Οδοποιία Ι. Ενότητα 8: Στοιχεία μελέτης χάραξης οδού Μηκοτομή σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ)
|
|
- Ἀβιούδ Μακρή
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 8: Στοιχεία μελέτης χάραξης οδού Μηκοτομή σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
2 Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. 2. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Στοιχεία μελέτης χάραξης οδού μηκοτομή σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ)
5 Περιεχόμενα ενότητας 1. Μηκοτομή των οδών 2. Υπολογισμός Υψομέτρων σε Ευθυγραμμία επί της Ερυθράς 3. Υπολογισμός Υψομέτρων σε Καμπύλη επί της Ερυθράς 4. Παράδειγμα Υπολογισμού Κυρτής Καμπύλης 5. Παράδειγμα Υπολογισμού Κοίλης Καμπύλης 5
6 Σκοπός ενότητας Σκοπός της Θεματικής Ενότητας είναι η παρουσίαση στους/ στις φοιτητές/ τριες των βασικών στοιχείων που συνθέτουν τη μηκοτομή της οδού ως τμήμα της συνολικής μελέτης χάραξης της οδού. Η παρουσίαση βασίζεται στο περιεχόμενο των ελληνικών κανονισμών για τη χάραξη των οδών (ΟΜΟΕ-Χ). Έμφαση δίνεται στον ορισμό των βασικών παραμέτρων της κατακόρυφης προβολής της χάραξης της οδού και των οριακών τιμών τους έτσι ώστε να διασφαλίζεται η ασφαλής κίνηση για τους χρήστες της οδού. 6
7 Μηκοτομή των οδών (1/25) Γενικά Οι κατά μήκος κλίσεις των οδών πρέπει για λόγους: κυκλοφοριακής ασφάλειας, λειτουργικού κόστους, εξοικονόμησης ενέργειας, μειωμένης ρύπανσης και κυκλοφοριακής ποιότητας, να διατηρούνται κατά το δυνατόν μικρές. Ακόμη, οι κλίσεις της οδού πρέπει κατά το δυνατό να προσαρμόζονται στο ανάγλυφο του εδάφους, προκειμένου να προστατευθούν το περιβάλλον και οι οικιστικές περιοχές και να μειωθεί το κόστος κατασκευής. 7
8 Μηκοτομή των οδών (2/25) Μέγιστες κατά μήκος κλίσεις Για λόγους ασφαλείας οι μέγιστες κατά μήκος κλίσεις δεν πρέπει να υπερβαίνουν τις τιμές του Πίνακα 1. Ειδικά για οδούς κατηγορίας ΒΙ (αστικοί αυτοκινητόδρομοι), η τιμή της επιτρεπόμενης μέγιστης κατά μήκος κλίσης προσδιορίζεται σε σχέση με το μήκος εφαρμογής της από τον Πίνακα 2. 8
9 Μηκοτομή των οδών (3/25) Πίνακας 1: Μέγιστες κατά μήκος κλίσεις (Πίνακας 8-1, ΟΜΟΕ Χ) Πίνακας 2: Μέγιστες κατά μήκος κλίσεις οδών κατηγορίας ΒΙ (Πίνακας 8-1 α, ΟΜΟΕ Χ) 9
10 Μηκοτομή των οδών (4/25) Στις περιοχές ισόπεδων κόμβων πρέπει να αποφεύγονται κατά μήκος κλίσεις μεγαλύτερες από 4% για λόγους σωστής μελέτης των συμβολών/ διασταυρώσεων και της κυκλοφοριακής τεχνικής (περιορισμός μήκους ορατότητας για στάση). Εντός σηράγγων σε οδούς της ομάδας Α, οι κατά μήκος κλίσεις δεν πρέπει να υπερβαίνουν την τιμή 4%. Ιδιαίτερα σε σήραγγες μεγάλου μήκους, πρέπει να επιδιώκεται η τιμή της μέγιστης κατά μήκος κλίσης να είναι s max = 2,5%. 10
11 Μηκοτομή των οδών (5/25) Εντονότερες κατά μήκος κλίσεις έχουν τα εξής μειονεκτήματα: υψηλότερη ρύπανση, μεγαλύτερη πιθανότητα ατυχημάτων, διασπορά εύφλεκτων υλικών με μεγάλη ταχύτητα και μείωση της ταχύτητας των βαρέων οχημάτων. Αν δεν είναι δυνατόν να αναπτυχθούν οι αναμενόμενες λειτουργικές ταχύτητες σε ορισμένα ανωφερικά τμήματα στις οδούς της ομάδας Α, πρέπει να διερευνάται η πιθανότητα διάταξης μίας επιπλέον λωρίδας για τα βαρέα οχήματα (πρόσθετη λωρίδα ή λωρίδα αναρρίχησης) ή αλλαγής της χάραξης της οδού. 11
