίσουμε την τιμή του Κ πάνω στο διάγραμμα Κανόνες προσεγγιστικής χάραξης του ΓΤΡ ) Οι πόλοι της είναι τα σημεία εκκίνησης του ΓΤΡ ) Τα μηδενικά (zeros) της G(s)H(s) και το άπειρο όταν m< είναι τα σημεία λήξης του ΓΤΡ 3) Ο αριθμός των κλάδων του τόπου ριζών ισούται με το mx(m,) όπου m είναι το πλήθος των μηδενικών και είναι το πλήθος των πόλων της G (s)h(s) 4) Ο ΓΤΡ είναι συμμετρικός ως προς τον άξονα των πραγματικών αριθμών 5) Το σημείο τομής των ασύμπτωτων ευθειών με τον άξονα των πραγματικών αριθμών δίδεται από την σχέση σ α = i= p i m j= m όπου p i = το άθροισμα των τιμών των πόλων της G (s)h(s) i= m όπου j= z = το άθροισμα των τιμών των μηδενικών της G (s)h(s) j 6) Οι γωνίες που σχηματίζουν οι ασύμπτωτες με τον πραγματικό άξονα δίνεται από τη σχέση z j 6
27 (µ + ) π α =, μ= 0,,, ((-m)-) K 0 m όπου ((-m)-) είναι η τελευταία τιμή του μ φ µ 7) Ένα τμήμα του άξονα των πραγματικών αριθμών μπορεί να είναι τμήμα του ΓΤΡ αν το πλήθος των πόλων και των μηδενικών που βρίσκονται δεξιά του τμήματος είναι περιττό (για K 0) 8) Τα σημεία αποχωρισμού και άφιξης των κλάδων από και προς τον οριζόντιο άξονα ονομάζονται σημεία θλάσης του ΓΤΡ και υπολογίζονται από τις παρακάτω σχέσεις: D(s) K = N(s) dk = 0 ή D ' (s)n(s) N ' (s)d(s) = 0 ds κάθε ρίζα της παραπάνω εξίσωσης αποτελεί ένα δεκτό σημείο θλάσης αν είναι ταυτόχρονα και ρίζα της ΧΕ του συστήματος για κάποια τιμή του Κ 9) Οι γωνίες αναχώρησης του ΓΤΡ από μιγαδικό πόλο ή άφιξης σε μιγαδικό μηδενικό υπολογίζονται από τη σχέση: m ϕ = + d ( µ ) π ϕp ϕ i z j i= j= όπου: i= ϕ p i = το αλγεβρικό άθροισμα των γωνιών που σχηματίζουν οι πόλοι ως προς τον αναφερόμενο μιγαδικό πόλο (μηδενικό) m j= ϕ z j = το αλγεβρικό άθροισμα των γωνιών που σχηματίζουν τα μηδενικά ως προς τον αναφερόμενο μιγαδικό πόλο (μηδενικό) 0) Τα σημεία τομής του ΓΤΡ με τον άξονα των φανταστικών αριθμών είναι τα σημεία ± jω cr όπου το σύστημα μεταπίπτει από την ευστάθεια στην αστάθεια Οι τιμές του Κ και του ω για τα σημεία αυτά ονομάζονται κρίσιμο κέρδος (K cr ) και κρίσιμη συχνότητα (ω cr ) αντίστοιχα 7
