Cryptography and Network Security Chapter 2. Fifth Edition by William Stallings
|
|
- Άποφις Πάρις Μανιάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Cryptography and Network Security Chapter 2 Fifth Edition by William Stallings
2 Κεφαλαιο 2 Κλασσικες Τεχνικες Κρυπτογράφησης "I am fairly familiar with all the forms of secret writings, and am myself the author of a trifling monograph upon the subject, in which I analyze one hundred and sixty separate ciphers," said Holmes.. The Adventure of the Dancing Men,, Sir Arthur Conan Doyle
3 Συµµετρικη Κρυπτογραφια Αποκαλείται και Συµβατική ή Ιδιωτικου Κλειδιου (Private Key) Ο µεταδοτης και ο αποδέκτης µοιραζονται ενα κοινο κλειδι Hταν ο µοναδικη γνωστη κρυπτογραφια µεχρι τη δεκαετια του Ειναι η ευρυτερα χρησιµοποιουµενη κρυπτογραφια.
4 Ορολογια Απλο κειµενο (plaintext) το µη κρυπτογραφηµενο µηνυµα Κρυπτογραφηµενο Κειµενο (ciphertext) το κρυπτογραφηµενο µηνυµα Αλγοριθµος κρυπτογραφησης (cipher) - Μετατρεπει το plaintext σε ciphertext Kλειδι (key) πληροφορια που χρησιµοποιείται απο τον αλγοριθµο κρυπτογραφησης και ειναι γνωστη µονο στο µεταδοτη και τον αποδεκτη Kρυπτογραφηση (encryption, enciphering) η µετατροπη του plaintext σε ciphertext Αποκρυπτογραφηση (decryprion, deciphering) η µετατροπη του ciphertext σε plaintext Κρυπτογραφια (cryptography) η µελετη των µεθοδων κρυπτογραφησης και των αρχων της κρυπτογραφης και των αρχων που τις διεπουν Κρυπταναλυση (cryptanalysis) µελετη των αρχων και των µεθοδων που αποσκοπουν στην αποκρυπτογραφηση χωρις να ειναι γνωστο το κλειδι. Κρυπτολογια (cryptology) το επιστηµονικο πεδιο που περιλαµβανει την κρυπτογραφια και την κρυπταναλυση
5 Symmetric Cipher Model
6 Προϋποθεσεις υο απαιτησεις για ασφαλη χρηση της συµµετρικης κρυπτογραφιας: Να ειναι ισχυρος ο αλγοριθµος κρυπτογραφησης Το Μυστικο κλειδι να ειναι γνωστο µονο στο µεταδοτη και στον αποδεκτη Συµβολικα γράφουµε: Y = E(K, X) X = D(K, Y) Υποθετουµε οτι ο αλγοριθµος κρυπτογραφησης ειναι γνωστος Πρεπει να υπαρχει προνοια (π.χ. ενα ασφαλες καναλι) για τη διανοµη του κλειδιου
7 Κρυπτογραφια Μπορουµε να χαρακτηρισουµε τα κρυπτογραφικα συστηµατα αναλογα µε: Το ειδος των κρυπτογραφικων λειτουργιων που χρησιµοποιουνται Αντικαταστασης (substitution) Αντιµεταθεσης (transposition) Γινοµενου (product) Toν αριθµο των κλειδιων που χρησιµοποιουνται Μοναδικου κλειδιου (single-key) ή ιδιωτικου κλειδιου (private key) υο κλειδιων (two-key) ή ηµοσιου Κλειδιου (public key). Toν τροπο επεξεργασιας του plaintext Τµηµατων (block) Ροης (stream)
8 Κρυπταναλυση Στοχος ειναι να ανακαλυφθει το κλειδι και οχι µονο το µηνυµα Γενικες προσεγγισεις: Κρυπταναλυτικη επιθεση (cryptanalytic attack) Επιθεση ωµης βιας (brute-force attack)
9 Κρυπταναλυτικες επιθεσεις ciphertext only only know algorithm & ciphertext,, is statistical, know or can identify plaintext known plaintext know/suspect plaintext & ciphertext chosen plaintext select plaintext and obtain ciphertext chosen ciphertext select ciphertext and obtain plaintext chosen text select plaintext or ciphertext to en/decrypt
10 More Definitions Aσφάλεια Άνευ Ορων (unconditional security) εν εχει σηµασια ποση υπολογιστκη ισχυς ειναι διαθεσιµη, ο αλγοριθµος κρυπτογραφησης δεν µπορει να σπασει, λογω του οτι το ciphertext παρεχει ανεπατκη πληροφορια για να προσδιοριστει µονοσηµαντα το αντιστοιχο plaintext. Υπολογιστικη Ασφάλεια (computational security) οθεντων περιορισµενων υπολογιστικων πορων ο αλγοριθµος κρυπτογραφησης δεν µπορει να σπασει.