12 Μηκοτομή των οδών (6/25) Σε οδούς των ομάδων Α και Β, που δεν διαθέτουν κράσπεδα, στις περιοχές συναρμογής των αντίρροπων επικλίσεων, πρέπει να επιλέγεται ελάχιστη κατά μήκος κλίση s min 0,7% ή καλύτερα s min 1,0%, ώστε να αποφεύγονται ζώνες κακής απορροής των ομβρίων. Σε κάθε περίπτωση η κατά μήκος κλίση της οδού δεν πρέπει να είναι μικρότερη από την πρόσθετη κλίση των οριογραμμών (διαφορά κατά μήκος κλίσεων οριογραμμών και άξονα περιστροφής του οδοστρώματος στα καμπύλα τμήμα της οδού). 12
13 Μηκοτομή των οδών (7/25) Για την πλήρη εξασφάλιση της απορροής των ομβρίων της οδού, η διαφορά μεταξύ της κατά μήκος κλίσης και της πρόσθετης κλίσης των οριογραμμών πρέπει να είναι 0,2% (καλύτερα 0,5%): s Δs 0,0 2% (καλύτερα 0,5%) όπου: s [%] = κατά μήκος κλίση της οδού, Δs [%] = πρόσθετη κλίση των οριογραμμών. 13
14 Μηκοτομή των οδών (8/25) Σε οδούς με κράσπεδα, η κατά μήκος κλίση πρέπει να είναι τουλάχιστον 0,5% στις περιοχές όπου υπάρχουν κρασπεδόρειθρα. Γι αυτό το λόγο η κατά μήκος κλίση του άξονα της οδού στην περιοχή της προσαρμογής της επίκλισης πρέπει να είναι μεγαλύτερη κατά 0,5% από την πρόσθετη κλίση των οριογραμμών: s Δs >= 0,5% όπου: s [%] =κατά μήκος κλίση της οδού. Δs [%]=πρόσθετη κλίση των οριογραμμών. 14
15 Μηκοτομή των οδών (9/25) Κατακόρυφες καμπύλες Κυρτή κατακόρυφη καμπύλη είναι η καμπύλη που εγγράφεται στις δύο πλευρές μιας γωνίας της ερυθράς (πολυγωνική γραμμή) η οποία στρέφει τα κοίλα προς τα κάτω. Αντίθετα κατακόρυφη κοίλη καμπύλη είναι η καμπύλη που εγγράφεται στις δύο πλευρές μιας γωνίας της ερυθράς (πολυγωνική γραμμή) η οποία στρέφει τα κοίλα προς τα επάνω. 15
16 Μηκοτομή των οδών (10/25) Συνήθως οι κατακόρυφες καμπύλες που διατάσσονται στα κυρτώματα και τα κοιλώματα είναι τετραγωνικές παραβολές ως προσέγγιση κυκλικών τόξων, δεδομένου ότι για τις κατά κανόνα εφαρμοζόμενες μεγάλες ακτίνες και την επιδιωκόμενη ακρίβεια το κυκλικό τόξο και η τετραγωνική παραβολή, πρακτικά, συμπίπτουν. 16
17 Μηκοτομή των οδών (11/25) Έτσι υπολογίζουμε την κατακόρυφη συναρμογή, κυρτή ή κοίλη, με ακτίνα καμπυλότητας H που ουσιαστικά ισούται με την ακτίνα καμπυλότητας στην κορυφή της τετραγωνικής παραβολής, δηλαδή στη θέση αλλαγής του προσήμου της κατά μήκος κλίσης (s=0%). 17
18 Μηκοτομή των οδών (12/25) Οι βασικές σχέσεις υπολογισμού μίας κατακόρυφης καμπύλης δίδονται στο Σχήμα 1. (1) (2) (3) (4) (5) Σχήμα 1: Σχέσεις υπολογισμού κατακόρυφων καμπυλών (Σχήμα 8-1, ΟΜΟΕ Χ) Συνέχεια πίσω 18
19 Μηκοτομή των οδών (13/25) Σχήμα 1: Σχέσεις υπολογισμού κατακόρυφων καμπυλών (Σχήμα 8-1, ΟΜΟΕ Χ) 19
20 Μηκοτομή των οδών (14/25) Η επιλογή των ακτινών των κυρτών και των κοίλων κατακόρυφων καμπυλών πρέπει να γίνεται ώστε σε συνδυασμό με τα στοιχεία μελέτης της οριζοντιογραφίας: να προκύπτει μια αρμονική χάραξη στο χώρο, να εξασφαλίζεται το ελάχιστο αποδεκτό επίπεδο ασφαλείας με τα απαραίτητα μήκη ορατότητας σε όσο το δυνατόν μεγαλύτερο μήκος της οδού, να προστατεύεται το περιβάλλον, να προσαρμόζεται η οδός όσο το δυνατόν καλύτερα στο ανάγλυφο του εδάφους, ώστε το κόστος κατασκευής της οδού να διατηρείται σε χαμηλά επίπεδα. Οι απαιτήσεις αυτές έχουν μεγαλύτερη σημασία στις οδούς της ομάδας Α και μικρότερη σημασία στις οδού της ομάδας Β, όπου προέχει η διατήρηση του οικιστικού ιστού. 20