28 8 Παράρτημα 3 ο : Κριτήριο ROUTH Το κριτήριο ευστάθειας Routh, προσδιορίζει τον αριθμό των πόλων της συνάρτησης μεταφοράς κλειστού βρόχου που βρίσκονται στο δεξιό μιγαδικό ημιεπίπεδο-s και δίνει απάντηση στο ερώτημα «είναι το σύστημα ευσταθές;», χωρίς να προσδιορίζει τη σχετική ευστάθεια του συστήματος όπως συμβαίνει με άλλα κριτήρια όπως του ΓΤΡ που είδαμε προηγουμένως Ας θεωρήσουμε ότι η ΧΕ 0 G(s)H(s) = + της συνάρτησης μεταφοράς του συστήματος έχει τη παρακάτω γενική μορφή: 0 0 = s s s όπου όλοι οι συντελεστές 0,,,, στο R και είναι 0 Εφ' όσον όλοι οι συντελεστές είναι ΟΜΟΣΗΜΟΙ, σχηματίζουμε τον πίνακα του Routh (σχήμα 4) Πίνακας ROUTH f f s e e s c c c s b b b s s s Σχήμα 4 όπου οι όροι,,,, e c c b b κλπ υπολογίζονται ως εξής: 3 = b 5 4 = b 7 6 = b b b b c 3 = b b b c 5 =
29 Σύμφωνα με το ΚΡΙΤΗΡΙΟ του Routh για να είναι ευσταθές ένα σύστημα πρέπει οι όροι της πρώτης στήλης του πίνακα Routh (δηλαδή οι,, b, c, e, f, ) να είναι ΟΜΟΣΗΜΟΙ Ο αριθμός των ριζών της ΧΕ που βρίσκονται στο δεξιό ημιεπίπεδο s ισούται με τον αριθμό αλλαγών του πρόσημου των συντελεστών της πρώτης στήλης του πίνακα Routh 3 Ειδικές περιπτώσεις για την συμπλήρωση του πίνακα α Όταν ένας όρος της πρώτης στήλης είναι μηδέν, ενώ οι υπόλοιποι όροι της σειράς είναι διάφοροι του μηδενός ή δεν υπάρχουν, τότε, αντικαθίσταται ο μηδενικός όρος, από ένα πολύ μικρό αριθμό ομόσημο με τους προηγούμενους της πρώτης στήλης, και συνεχίζεται η ανάπτυξη του πίνακα β Όταν όλοι οι όροι μίας σειράς του πίνακα Routh είναι μηδενικοί, ο πίνακας συμπληρώνεται με την τοποθέτηση, αντί των μηδενικών όρων με τους όρους της παραγωγισμένης βοηθητικής εξίσωσης της αμέσως προηγούμενης σειράς γ Όταν τουλάχιστον δύο σειρές έχουν μηδενικούς όρους, τότε το σύστημα είναι ασταθές και το χαρακτηριστικό πολυώνυμο έχει δύο αντίθετους πραγματικούς πόλους με πολλαπλότητα δ Για την εύρεση της κρίσιμης (οριακής) τιμής του Κ για ευστάθεια αρκεί να μηδενιστεί ο όρος της σειράς s και να λυθεί η εξίσωση ως προς Κ=Κ cr ε Για την εύρεση της οριακής συχνότητας ταλαντώσεων του συστήματος αρκεί να λυθεί η βοηθητική εξίσωση της σειράς s ως προς ω=ω cr Αυτή θα έχει τη μορφή: λ s + λ = 0 όπου λ, λ οι συντελεστές της σειράς s και όπου k θα τεθεί η τιμή Κ cr που βρέθηκε Παράδειγμα: Να σχεδιασθεί ο ΓΤΡ του εικονιζόμενου συστήματος ελέγχου για Κ > 0 R(s) + K s s( s 0) s C(s) Α) Η συνάρτηση μεταφοράς ανοικτού βρόγχου είναι: 9