11 Brute Force Search οκιµαζεται καθε δυνατο κλειδι Προϋποθέτει οτι ειναι γνωστο ή αναγνωριζεται το plaintext Key Size (bits) Number of Alternative Keys Time required at 1 decryption/µs Time required at 10 6 decryptions/µs = µs = 35.8 minutes 2.15 milliseconds = µs = 1142 years hours = µs = years years = µs = years years 26 characters (permutation) 26! = µs = years years
12 Κλασσικοι Κρυπτογραφικοι Αλγοριθµοι Αντικαταστασης Τα γράµµατα του plaintext αντικαθιστανται απο αλλα γραµµατα ή αριθµους ή συµβολα Ή αν το plaintext ειναι µια ακολουθια απο bits, τοτε η αντικασταση αφορα οµαδες απο bits που αντικαθιστανται απο άλλες οµαδες bits
13 Ο Αλγοριθµος του Καισαρα (Caesar Cipher) Αντικαθιστα καθε γραµµα µε το γραµµα που ειναι τρεις θεσεις πιο πισω στο αλφαβητο. Παραδειγµα: meet me after the toga party PHHW PH DIWHU WKH WRJD SDUWB
14 Caesar Cipher Μπορουµε να ορισουµε το µετασχηµατισµο ως εξης: a b c d e f g h i j k l m n o p q r s t u v w x y z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C Αντιστοιχουµε σε καθε γραµµα εναν αριθµο. a b c d e f g h i j k l m n o p q r s t u v w x y z Και ο αλγοριθµος του Καισαρα οριζεται ως εξης: c = E(k, p) ) = (p( + k) ) mod (26) p = D(k,, c) = (c k) ) mod (26)
15 Κρυπταναλυση του Κωδικα του Καισαρα Υπαρχουν µονο 26 δυνατοι κωδικες Το A αντιστοιχει σε ενα απο τα A,B,..Z Ο επιτιθεµενος µπορει να τους δοκιµασει ολους και να βρει ποιος εφαρµοζεται. ηλ. brute force search Χρειαζεται να αναγνωριζει ο επιτιθεµενος το plaintext
16 Μονοαλφαβητικος Κρυπτογραφικος Αλγοριθµος (Monoalphabetic Cipher) Αντι να µεταθετουµε το αλφαβητο, µπορουµε να ανακατευουµε τα γραµµατα αυθαιρετα. Καθε γραµµα του plaintext απεικονιζεται σε ενα τυχαίο γραµµα του ciphertext. Αρα, το κλειδι εχει µηκος 26 γραµµατα Plain letter: abcdefghijklmnopqrstuvwxyz Cipher letter: DKVQFIBJWPESCXHTMYAUOLRGZN Plaintext: ifwewishtoreplaceletters Ciphertext: : WIRFRWAJUHYFTSDVFSFUUFYA
17 Ασφαλεια του Μονοαλφαβητικου Κρυπτογραφικου Αλγοριθµου Εχουµε τωρα συνολικα 26! = 4 x κλειδια Ισως καποιος να σκεφτει οτι µε τοσα διαφορετκα κλειδια ειναι ασφαλης!!!λαθοσ ΛΑΘΟΣ!!! Το προβληµα ειναι τα χαρακτηριστικα της γλωσσας
18 Πλεονασµος της γλωσσας και Κρυπτανάλυση (Language Redundancy and Cryptanalysis) Τα γραµµατα δεν εχουν ολα τη ιδια συχνοτητα εµφανισης Το Αγγλικο E ειναι το συχνοτερα εµφανιζοµενο, και ακολουθουν τα: T,R,N,I,O,A,S Αλλα γραµµατα, οπως τα Z,J,K,Q,X εµφανιζονται σχετικα σπανια Υπαρχουν πινακες για τις συχνοτητες εµφανισης απλων γραµµατων, ζευγων γραµµατων ή τριαδων γραµµατων για διαφορες γλωσσες