21 Οι κυρτές και οι κοίλες καμπύλες συνδέονται κατά κανόνα με ευθυγραμμίες. Είναι προτιμότερη η άμεση επαφή των κατακόρυφων καμπυλών χωρίς παρεμβολή ευθυγραμμίας. Μεταξύ της ελάχιστης ακτίνας της κυρτής κατακόρυφης καμπύλης Η Κ, του απαιτούμενου μήκους ορατότητας για στάση S h ή για προσπέραση S u, του ύψους των οφθαλμών του οδηγού h Α και του ύψους των εμποδίων h z ισχύει η σχέση (βλέπε Σχήμα 2): 2 S min H K = (6) 2 2( h + h ) όπου: Μηκοτομή των οδών (15/25) minh κ [m] =ελάχιστη ακτίνα κυρτής κατακόρυφης καμπύλης S [m] =απαιτούμενο μήκος ορατότητας: για στάση S h, για προσπέραση S u h A [m] = ύψος οφθαλμού h z [m] = ύψος εμποδίου A Z 21
22 Μηκοτομή των οδών (16/25) Σχήμα 2: Σχέση μεταξύ ελάχιστης ακτίνας κυρτής κατακόρυφης καμπύλης και μήκους ορατότητας για στάση (Σχήμα 8-2, ΟΜΟΕ Χ) 22
23 Μηκοτομή των οδών (17/25) Οι ελάχιστες ακτίνες κυρτών κατακόρυφων καμπυλών του Πίνακα 3 παρέχουν επαρκή περιθώρια ασφαλείας. Με την εφαρμογή αυτών των ακτινών δεν προκύπτουν μεγάλα ορύγματα, η δε μηκοτομή μπορεί να προσαρμοσθεί σε μεγάλο βαθμό στο ανάγλυφο του εδάφους. Ιδιαίτερη σημασία για τα κυρτώματα έχει η ορατότητα. 23
24 Μηκοτομή των οδών (18/25) Για οδούς με διαχωρισμένες επιφάνειες κυκλοφορίας με ισόπεδους κόμβους πρέπει να τηρούνται μόνο οι ελάχιστες τιμές της στήλης 2, παράλληλα όμως με τις απαιτήσεις ορατότητας στις περιοχές ισόπεδων κόμβων. Το απαιτούμενο μήκος ορατότητας για προσπέραση εξασφαλίζεται με την εφαρμογή των τιμών της στήλης 4 του Πίνακα 3. Πίνακας 3: Οριακές τιμές ακτινών κυρτών κατακόρυφων καμπυλών συναρμογής για οδούς των ομάδων Α και Β (Πίνακας 8-2, ΟΜΟΕ Χ) 24
25 Μηκοτομή των οδών (19/25) Οι ελάχιστες τιμές των ακτινών των κοίλων καμπυλών του Πίνακα 4 παρέχουν επαρκή μήκη ορατότητας: σε κάτω διαβάσεις (ελάχιστο ελεύθερο ύψος = 4,50m και ύψος οφθαλμών οδηγού φορτηγού οχήματος = 2,50m), κατά τη νυκτερινή οδήγηση. 25
26 Μηκοτομή των οδών (20/25) Πίνακας 4: Οριακές τιμές ακτινών κοίλων κατακόρυφων καμπυλών συναρμογής για οδούς των ομάδων Α και Β (Πίνακας 8-3, ΟΜΟΕ Χ) 26
27 Προκειμένου να αποφεύγεται η οπτική εικόνα θλάσης της χάραξης της μηκοτομής στα κυρτώματα ή κοιλώματα, το μήκος της εφαπτόμενης Τ πρέπει να είναι: όπου: Μηκοτομή των οδών (21/25) για οδούς της ομάδας Α : T min = V e (7) για οδούς της ομάδας Β : T min = 0,75* V e (8) T min [m] = ελάχιστο μήκος εφαπτομένης V e [km/h] = ταχύτητα μελέτης 27
28 Μηκοτομή των οδών (22/25) Σε περιοχές με μικρές μεταβολές της κατά μήκος κλίσης επιτρέπεται η παράλειψη καμπύλης συναρμογής όταν η μέγιστη διαφορά των διαδοχικών κατά μήκος κλίσεων είναι: Ds max = 0,3/ V e (9) όπου Ds max [m/m] = η διαφορά κλίσεων. Η ελάχιστη επιτρεπόμενη απόσταση μεταξύ διαδοχικών θλάσεων της χάραξης της μηκοτομής χωρίς καμπύλη συναρμογής είναι: για V e > 70km/h, 30m για V e 70km/h, 15m 28