30 K(s + 3) G(s)H(s) = () s(s + 5) ( s + 0) Β) Η χαρακτηριστική εξίσωση είναι: K(s + 3) XE = + G(s)H(s) = + s(s + 5) XE = s 3 + 5s ( s + 0) + (50 + K)s + 3K = 0,() s(s + 5) = s(s ( s + 0) + + 5) ( s + 0) K(s + 3) = 0 Γ) Από την () βρίσκω τους πόλους και τα μηδενικά και τα τοποθετώ πάνω στο μιγαδικό επίπεδο Αυτά είναι: Ζ =-3 και Ρ =0, Ρ =-5, Ρ 3 =-0 Δ) Οι κλάδοι είναι τρεις όσοι και πόλοι Ε) Τα τμήματα του πραγματικού άξονα που είναι κλάδοι του ΓΤΡ είναι εκείνα μεταξύ των σημείων (0,-3) και (-5,-0), διότι είναι αυτά που ικανοποιούν την ιδιότητα του να έχουν δεξιά τους περιττό αριθμό πόλων και μηδενικών p i z j i = j = 0 5 ( 3) Ζ) Το σημείο τομής των ασύμπτωτων σ α = = = = 6 m 3 m ΣΤ) Οι γωνίες που σχηματίζουν οι ασύμπτωτες είναι: φ µ (µ + ) π = m α το μ= 0,,, ((-m)-) άρα το μ θα πάρει τις τιμές 0 και διότι ((-m)- )= φ α 0 (µ + ) π ( 0 + )80 = = = m 3 o 90 φ α (µ + ) π ( + )80 = = = m 3 o 70 Η κρίσιμη τιμή του κέρδους Κ θα υπολογισθεί εφαρμόζοντας το κριτήριο του ROUTH Από τη σχέση () σχηματίζουμε τον πίνακα του ROUTH s s s s K 5 3K 5(50 + K) 3K 0 5 3K 5(50 + K) 3K 0 5(50 + K) 3K 0 K 6,5 και K >
31 άρα το σύστημα είναι ευσταθές για οποιαδήποτε Κ>0 και ο ΓΤΡ δεν τέμνει τον φανταστικό άξονα 3
Συστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ευστάθεια Συστημάτων Ελέγχου Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΣυστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Γεωμετρικός Τόπος Ριζών Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5 ο. ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS
ΚΕΦΑΛΑΙΟ 5 ο ΓΕΩΜΕΤΡΙΚOΣ ΤΟΠΟΣ ΤΩΝ PIZΩN ή ΤΟΠΟΣ ΕVANS Εισαγωγή Η μελέτη ενός ΣΑΕ μπορεί να γίνει με την επίλυση της διαφορικής εξίσωσης που το περιγράφει και είναι τόσο πιο δύσκολο, όσο μεγαλυτέρου βαθμού
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου-Εργαστήριο
1.1. ΕΥΣΤΑΘΕΙΑ Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο Ένα από τα βασικά πρακτικά προβλήματα της επιστήμης των συστημάτων αυτομάτου ελέγχου είναι η σχεδίαση ενός συστήματος τέτοιου ώστε η έξοδος του να
Διαβάστε περισσότεραΆσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:
1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση
Διαβάστε περισσότεραΕυστάθεια συστημάτων
1. Ευστάθεια συστημάτων Ευστάθεια συστημάτων Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό να έχουμε ευσταθή
Διαβάστε περισσότεραΜετασχηματισμοί Laplace
Μετασχηματισμοί Laplace Ιδιότητες μετασχηματισμών Laplace Βασικά ζεύγη μετασχηματισμών Laplace f(t) F(s) δ(t) 1 u(t) 1 / s t 1 / s 2 t n n! / s n1 e αt, α>0 1 / (s α) te αt, α>0 1 / (s α) 2 ημωt ω / (s
Διαβάστε περισσότερα(είσοδος) (έξοδος) καθώς το τείνει στο.