19 English Letter Frequencies
20 Κρυπτογραφικοι Αλγοριθµοι Αντιµεταθεσης Κρυβουν το µηνυµα αλλαζοντας τη σειρα των γραµµάτων Χωρις να αλλαζουν τα γραµµατα που χρησιµοποιουνται
21 Rail Fence cipher Τα γραµµατα του µηνυµατος γραφονται διαγωνια σε εναν αριθµο γραµµων. Και στη συνεχεια διαβαζεται το ciphertext κατα γραµµες. π.χ. το µηνυµα γραφεται ως εξης: m e m a t r h t g p r y e t e f e t e o a a t και παιρνουµε το εξης ciphertext: MEMATRHTGPRYETEFETEOAAT
22 Κρυπτογραφικοι Αλγοριθµοι Αντιµεταθεσης στηλών (Columnar Transposition Ciphers) 1. Γραφονται τα γραµµατα του µηνυµατος σε γραµµές, µε εναν προκαθορισµενο αριθµο στηλων 2. Στη συνεχεια, διαβαζεται το ciphertext κατα στηλες, αλλα µε διαφορετικη σειρα των στηλων, η οποια καθοριζεται απο καποιο κλειδι. 3. Τελος, διαβαζονται οι γραµµες. Key: Plaintext: a t t a c k p o s t p o n e d u n t i l t w o a m x y z Ciphertext: : TTNAAPTMTSUOAODWCOIXKNLYPETZ
23 Κρυπτογραφικοι Αλγοριθµοι Γινοµενου (Product Ciphers) Οι αλγοριθµοι αντικαταστασης ή αντιµεταθεσης δεν ειναι ασφαλεις λογω των χαρακτηριστικων της γλωσσας. Για να αντιµετωπισουµε το προβληµα αυτο χρησιµοποιουµε περισσοτερους απο εναν αλγοριθµους στη σειρα.
24 Στεγανογραφία (Steganography) Είναι µια εναλλακτική λυση ως προς την κρυπτογραφηση Κρυβει την υπαρξη του µηνυµατος Χρησιµοποιεί µόνο ένα υποσυνολο των γραµµατων/λεξεων (τα οποία µαρκαρονται µε καποιον τροπο) σε ενα µεγαλύτερο µηνυµα. Μεγαλο µειονεκτηµα της ειναι εχει µεγαλο overhead για σχετικα λιγα bits πληροφοριας. Πλεονεκτηµα της ειναι οτι µπορει να χρησιµοποιηθει απο αυτους που δε θελουν να φαινεται οτι επικοινωνουν κρυπτογραφηµενα.
25 Μελετησαµε: Συνοψη Κλασσικες τεχνικες κρυπτογραφησης και ορολογια Μονοαλφαβητικοι αλγπριθµοι αντικαταστασης Κρυπταναλυση µε βαση τη συχνοτητα εµφανισης των γραµµατων Kρυπτογραφικος αλγοριθµος Rail Fence Κρυπτογραφικοι αλγοριθµοι αντιµεταθεσης Κρυπτογραφικοι αλγοριθµοι γινοµενου Σταγανογραφια
Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση
Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση
Κρυπτογραφία. Εργαστηριακό μάθημα 1
Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Ασφάλεια Υπολογιστικών Συστημάτων
Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 2: Συμμετρική κρυπτογραφία Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο 2015 1 ΤΙ ΕΙΝΑΙ Η ΚΡΥΠΤΟΛΟΓΙΑ?