29 Μηκοτομή των οδών (23/25) Όταν η αλλαγή της κλίσης γίνεται χωρίς καμπύλη συναρμογής στην πραγματικότητα στο σημείο θλάσης γίνεται στρογγύλευση από τον κατασκευαστή. Η παράλειψη της καμπύλης συναρμογής συνιστάται να αποφεύγεται στις εξής περιπτώσεις: σε θέσεις γεφυρών (περιλαμβάνονται και τα άκρα των γεφυρών), σε θέσεις ιρλανδικών ρείθρων (ροή επάνω στην οδό), σε άλλες θέσεις όπου απαιτείται προσεκτική διαμόρφωση των κλίσεων. 29
30 Μηκοτομή των οδών (24/25) Σε περιοχές εκατέρωθεν του σημείου αλλαγής του προσήμου της κατά μήκος κλίσης στις κυρτές ή στις κοίλες κατακόρυφες καμπύλες και για μήκος: L =Η /100 (10), μπορεί να εμφανίζονται κατά μήκος κλίσεις s <= 0,5%. όπου: L [m] = μήκος καμπύλης στην περιοχή με μικρή κατά μήκος κλίση εκατέρωθεν του σημείου αλλαγής του προσήμου της κατά μήκος κλίσης. Η [m] = ακτίνα κοίλης/ κυρτής κατακόρυφης καμπύλης συναρμογής. 30
31 Μηκοτομή των οδών (25/25) Σε αυτές τις περιπτώσεις όταν η οδός έχει κράσπεδα, πρέπει να λαμβάνεται πρόνοια ώστε τα ρείθρα (π.χ. με εφαρμογή μεταβλητής εγκάρσιας κλίσης) να διατηρούν την ελάχιστη αποδεκτή κατά μήκος κλίση. Διαφορετικά είναι απαραίτητα δύσκολα πρόσθετα μέτρα για την αποχέτευση της οδού. 31
32 Υπολογισμός υψομέτρων σε ευθυγραμμία επί της ερυθράς (1/4) Δίδεται ευθύγραμμο τμήμα ΑΒ μήκους L AB και κλίσης s. Το υψόμετρο του σημείου Α είναι Η Α και το υψόμετρο του σημείου Β είναι Η Β, όπως παρουσιάζεται στο Σχήμα 3. Ζητούμενο είναι ο υπολογισμός του υψομέτρου Η x ενός τυχαίου σημείου Χ σε οριζόντια απόσταση x από στο σημείο Α. 32
33 Υπολογισμός υψομέτρων σε ευθυγραμμία επί της ερυθράς (2/4) Σχήμα 3: Υπολογισμός Ερυθράς σε ευθυγραμμία 33
34 Υπολογισμός υψομέτρων σε ευθυγραμμία επί της ερυθράς (3/4) Η οδός έχει σταθερή κλίση s στο εξεταζόμενο οδικό τμήμα και η οποία ισούται με την εφαπτομένη της γωνίας α που σχηματίζουν το οδικό τμήμα και το οριζόντιο επίπεδο με αρχή το σημείο Α. Η κλίση της οδού υπολογίζεται από τη σχέση: Η ΑΒ HB HA s = = LAB LAB όπου : s = η κατά μήκος κλίση ΔH AB [m] = η υψομετρική διαφορά μεταξύ των σημείων Α και Β L [m] = η απόσταση μεταξύ Α και Β AB 34
35 Υπολογισμός υψομέτρων σε ευθυγραμμία επί της ερυθράς (4/4) Η υψομετρική διαφορά μεταξύ των σημείων Α και X υπολογίζεται από τη σχέση ΔΗ ΑΧ =x*s ενώ το υψόμετρο του σημείου X υπολογίζεται από τη σχέση H x =Η Α +ΔΗ Αx 35
36 Υπολογισμός υψομέτρων σε καμπύλη επί της ερυθράς (1/5) Ορίζονται τα γεωμετρικά στοιχεία μιας κατακόρυφης καμπύλης, για παράδειγμα σε μια κυρτή κατακόρυφης καμπύλης, όπως παρουσιάζονται στο Σχήμα 4. 36
37 Υπολογισμός υψομέτρων σε καμπύλη επί της ερυθράς (2/5) Σχήμα 4: Υπολογισμός Ερυθράς σε καμπύλη 37
38 Υπολογισμός υψομέτρων σε καμπύλη επί της ερυθράς (3/5) Το μήκος της εφαπτομένης (Τ)* υπολογίζεται από τη σχέση: T H s s = Το βέλος (f)* υπολογίζεται από τη σχέση: f 2 2 T s2 s1 = *Τα πρόσημα των τιμών των παραμέτρων ορίζονται με βάση το Σχήμα 1, σελίδα
39 Υπολογισμός υψομέτρων σε καμπύλη επί της ερυθράς (4/5) Η τετμημένη του σημείου S (είναι το σημείο κατά το οποίο αλλάζει η κλίση) υπολογίζεται από τη σχέση: x s s = H 39
40 Υπολογισμός υψομέτρων σε καμπύλη επί της ερυθράς (5/5) Η τεταγμένη του τυχαίου σημείου (X) υπολογίζεται από τη σχέση: y s s x = 1 x H 2 Όπου (x) η οριζόντια απόσταση του τυχαίου σημείου (x) από το σημείο Α. 40