Υπενθυμίζουμε ότι αν ένα σύστημα είναι ευσταθές, τότε η απόκριση είναι άθροισμα μίας μεταβατικής και μίας μόνιμης. Δηλαδή, αν το σύστημα είναι ευσταθές όπου και Είθισται, σε ένα σύστημα αυτομάτου ελέγχου
Διαβάστε περισσότεραΕυστάθεια, Τύποι συστημάτων και Σφάλματα
1. Ευστάθεια συστημάτων Ευστάθεια, Τύποι συστημάτων και Σφάλματα Κατά την ανάλυση και σχεδίαση ενός συστήματος αυτομάτου ελέγχου, η ευστάθεια αποτελεί έναν πολύ σημαντικό παράγοντα και, γενικά, είναι επιθυμητό
Διαβάστε περισσότεραΛύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)
Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου 2015 ΘΕΜΑ 1 Ο (6,0 μονάδες) Δίνεται το κύκλωμα του σχήματος, όπου v 1 (t) είναι η είσοδος και v 3 (t) η έξοδος. Να θεωρήσετε μηδενικές αρχικές συνθήκες. v 1
Διαβάστε περισσότεραΛύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου (Ιούνιος 2015)
Λύσεις θεμάτων Α εξεταστικής περιόδου εαρινού εξαμήνου 204 5 (Ιούνιος 205) ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος. α. Να προσδιοριστούν οι τιμές
Διαβάστε περισσότεραΕυστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ευστάθεια Συστηµάτων Αυτοµάτου Ελέγχου: Αλγεβρικά κριτήρια 6 Nicol Tptouli Ευστάθεια και θέση πόλων Σ.Α.Ε ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος
Διαβάστε περισσότεραΛύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
Διαβάστε περισσότεραΣτα θέματα πολλαπλής επιλογής η λανθασμένη απάντηση βαθμολογείται αρνητικά όσο και η ορθή. Επιτρέπεται η χρήση του βιβλίου των Dorf & Bishop
Ε.Μ.Π. ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: Σ. Ε. Ρ. ΜΑΘΗΜΑ: Εισαγωγή στον Αυτόματο Έλεγχο ΕΞΑΜΗΝΟ: 5 ο ΚΑΘΗΓΗΤEΣ: Τ. Γ. Κουσιουρής Γ. Παπαβασιλόπουλος Αριθμός Μητρώου Ονοματεπώνυμο
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ : ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα
Διαβάστε περισσότεραΛύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 20 ΘΕΜΑ Ο (4,0 μονάδες). Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος που περιγράφεται από το δομικό (λειτουργικό) διάγραμμα. (2,0
Διαβάστε περισσότεραΣυστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο ΕΥΣΤΑΘΕΙΑ ΣΥΣΤΗMAΤΩΝ
ΚΕΦΑΛΑΙΟ 4 ο ΕΥΣΤΑΘΕΙΑ ΣΥΣΤΗMAΤΩΝ Εισαγωγή - Έννοιες Ένα ασταθές αντικείμενο προκαλεί γενικά ανεπιθύμητες παρενέργειες ή και καταστροφές Γενικά ένα ευσταθές σύστημα έχει μία οριοθετημένη τιμή στην απόκρισή
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 11: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΗΜΕΘΟΔΟΣ ΓΕΩΜΕΤΡΙΚΟΥ
Διαβάστε περισσότεραΣήματα και Συστήματα
Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες
Διαβάστε περισσότεραΟ Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ
Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου ΙΙ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #4: Ευστάθεια Συστημάτων Κλειστού Βρόχου με τη Μέθοδο του Τόπου Ριζών Δημήτριος Δημογιαννόπουλος
Διαβάστε περισσότεραΣΑΕ 1. Σημειώσεις από τις παραδόσεις. Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes
ΣΑΕ Σημειώσεις από τις παραδόσεις Για τον κώδικα σε L A TEX, ενημερώσεις και προτάσεις: https://github.com/kongr45gpen/ece-notes Οκτώβριος-Ιανουάριος 207 Τελευταία ενημέρωση: 3 Οκτωβρίου 207 Συστήματα
Διαβάστε περισσότεραΠΡΟΒΛΗΜΑ (Σεπτέμβριος 2008)
ΠΡΟΒΛΗΜΑ (Σεπτέμβριος 008) Για τον Γεωμετρικό Τόπο των Ριζών της συνάρτησης μεταφοράς as + s + 9 G(s) s(s 5)(s + b) με Κ>0 δίδεται ότι η τομή των ασυμπτώτων είναι το σημείο σ -(0+Ν 0 ) όπου Ν 0 το τελευταίο
Διαβάστε περισσότεραΖητείται να εξεταστεί η ευστάθειά του κατά BIBO. Η κρουστική απόκριση του συστήματος είναι L : =
. Δίνεται το ΓΧΑ σύστημα με συνάρτηση μεταφοράς ++2 Ζητείται να εξεταστεί η ευστάθειά του κατά BIBO. Λύση : Α) +3 +2 ++2 2 + + 2+2 Η κρουστική απόκριση του συστήματος είναι L : 2 + 2 H είναι φραγμένη καθώς.