Κρυπτογραφία. Κωνσταντίνου Ελισάβετ
Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο
Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ
Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ Περιγραφή μαθήματος Η Κρυπτολογία είναι κλάδος των Μαθηματικών, που ασχολείται με: Ανάλυση Λογικών Μαθηματικών
Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
Ασφάλεια Πληροφοριακών Συστημάτων
Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Θεοδωρακοπούλου Ανδριάνα atheodorak@outlook.com Βαθμολόγηση Ασκήσεις Εργαστηρίου: 40% Τελική Εξέταση: 60% Ρήτρα: Βαθμός τελικής εξέτασης > 3.5 ΠΡΟΣΟΧΗ στις
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 2: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ασφάλεια Πληροφοριακών Συστημάτων
Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Lab 1 Κλασική Κρυπτογραφία ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Γενικές Πληροφορίες Βαθμολόγηση
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης
Συμμετρική Κρυπτογραφία I Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης Συμμετρική Κρυπτογραφία I 1 Αρχές του Kerckhoff `La Cryptographie Militaire' (1883) Auguste Kerkhoffs, Ολλανδός φιλόλογος Πρώτη επιστημονική
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές
Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας
Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας
Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate
Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές
Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο
Symmetric Cryptography. Dimitris Mitropoulos
Symmetric Cryptography Dimitris Mitropoulos dimitro@di.uoa.gr Ορολογία Αρχικό Κείμενο (Plaintext): Αποτελεί το αρχικό μήνυμα (ή τα αρχικά δεδομένα) που εισάγεται στον αλγόριθμο κρυπτογράφησης. Αλγόριθμος
Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος
Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Περίληψη Shannon theory Εντροπία Μελέτη κρυπτοσυστηµάτων
ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία
ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα
κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας
κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας ιδιότητες ασϕάλειας ιδιότητες ασϕάλειας αγαθών Εμπιστευτικότητα (Confidentiality)
Συμμετρικά κρυπτοσυστήματα
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Δίκτυα Feistel Σημαντικές
Από τις υπηρεσίες Πληροφόρησης στο «Ηλεκτρονικό Επιχειρείν»
Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας-Βιβλιοθηκονοµίας, Κέρκυρα Από τις υπηρεσίες Πληροφόρησης στο «Ηλεκτρονικό Επιχειρείν» Βιβλιογραφία Μαθήµατος Douglas Stinson. Cryptography, Theory and Practice, 1995
Ασφάλεια ικτύων. Ασφάλεια δικτύων
Ασφάλεια ικτύων Ασφάλεια δικτύων Στα χαµηλά επίπεδα: να φτάσουν τα πακέτα στον παραλήπτη χωρίς σφάλµατα Σε ανώτερο επίπεδο: να προστατευθεί η διακινούµενη πληροφορία έτσι ώστε: Να µην µπορεί να διαβαστεί
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος ttouskas@aueb.gr
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 3: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αλγόριθµοι συµµετρικού κλειδιού
Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Χρησιµοποιούν το ίδιο κλειδί για την κρυπτογράφηση και την αποκρυπτογράφηση Υλοποιούνται τόσο µε υλικό (hardware) όσο και µε λογισµικό (software)
Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου
Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου 2013-2014 Project Ορισμοί Ιστορία Η αποκρυπτογράφηση στις μέρες μας Κρυπτογράφηση Αποκρυπτογράφηση Αποκρυπτογραφημένο-Κρυπτογραφημένο
Ασφάλεια ικτύων (Computer Security)
Ασφάλεια ικτύων (Computer Security) Τι Εννοούµε µε τον Όρο Ασφάλεια ικτύων; Ασφάλεια Μόνο ο αποστολέας και ο προοριζόµενος παραλήπτης µπορούν να διαβάσουν και να κατανοήσουν ένα µήνυµα. Ο αποστολέας το
Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
Cryptography and Network Security Chapter 3. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 3 Fifth Edition by William Stallings Κρυπτογραφικοι Αλγοριθµοι Τµηµατων (Block Ciphers) All the afternoon Mungo had been working on Stern's code, principally with
Πρόβληµα 2 (12 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον
ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία
ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Συμμετρική Κρυπτογραφία Εισαγωγή Στην συνηθισμένη κρυπτογραφία, ο αποστολέας και ο παραλήπτης ενός μηνύματος γνωρίζουν και χρησιμοποιούν το ίδιο μυστικό κλειδί.
Ψευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013
Ψευδο-τυχαιότητα Συναρτήσεις µιας Κατεύθυνσης και Γεννήτριες Ψευδοτυχαίων Αριθµών Παύλος Εφραιµίδης 2013/02 1 Αριθµοί και String Όταν θα αναφερόµαστε σε αριθµούς θα εννοούµε ουσιαστικά ακολουθίες από δυαδικά
Ασφάλεια Υπολογιστικών Συστηµάτων
Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία
8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές
Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 10 : Ασφάλεια Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής
Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)
Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 4: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας
Αλγόριθµοι δηµόσιου κλειδιού
Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Ηδιανοµή του κλειδιού είναι ο πιο αδύναµος κρίκος στα περισσότερα κρυπτογραφικά συστήµατα Diffie και Hellman, 1976 (Stanford Un.) πρότειναν ένα
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 11: Ασφάλεια Πληροφοριακών Συστημάτων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες
Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής
8.3 Ασφάλεια ικτύων. Ερωτήσεις
8.3 Ασφάλεια ικτύων Ερωτήσεις 1. Με τι ασχολείται η ασφάλεια των συστηµάτων; 2. Τι είναι αυτό που προστατεύεται στην ασφάλεια των συστηµάτων και για ποιο λόγο γίνεται αυτό; 3. Ποια η διαφορά ανάµεσα στους
Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers (κρυπτοσυστήματα
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr
ΕΡΓΑΣΙΑ. στο µάθηµα : "ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ" Μπαλάφας Βασίλειος. Καθηγητής : Μελετίου Γεράσιµος
ΕΡΓΑΣΙΑ στο µάθηµα : "ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ" Μπαλάφας Βασίλειος Καθηγητής : Μελετίου Γεράσιµος Μάιος 2000 Περιεχόµενα : Εισαγωγή - Ιστορική αναδροµή Η συνθήκη του συστήµατος των Diffie και Hellman Η κρυπτογράφηση
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Τι είναι Κρυπτογραφία; Επιστήμη που μελετά τρόπους κωδικοποίησης μηνυμάτων. Με άλλα λόγια,
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com Περίληψη Συµµετρικά κρυπτοσυστήµατα Block ciphers (κρυπτογράφηση
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων
Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες
Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Κρυπτογραφία: Συμμετρική Κρυπτογράφηση Διδάσκων : Δρ. Παρασκευάς Κίτσος http://www.diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών
ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΤΕΙ Κρήτης ΕΠΠ Εργαστήριο Ασφάλεια Πληροφοριακών Συστηµάτων ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τµηµα Εφαρµοσµενης Πληροφορικης Και Πολυµεσων Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Εισαγωγή
Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 26
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2
ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο
Βασικές αρχές. κρυπτανάλυσης. ΚΕΦΑΛΑΙΟ 1
ΚΕΦΑΛΑΙΟ 1 Βασικές αρχές κρυπτανάλυσης Στο κεφάλαιο αυτό παρουσιάζονται οι ϐασικές αρχές και τα µέσα τα οποία χρησιµοποιεί η κρυπτανάλυση, προκειµένου να γίνουν πιο κατανοητοί οι στόχοι των επόµενων κεφαλαίων.