41 Παράδειγμα υπολογισμού κυρτής καμπύλης (1/6) Δίδεται η κυρτή καμπύλη του Σχήματος 5 για την οποία είναι γνωστές οι τιμές των κλίσεων s 1 = +5% και s 2 = -3%. Η τιμή της παραμέτρου της τετραγωνικής παραβολής H = 1500m. Να υπολογισθούν τα στοιχεία της κυρτής καμπύλης καθώς και οι τεταγμένες των σημείων σε απόσταση 40m και 80m από την αρχή της καμπύλης. 41
42 Παράδειγμα υπολογισμού κυρτής καμπύλης (2/6) Μ Σχήμα 5: Παράδειγμα υπολογισμού κυρτής καμπύλης 42
43 Παράδειγμα υπολογισμού κυρτής καμπύλης (3/6) Αρχικά υπολογίζεται η διαφορά των κλίσεων Δs. Με δεδομένο τις τιμές των κλίσεων έχουμε ανωφέρεια (s 1 =+5%) και στη συνέχεια κατωφέρεια (s 2 =-3%) η παράμετρος Δs υπολογίζεται από τη σχέση: s = s s = 0,03 (0,05) = 0,08 = 8%
44 Παράδειγμα υπολογισμού κυρτής καμπύλης (5/6) Το μήκος της εφαπτομένης (Τ) υπολογίζεται από τη σχέση: H (s 2 s1) 1500 ( 3 5) T = = = = 60m Ενώ το βέλος (f) της καμπύλης υπολογίζεται από τη σχέση: 2 2 T (60) f = = = 1,2m 2 H 2 ( 1500) Υπολογίζουμε x s, s(m) και s(s). ( 5) s1 xs = H = ( 1500) = 75m xm 60 sm ( ) = s = (5) = 1% H 1500 xs 75 s(s) = s = (5) = 0% H
45 Παράδειγμα υπολογισμού κυρτής καμπύλης (6/6) Για το σημείο το οποίο απέχει 40m από το σημείο Α η τεταγμένη (y) υπολογίζεται από τη σχέση: 2 2 s1 x 5 40 y = ,53 1, x + m 2 H = ( 1500) = = Η τεταγμένη για το σημείο που απέχει 80m υπολογίζεται αντίστοιχα: y = 80 + = 4 2,13 = 1,87m ( 1500) 45
46 Παράδειγμα υπολογισμού κοίλης καμπύλης (1/6) Δίδεται η κοίλη καμπύλη του Σχήματος 6 για την οποία είναι γνωστές οι τιμές των κλίσεων s 1 = -2% και s 2 = +5%. Η τιμή της παραμέτρου της τετραγωνικής παραβολής H = 2.000m. 46
47 Παράδειγμα υπολογισμού κοίλης καμπύλης (2/6) Να υπολογισθούν τα στοιχεία της κοίλης καμπύλης καθώς και οι τεταγμένες των σημείων σε απόσταση 40m και 90m από την αρχή της καμπύλης. 47
48 Παράδειγμα υπολογισμού κοίλης καμπύλης (3/6) Σχήμα 6: Παράδειγμα υπολογισμού κοίλης καμπύλης 48
49 Παράδειγμα υπολογισμού κοίλης καμπύλης (4/6) Αρχικά υπολογίζεται η διαφορά των κλίσεων Δs. Με δεδομένο πως λόγω των τιμών των κλίσεων έχουμε κατωφέρεια (s 1 =-2%) και στη συνέχεια ανωφέρεια (s 2 =+5%) η παράμετρος Δs υπολογίζεται από τη σχέση: s = s2 s1 = 0, 05 ( 0, 02) = 0, 07 = 7% 49
50 Παράδειγμα υπολογισμού κοίλης καμπύλης (5/6) Το μήκος της εφαπτομένης (Τ) υπολογίζεται από τη σχέση: H ( s2 s1) ( 2) T = = = 70m Ενώ το βέλος (f) της καμπύλης υπολογίζεται από τη σχέση: 2 2 T (70) f = = = 1,225m 2 H Υπολογίζουμε τα x s, s(m) και s(s). ( ) s 2 1 xs = H = 2000 = 40 m xm 70 sm ( ) = s = ( 2) = 1, 65% H 2000 xs 40 s(s) = s = ( 2) = 0% H
51 Παράδειγμα υπολογισμού κοίλης καμπύλης (6/6) Για το σημείο το οποίο απέχει 40m από το σημείο Α η τεταγμένη (y) υπολογίζεται από τη σχέση: 2 2 s1 x 2 40 y = x+ = 40 + = 0,80 + 0, 40 = 0, 40m H Η τεταγμένη για το σημείο που απέχει 90m υπολογίζεται αντίστοιχα: y = 90 + = , 03 = 0, 225m
52 Βιβλιογραφία Γ. Μίντσης, «Πανεπιστημιακές Σημειώσεις μαθήματος Οδοποιία Ι», Τομέας Συγκοινωνιακών & Υδραυλικών Έργων, Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών, Πολυτεχνική Σχολή, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης «Οδηγίες Μελετών Οδικών Έργων Τεύχος 3: Χαράξεις (ΟΜΟΕ Χ)», Υπουργείο Ανάπτυξης, Ανταγωνιστικότητας, Υποδομών, Μεταφορών και Δικτύων, Ελληνική Δημοκρατία Αποστολέρης Α., «Οδοποιία Ι Χαράξεις: Θεωρία και Πρακτική», Αθήνα 2013, ISBN:
53 Σημείωμα Χρήσης Έργων Τρίτων (1/3) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Σχήμα 1: Οδηγίες Μελετών Έργων Οδοποιίας, Τεύχος Χαράξεις, Σχήμα 8-1, Γενική Γραμματεία Δημοσίων Έργων, d=rja&uact=8&ved=0cb8qfjaa&url=http%3a%2f%2fwww.ggde.gr%2find ex.php%3foption%3dcom_docman%26task%3ddoc_download%26gid%3 D116&ei=2Wr9VLXaBsbqyQOE2YCgDw&usg=AFQjCNG8Skn- ZVPudmpBI9T4CcDSnVuRnw&sig2=hqQ5qwonQtSrdZV4OpXPYg Σχήμα 2: Οδηγίες Μελετών Έργων Οδοποιίας, Τεύχος Χαράξεις, Σχήμα 8-2, Γενική Γραμματεία Δημοσίων Έργων, d=rja&uact=8&ved=0cb8qfjaa&url=http%3a%2f%2fwww.ggde.gr%2find ex.php%3foption%3dcom_docman%26task%3ddoc_download%26gid%3 D116&ei=2Wr9VLXaBsbqyQOE2YCgDw&usg=AFQjCNG8Skn- ZVPudmpBI9T4CcDSnVuRnw&sig2=hqQ5qwonQtSrdZV4OpXPYg
54 Σημείωμα Χρήσης Έργων Τρίτων (2/3) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Πίνακας 1: Οδηγίες Μελετών Έργων Οδοποιίας, Τεύχος Χαράξεις, Πίνακας 8-1, Γενική Γραμματεία Δημοσίων Έργων, 8QFjAA&url=http%3A%2F%2Fwww.ggde.gr%2Findex.php%3Foption%3Dcom_docman%26task%3D doc_download%26gid%3d116&ei=2wr9vlxabsbqyqoe2ycgdw&usg=afqjcng8skn- ZVPudmpBI9T4CcDSnVuRnw&sig2=hqQ5qwonQtSrdZV4OpXPYg Πίνακας 2: Οδηγίες Μελετών Έργων Οδοποιίας, Τεύχος Χαράξεις, Πίνακας 8-1α, Γενική Γραμματεία Δημοσίων Έργων, 8QFjAA&url=http%3A%2F%2Fwww.ggde.gr%2Findex.php%3Foption%3Dcom_docman%26task%3D doc_download%26gid%3d116&ei=2wr9vlxabsbqyqoe2ycgdw&usg=afqjcng8skn- ZVPudmpBI9T4CcDSnVuRnw&sig2=hqQ5qwonQtSrdZV4OpXPYg Πίνακας 3: Οδηγίες Μελετών Έργων Οδοποιίας, Τεύχος Χαράξεις, Πίνακας 8-2, Γενική Γραμματεία Δημοσίων Έργων, 8QFjAA&url=http%3A%2F%2Fwww.ggde.gr%2Findex.php%3Foption%3Dcom_docman%26task%3D doc_download%26gid%3d116&ei=2wr9vlxabsbqyqoe2ycgdw&usg=afqjcng8skn- ZVPudmpBI9T4CcDSnVuRnw&sig2=hqQ5qwonQtSrdZV4OpXPYg
55 Σημείωμα Χρήσης Έργων Τρίτων (3/3) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Πίνακας 4: Οδηγίες Μελετών Έργων Οδοποιίας, Τεύχος Χαράξεις, Πίνακας 8-3, Γενική Γραμματεία Δημοσίων Έργων, rce=web&cd=1&cad=rja&uact=8&ved=0cb8qfjaa&url =http%3a%2f%2fwww.ggde.gr%2findex.php%3foptio n%3dcom_docman%26task%3ddoc_download%26gid %3D116&ei=2Wr9VLXaBsbqyQOE2YCgDw&usg=AFQjC NG8Skn- ZVPudmpBI9T4CcDSnVuRnw&sig2=hqQ5qwonQtSrdZV 4OpXPYg
56 Σημείωμα Αναφοράς Copyright Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Γεώργιος Μίντσης. «Οδοποιία Ι. Στοιχεία μελέτης χάραξης οδού μηκοτομή σύμφωνα με το Τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ)». Έκδοση: 1.0. Θεσσαλονίκη Διαθέσιμο από τη δικτυακή διεύθυνση:
57 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λπ., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1]
58 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τέλος Ενότητας Επεξεργασία: Ευστάθιος Μπουχουράς, Θεσσαλονίκη, Νοέμβριος 2014
59 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σημειώματα
60 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.00.
61 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.