Διαβάστε περισσότεραΚλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Κριτήριο Nyquist Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραI. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Διαβάστε περισσότεραΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ
Ε. Μ. Πολυτεχνείο Εργαστήριο Ηλεκτρονικής ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ Γ. ΠΑΠΑΝΑΝΟΣ ΠΑΡΑΡΤΗΜΑ : Συναρτήσεις Δικτύων Βασικοί ορισμοί Ας θεωρήσουμε ένα γραμμικό, χρονικά
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
Διαβάστε περισσότεραΑυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ
Τ.Ε.Ι. ΚΡΗΤΗΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ, ΑΥΤΟΜΑΤΙΣΜΟΥ & ΡΟΜΠΟΤΙΚΗΣ ΔΥΝΑΜΙΚΗ & ΕΛΕΓΧΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Μ. Σφακιωτάκης msfak@staff.teicrete.gr Χειµερινό εξάµηνο 18-19
Διαβάστε περισσότεραΑνάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Συστηµάτων Αυτοµάτου Ελέγχου: Γεωµετρικός Τόπος Ριζών 6 Nicolas Tsapatsoulis ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος []: Κεφάλαιο
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ T.E. ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ. Εφαρμογών: Σ. ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Διαβάστε περισσότερα. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και
ο ΘΕΜΑ [6. βαθμοί] 5 u x x + u Ax + Bu Έστω συνεχές σύστημα 4 5 3 u3 y [ ] x. [ β] Ποιες είναι οι ιδιοτιμές του πίνακα Α; 5 Με το ακόλουθο partinioning του πίνακα A οι ιδιοτιμές του είναι 4 5 eig(a) eig(
Διαβάστε περισσότεραΕισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου
Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 5 η : ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ
Διαβάστε περισσότεραΜαθηματικά μοντέλα συστημάτων
Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να
Διαβάστε περισσότεραΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ
7 ΔΙΑΓΡΑΜΜΑΤΑ BODE ΚΑΤΑΣΚΕΥΗ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ Δρ. Γιωργος Μαϊστρος Παράγοντας ης τάξης (+jωτ) Αντιστοιχεί σε πραγματικό πόλο: j j j Έτσι το μέτρο: ιαγράμματα χρήση ασυμπτώτων τομή τους
Διαβάστε περισσότεραΛύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)
Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΕΝΟΤΗΤΑ : ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE Δρ Γιώργος Μαϊστρος, Χημικός Μηχανικός
Διαβάστε περισσότεραΕισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 4: Αποκρίσεις χαρακτηριστικών συστημάτων με
Διαβάστε περισσότεραΚεφάλαιο 0 Μιγαδικοί Αριθμοί
Κεφάλαιο 0 Μιγαδικοί Αριθμοί 0 Βασικοί ορισμοί και πράξεις Είναι γνωστό ότι δεν υπάρχει πραγματικός αριθμός που επαληθεύει την εξίσωση x Η ανάγκη επίλυσης τέτοιων εξισώσεων οδηγεί στο σύνολο των μιγαδικών
Διαβάστε περισσότεραΔυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές
Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com
Διαβάστε περισσότεραΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ
ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω
Διαβάστε περισσότεραΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ
ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Γ Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 2: Στοιχειώδη Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Στοιχειώδη Σήματα Συνεχούς Χρόνου 1. Μοναδιαία Βηματική Συνάρτηση 2. Κρουστική Συνάρτηση ή