ΑΣΦΑΛΕΙΑ ΚΑΤΑ ΤΗ ΙΑΚΙΝΗΣΗ ΠΟΛΥΜΕΣΙΚΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΑΣΦΑΛΕΙΑ ΚΑΤΑ ΤΗ ΙΑΚΙΝΗΣΗ ΠΟΛΥΜΕΣΙΚΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΡΑΚΤΙΚΟ ΜΕΡΟΣ 4 ης ΕΡΓΑΣΙΑΣ Κλώνη Απόστολου ΠΕΡΙΕΧΟΜΕΝΑ Κρυπτογραφία Ψηφιακές υπογραφές Ψηφιακά πιστοποιητικά Ψηφιακή υδατογραφία 2 Κρυπτογραφία Η επιστήµη
Ασφάλεια Πληροφοριακών Συστηµάτων Κρυπτογραφία
Ασφάλεια Πληροφοριακών Συστηµάτων Κρυπτογραφία ΤΕΙ Καλαµάτας (Υπ. Σπάρτης) Μηλιώνης Ματθαίος MSc Infosec, CISSP Έκδοση 1.0.080622 1 Το Πρόβληµα Το πρόβληµα υο µέρη Αlice, Βob επιθυµούν να επικοινωνήσουν
Ασφάλεια Πληροφοριακών Συστηµάτων
Ασφάλεια Πληροφοριακών Συστηµάτων Ασφάλεια Υπολογιστών Διάλεξη 1η Δρ. Β. Βασιλειάδης Τµ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Πληροφορίες για το Μάθηµα Διαλέξεις: Κάθε Δευτέρα 11:00-13:00 Ιστότοπος
Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων
Βασικά Θέματα Κρυπτογραφίας Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιά Αντικείμενο μελέτης Εφαρμοσμένη Κρυπτογραφία, απαραίτητη για την Ασφάλεια Δικτύων Υπολογιστών Χαρακτηριστικά των
Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων
Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια
Βασικές Έννοιες Κρυπτογραφίας
Βασικές Έννοιες Κρυπτογραφίας Παύλος Εφραιμίδης Κρυπτογραφία Βασικές Έννοιες 1 Τι θα μάθουμε Obscurity vs. Security Βασικές υπηρεσίες κρυπτογραφίας: Confidentiality, Authentication, Integrity, Non- Repudiation
Ασφάλεια Υπολογιστικών Συστημάτων
Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 3: Κρυπτογραφία δημόσιου κλειδιού Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Συμμετρική Κρυπτογραφία
ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Ασφάλεια Πληροφοριακών Συστημάτων Εργαστήριο Συμμετρική Κρυπτογραφία Konstantinos Fysarakis, PhD kfysarakis@staff.teicrete.gr Εισαγωγή } Στην συνηθισμένη κρυπτογραφία,
Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org
Ασφάλεια Πληροφοριακών Συστημάτων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 6: Κρυπτογραφία Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ
KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ
Βασικές έννοιες KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ Ένα κρυπτοσύστηµα όπου οι χώροι των καθαρών µηνυµάτων, των κρυπτογραφηµένων µυνηµάτων και των κλειδιών είναι ο m,,,... m = καλείται ψηφιακό κρυπτοσύστηµα.
Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey
Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από
Κλασσική Κρυπτογραφία
Κλασσική Κρυπτογραφία Κλασσική Κρυπτογραφία 1 Κρυπτογραφία Ιστορία 2500 4000 ετών Για το μεγαλύτερο μέρος της ιστορίας της η κρυπτογραφία ήταν συνώνυμη της κωδικοποίησης της πληροφορίας με τέτοιο τρόπο
Πρόβληµα 2 (15 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε
KΕΦΑΛΑΙΟ 2 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
KΕΦΑΛΑΙΟ 2 ΣΥΜΜΕΤΡΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Κρυπτοσύστηµα µετατόπισης Στο συγκεκριµένο κρυπτοσύστηµα, οι χώροι P, C, K είναι ο δακτύλιος. Για κάθε κλειδί k, ορίζουµε τη συνάρτηση κρυπτογράφησης: f : : x x+ k, k
Πολυτεχνείο Κρήτης Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Εραστήριο Μικροεπεξεργαστών και Υλικού Διπλωματική Εργασία Υλοποίηση σε Κάρτα Γραφικών, Συστήματος για Αποκρυπτογράφηση Δεδομένων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ ΔΗΜΙΟΥΡΓΙΑ ΕΦΑΡΜΟΓΗΣ
Μελέτη απόδοσης αλγορίθμων κρυπρογράϕησης σε CUDA
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης Μελέτη απόδοσης αλγορίθμων κρυπρογράϕησης σε CUDA ΠΑΝΑΓΙΩΤΑ Ι. ΜΠΙΛΙΑΝΟΥ Επιβλέπων Καθηγητής:
Κεφάλαιο 2. Κρυπτογραφικά εργαλεία
Κεφάλαιο 2 Κρυπτογραφικά εργαλεία Συμμετρική κρυπτογράφηση Καθολικά αποδεκτή τεχνική που χρησιμοποιείται για τη διαφύλαξη της εμπιστευτικότητας δεδομένων τα οποία μεταδίδονται ή αποθηκεύονται Γνωστή και
ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΚΡΥΠΤΟΓΡΑΦΙΑΣ
ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΚΡΥΠΤΟΓΡΑΦΙΑΣ 2. ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΚΡΥΠΤΟΓΡΑΦΙΑΣ 2.1 Εισαγωγικές Παρατηρήσεις Στο κεφάλαιο αυτό επεξηγούνται οι βασικές ενότητες από την Εφαρμοσμένη Κρυπτογραφία που θεωρούνται απαραίτητες για
Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ
Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3
Κρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)
Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή
Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας
Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 35 Περιεχόμενα 1 Message
Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους
Threshold Cryptography Algorithms Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Ορισμός Το σύστημα το οποίο τεμαχίζει ένα κλειδί k σε n τεμάχια έτσι ώστε οποιοσδήποτε συνδυασμός πλήθους
Πανεπιςτήμιο Πελοποννήςου Τμήμα Επιςτήμησ και Τεχνολογίασ Τηλεπικοινωνιών. Διαχείριςη και Αςφάλεια Δικτύων. Κρυπτογραφία
Πανεπιςτήμιο Πελοποννήςου Τμήμα Επιςτήμησ και Τεχνολογίασ Τηλεπικοινωνιών Διαχείριςη και Αςφάλεια Δικτύων Κρυπτογραφία Κρυπτογραφία Κρυπτόν + Γράφειν Η εφαρμογό μαθηματικών (κυρύωσ) μηχανιςμών προκειμϋνου
Κρυπτογραφία. Εργαστηριακό μάθημα 2-3-4
Κρυπτογραφία Εργαστηριακό μάθημα 2-3-4 Ασκήσεις επανάληψης Αλγόριθμοι μετατόπισης Προσπαθήστε, χωρίς να γνωρίζετε το κλειδί, να αποκρυπτογραφήσετε το ακόλουθο κρυπτόγραμμα που έχει προκύψει από κάποιον
Κρυπτογραφία: Εισαγωγή & Ιστορικά συστήματα
Κρυπτογραφία: Εισαγωγή & Ιστορικά συστήματα Διδασκαλία: Δ. Ζήνδρος Επιμέλεια διαφανειών: Δ. Ζήνδρος, Α. Παγουρτζής, Σ. Ζάχος ΗΜΜΥ ΕΜΠ Στόχοι του σημερινού μαθήματος Τι είναι κρυπτογραφία; Ορισμοί και ορολογίες
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο. Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος 1 ΠΕΡΙΕΧΟΜΕΝΑ Ψηφιακές Υπογραφές Ασύμμετρης Κρυπτογραφίας Συστήματα ψηφιακής υπογραφής με αυτοανάκτηση Συστήματα