Οδοποιία Ι. Ενότητα 9: Στοιχεία μελέτης χάραξης οδού Επικλίσεις σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 9: Στοιχεία μελέτης χάραξης οδού Επικλίσεις σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) Γεώργιος Μίντσης Τμήμα
Διαβάστε περισσότεραΟδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία IΙ Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΟδοποιία II. Ενότητα 8: Εφαρμογές Οδοποιία ΙI. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία II Ενότητα 8: Εφαρμογές Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΟδοποιία II. Ενότητα 1 : Εισαγωγή στην Οδοποιία. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία II Ενότητα 1 : Εισαγωγή στην Οδοποιία Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΟδοποιία Ι. Ενότητα 7: Στοιχεία μελέτης χάραξης οδού Οριζοντιογραφία σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 7: Στοιχεία μελέτης χάραξης οδού Οριζοντιογραφία σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) Γεώργιος Μίντσης Τμήμα
Διαβάστε περισσότεραΟδοποιία I. Ενότητα 11: Εφαρμογές Οδοποιία Ι. Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία I Ενότητα 11: Εφαρμογές Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΙστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΜηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΟδοποιία Ι. Ενότητα 7 : Κύριες Αστικές Οδοί σύμφωνα με το τεύχος Κύριες Αστικές Οδοί των ΟΜΟΕ (ΟΜΟΕ ΚΑΟ)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 7 : Κύριες Αστικές Οδοί σύμφωνα με το τεύχος Κύριες Αστικές Οδοί των ΟΜΟΕ (ΟΜΟΕ ΚΑΟ) Γεώργιος Μίντσης Άδειες Χρήσης
Διαβάστε περισσότεραΘεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΟδοποιία Ι. Ενότητα 5 : Λειτουργικός έλεγχος σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία Ι Ενότητα 5 : Λειτουργικός έλεγχος σύμφωνα με το τεύχος Χαράξεις των ΟΜΟΕ (ΟΜΟΕ Χ) Γεώργιος Μίντσης Τμήμα Αγρονόμων & Τοπογράφων
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΘεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Διαβάστε περισσότεραΛογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΟικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Οικονομία των ΜΜΕ Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΕργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΙστορία της μετάφρασης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η μετάφραση των εβδομήκοντα, η εκπαίδευση των μεταφραστών κατά Κικέρωνα, η τέχνη της μετάφρασης από την αρχαιότητα μέχρι τα
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΕργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 4: Τοποθέτηση d ηλεκτρονίων σε οκτάεδρα Σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # 17: Ταχύτητα Αντιδράσεων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΟικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΠαράκτια Τεχνικά Έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΘΕΣΗ ΥΓΡΩΝ ΣΤΗ ΘΑΛΑΣΣΑ ΥΠΟΒΡΥΧΙΟΙ ΑΓΩΓΟΙ Ενότητα 5 η : Κατασκευαστικά παραδείγματα Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΛογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΤεχνική Νομοθεσία - Θ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Τεχνική Νομοθεσία - Θ Ενότητα 2: Ορατότητα Γέφυρας Ναυσιπλοΐας Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος
Διαβάστε περισσότεραEγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Eγγειοβελτιωτικά έργα και επιπτώσεις στο περιβάλλον Ενότητα 1 : Εκπόνηση μελέτης Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Διαβάστε περισσότεραΓεωργική Εκπαίδευση Ενότητα 9
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Σχεδιασμός εκπαιδευτικών προγραμμάτων για τον αγροτικό χώρο Αφροδίτη Παπαδάκη-Κλαυδιανού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΘερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Διαβάστε περισσότεραΑκτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 7 η. Περίθλαση, θραύση κυματισμών Θεοφάνης Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΒάσεις Δεδομένων. Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών
Βάσεις Δεδομένων Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΘεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 11η: Σύγκριση Ρωσικής Ορθόδοξης Εκκλησίας και Καθολικής Εκκλησίας Κυριάκος Κυριαζόπουλος
Διαβάστε περισσότεραΥπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής
Διαβάστε περισσότεραΕργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 6: Προσδιορισμός δ0 σε οκτάεδρα σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΜηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 4: Τομές ΙΙ Όνομα Καθηγητή: Γιώργος Ανδρεάδης Τμήμα: Μηχανολόγων Μηχ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΕργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 3: Θεωρία του Ligand Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΟδική ασφάλεια. Ενότητα 7: Εκτίμηση επιπτώσεων επεμβάσεων στον αριθμό των συγκρούσεων: Διασταυρώσεις Ασκήσεις Ενότητας 7
Οδική ασφάλεια Ενότητα 7: Εκτίμηση επιπτώσεων επεμβάσεων στον αριθμό των συγκρούσεων: Διασταυρώσεις Ασκήσεις Ενότητας 7 Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών 1 η Άσκηση Ενότητας
Διαβάστε περισσότεραΕφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού Ενότητα 4: Εφαρμογές λογιστικών φύλλων στη Στατική: Γεωμετρικά μεγέθη πολυγωνικά
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6η: Ελληνική νομολογία Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΔιπλωματική Ιστορία Ενότητα 2η:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2η: Η εμφάνιση των εθνών-κρατών και οι συνέπειες στο διεθνές σύστημα Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΜαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Διαβάστε περισσότεραΟΔΟΠΟΙΪΑ Ι - ΧΑΡΑΞΕΙΣ & ΥΠΟΛΟΓΙΣΜΟΣ ΧΩΜΑΤΙΣΜΩΝ : ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ 1.1. Περιεχόμενο της Οδοποιΐας 1 1.2. Κανονισμοί 2 1.2.1. Ιστορικό 2 1.2.2. Ισχύοντες Κανονισμοί στην Ελλάδα 5 1.2.3. Διαδικασία Εκπόνησης Μελετών Οδοποιΐας 6 1.3. Ανάπτυξη του