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
Διαβάστε περισσότεραΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού
Διαβάστε περισσότεραΚλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Γεωμετρικός τόπος των ριζών Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΔυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης
Δυναμική Μηχανών I 5 5 Χρονική Απόκριση Συστημάτων 2 ης Τάξης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα
Διαβάστε περισσότεραΕισαγωγή στην Τεχνολογία Αυτοματισμού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΌταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε
Διαβάστε περισσότεραΔυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ
Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #5: Σχεδιασμός ελεγκτών με τη μέθοδο του Τόπου Ριζών 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής
Διαβάστε περισσότεραΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ
ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ Η χρονική απόκριση μπορεί να ληφθεί από αναλυτικά μέσα όπως η μέθοδος μετασχηματισμού Laplace, εναλλακτικά δε μπορεί να χρησιμοποιηθεί εξομοίωση από Η/Υ. Η προσέγγιση
Διαβάστε περισσότερα10 2a 1 0 x. 1) Να εξεταστεί η ελεγξιμότητα και η παρατηρησιμότητα του συστήματος για τις διάφορες
Ε.Μ.Π. ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: Σ. Ε. Ρ. ΜΑΘΗΜΑ: Εισαγωγή στον Αυτόματο Έλεγχο Κ-Ω ΕΞΑΜΗΝΟ: 5 ο Ονοματεπώνυμο ΚΑΘΗΓΗΤEΣ: Τ. Γ. Κουσιουρής Γ. Παπαβασιλόπουλος ΠΕΡΙΟΔΟΣ:
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Β: Ευστάθεια Συστήματος (Α Μέρος) Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών
Διαβάστε περισσότεραwebsite:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ Κ. Ψυχαλίνος Πάτρα 005 . METAΣΧΗΜΑΤΙΣΜΟΣ LAPLACE. Ορισμοί Μετάβαση από το πεδίο του χρόνου στο πεδίο συχνότητας.
Διαβάστε περισσότεραΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Διαβάστε περισσότεραΛύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου (Ιούνιος 2014)
Λύσεις θεμάτων Α εξεταστικς περιόδου χειμερινού εξαμνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (2,0 μονάδες) Να σχεδιαστεί το δομικό (λειτουργικό) διάγραμμα του για τον ηλεκτρικό θερμοσίφωνα του σχματος. Είσοδος
Διαβάστε περισσότεραΔυναμική Μηχανών I. Συνάρτηση και Μητρώο Μεταφοράς
Δυναμική Μηχανών I 7 2 Συνάρτηση και Μητρώο Μεταφοράς 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Αναπαραστάσεις
Διαβάστε περισσότεραHMY 220: Σήματα και Συστήματα Ι
HMY 220: Σήματα και Συστήματα Ι Βασικές Έννοιες Σήματα Κατηγορίες Σημάτων Συνεχούς/ Διακριτού Χρόνου, Αναλογικά/ Ψηφιακά Μετασχηματισμοί Σημάτων Χρόνου: Αντιστροφή, Κλιμάκωση, Μετατόπιση Πλάτους Βασικά
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ E() ε() Διορθωτής D() ε c () Σύστημα G() S() Η() Ανάδραση H() E() ε() Διορθωτής D() ε c () Σύστημα G() S() Υπολογιστής Η() Ανάδραση H() Αναλογικό και ψηφιακό ΣΑΕ Πλεονεκτήματα
Διαβάστε περισσότερα1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΥΚΛΩΜΑΤΩΝ Πανεπιστήμιο Ιωαννίνων ΑΝΑΛΥΣΗ ΣΥΧΝΟΤΗΤΑΣ 5 ο Κεφάλαιο Γ. Τσιατούχας Τμήμα Μηχανικών Η/Υ και Πληροφορικής Διάρθρωση. Φάσμα συχνοτήτων. Πεδίο μιγαδικής μγ συχνότητας Πόλοι & μηδενικά
Διαβάστε περισσότεραΜιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου
Διαβάστε περισσότεραΜελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Εργαστηριακές Ασκήσεις με χρήση του λογισμικού Matlab Μελέτη ευστάθειας και αστάθειας συστημάτων με το περιβάλλον Matlab ΣΚΟΠΟΣ: Ο βασικός σκοπός της άσκησης αυτής είναι η μελέτη
Διαβάστε περισσότεραΛύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 205 ΘΕΜΑ Ο (2,0 μονάδες) Ο ηλεκτρικός θερμοσίφωνας χρησιμοποιείται για τη θέρμανση νερού σε μια προκαθορισμένη επιθυμητή θερμοκρασία (θερμοκρασία
Διαβάστε περισσότεραΜιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
Διαβάστε περισσότερα( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 0: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 0-3 -- Εαρινό Εξάµηνο Σειρά Ασκήσεων αρ. 6 Παρασκευή 5 Απριλίου
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότερα5. (Λειτουργικά) Δομικά Διαγράμματα
5. (Λειτουργικά) Δομικά Διαγράμματα Γενικά, ένα λειτουργικό δομικό διάγραμμα έχει συγκεκριμένη δομή που περιλαμβάνει: Τις δομικές μονάδες (λειτουργικά τμήματα ή βαθμίδες) που συμβολίζουν συγκεκριμένες
Διαβάστε περισσότερα1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 6: Έννοια της συνάρτησης μεταφοράς Παραδείγματα εφαρμογής σε φυσικά συστήματα Δ. Δημογιαννόπουλος, dimogian@teipir.gr
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #7: Αρμονικά κριτήρια ευστάθειας κατά Nyquist και BODE 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής
Διαβάστε περισσότεραΕισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
6 Nv 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Ανάπτυξη σε Σειρές Furier Αθανάσιος
Διαβάστε περισσότεραΓ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ
Διαβάστε περισσότεραΔυναμική Μηχανών I. Συνάρτηση Απόκρισης Συχνότητας
Δυναμική Μηχανών I 7 3 Συνάρτηση Απόκρισης Συχνότητας 215 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα Απόκριση
Διαβάστε περισσότερα( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει
μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,
Διαβάστε περισσότερα6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει
Διαβάστε περισσότεραΠαράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : v(t)
Παράδειγµα Θεωρείστε το σύστηµα: αυτοκίνητο επάνω σε επίπεδη επιφάνεια κάτω από την επίδραση δύναµης x( t ) : p(t) v(t) v(t) Πίεση στό γκάζι Σήµα εισόδου t ΣΥΣΤΗΜΑ Ταχύτης του αυτοκινήτου Σήµα εξόδου t
Διαβάστε περισσότεραΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου
ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότερα2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ
Διαβάστε περισσότεραΒασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα
Διαβάστε περισσότεραΠαράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους
Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο
Διαβάστε περισσότερασυστημάτων αυτόματης ρύθμισης... 34
Περιεχόμενα 5 Πειραματικοί Μέθοδοι Προσδιορισμού Μεγεθών Γραμμικών Συστημάτων Ρύθμισης 5. Γενικά..................................... 5.2 Αναλυτικές μέθοδοι για τον προσδιορισμό της συνάρτησης μετάβασης
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 1: ΑΥΤΟΜΑΤΟΣ ΕΛΕΓΧΟΣ Ακαδηµαϊκό Έτος 5 6, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το τρέχον έγγραφο αποτελεί υπόδειγµα
Διαβάστε περισσότερα7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z
7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει
Διαβάστε περισσότερα