Διαβάστε περισσότεραΔιοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΧωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
Διαβάστε περισσότεραΑξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας Ενότητα 1: Αυτοαξιολόγηση μεταφραστών Κασάπη Ελένη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔιδακτική της Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Διδακτικές Προσεγγίσεις για τον Προγραμματισμό Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative
Διαβάστε περισσότεραΔιεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότερα12-13 Μαρτίου 2015 Αθήνα. Εντοπισμός δυνητικών θέσεων τροχαίων ατυχημάτων σε υφιστάμενο οδικό δίκτυο αναφορικά με τη γεωμετρία της οδού
12-13 Μαρτίου 2015 Αθήνα Εντοπισμός δυνητικών θέσεων τροχαίων ατυχημάτων σε υφιστάμενο οδικό δίκτυο αναφορικά με τη γεωμετρία της οδού Κωνσταντίνος Αποστολέρης Πολιτικός Μηχανικός, MSc Φώτης Μερτζάνης
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΑξιολόγηση και ανάλυση της μυϊκής δύναμης και ισχύος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αξιολόγηση και ανάλυση της μυϊκής δύναμης και ισχύος Ενότητα 3: Εργαστηριακή πρακτική Τίτλος: Ισοκίνηση (Εργαστηριακό) Πατίκας Δ. Άδειες
Διαβάστε περισσότεραΔιοίκηση Επιχειρήσεων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η λήψη των αποφάσεων Ευγενία Πετρίδου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΣυμπεριφορά Καταναλωτή
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 : Ομάδες αναφοράς Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΛογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΤίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες
Διαβάστε περισσότεραΟδική ασφάλεια. Ενότητα 8: Αξιολόγηση επεμβάσεων Ασκήσεις Ενότητας 8. Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
Οδική ασφάλεια Ενότητα 8: Αξιολόγηση επεμβάσεων Ασκήσεις Ενότητας 8 Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Παράδειγμα #1 «Πριν» 10 ατυχήματα «Μετά» 5 ατυχήματα Επέμβαση: τοποθέτηση
Διαβάστε περισσότεραΤίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΘεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 12η: Αυτόνομες και ημιαυτόνομες εκκλησίες κ.ά. διατάξεις Κυριάκος Κυριαζόπουλος Άδειες
Διαβάστε περισσότεραΤίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.3: Εμβαδά εκ Περιστροφής Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΑτομικά Δίκτυα Αρδεύσεων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5 : Άρδευση Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 6: ΜΕΓΕΘΟΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (5): Δεσμοί και Τροχιακά Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΔιδακτική της Περιβαλλοντικής Εκπαίδευσης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διδακτική της Περιβαλλοντικής Εκπαίδευσης Ενότητα 08: Σχεδιασμός και Οργάνωση ενός Προγράμματος Περιβαλλοντικής Εκπαίδευσης Ι Πολυξένη
Διαβάστε περισσότεραΕφαρμοσμένη Βελτιστοποίηση
Εφαρμοσμένη Βελτιστοποίηση Ενότητα 3: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις μιας μεταβλητής Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΔιεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 9: Άσκηση εμπορικής πολιτικής Παράδειγμα άσκησης εμπορικής πολιτικής Γρηγόριος Ζαρωτιάδης
Διαβάστε περισσότεραΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραΧώρος και Διαδικασίες Αγωγής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Η παιδαγωγική ποιότητα του χώρου Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Διαβάστε περισσότεραΛογιστική Κόστους. Ενότητα 4: ΣΥΜΠΕΡΙΦΟΡΑ - ΦΥΣΗ ΚΟΣΤΟΥΣ. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής
Λογιστική Κόστους Ενότητα 4: ΣΥΜΠΕΡΙΦΟΡΑ - ΦΥΣΗ ΚΟΣΤΟΥΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΔιεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 5: Υποδείγματα Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΚβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Διαβάστε περισσότεραΠαράκτια Ωκεανογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 8 η : Θραύση και αναρρίχηση κυματισμών-2 Θεοφάνης Β. Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΓραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.
Διαβάστε περισσότεραΛογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.
Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΧώρος και Διαδικασίες Αγωγής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Η δυναμική της σχέσης του ανθρώπου με τον χώρο και η εκπαιδευτική της σημασία (2/2) Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΝέες Τεχνολογίες και Καλλιτεχνική Δημιουργία
Παιδαγωγικό Τμήμα Νηπιαγωγών Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Ενότητα # 9: Ψηφιακός Ήχος - Audacity Θαρρενός Μπράτιτσης Παιδαγωγικό Τμήμα Νηπιαγωγών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) Ενότητα 9η: Παρουσίαση και σχολιασμός των Οδηγιών (2014 μέρος Β ) Κυριάκος Κυριαζόπουλος Άδειες
Διαβάστε περισσότεραΓενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
Διαβάστε περισσότεραΥπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πηγαδιών Μέθοδος εικόνων Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής Νικόλαος Θεοδοσίου ΑΠΘ Άδειες
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1η: Εισαγωγή Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΤοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΧώρος και Διαδικασίες Αγωγής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Η δυναμική της σχέσης του ανθρώπου με τον χώρο και η εκπαιδευτική της σημασία (1/2) Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΕπιμέλεια μεταφράσεων και εκδοτικός χώρος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Επιμέλεια μεταφράσεων και εκδοτικός χώρος 2 η ενότητα: Οργάνωση ημερίδας Ελένη Κασάπη Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Άδειες Χρήσης
Διαβάστε περισσότερα