Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey
|
|
- Ακταίων Παχής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey
2 Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από bits (ή bytes) Απαιτούν μία γεννήτρια ψευδοτυχαίας ακολουθίας bits (keystream generator) αυτή η ακολουθία που παράγεται λέγεται κλειδοροή (keystream) Τα bits του κλειδιού γίνονται XOR με τα bits του μηνύματος για να προκύψει έτσι το κρυπτόγραμμα, δηλαδή ci= pi ki Η αποκρυπτογράφηση γίνεται με τον ίδιο τρόπο (ο παραλήπτης έχει την ίδια γεννήτρια κλειδοροής, και κάνει XOR το κάθε bit κρυπτογράμματος με το αντίστοιχο bit της κλειδοροής) pi= ci ki Η περίοδος της κλειδοροής πρέπει να είναι όσο γίνεται πιο μεγάλη Κώστας Λιμνιώτης Κρυπτανάλυση στους stream ciphers 2
3 Παράδειγμα λειτουργία stream ciphers Κλειδοροή plaintext CIPHERTEXT Σημείωση: Λειτουργία του τελεστή XOR : a b = 0 αν τα a,b είναι ίδια, a b = 1 αν τα a,b είναι διαφορετικά. Αντίστοιχα, για πολλές μεταβλητές (π.χ. a b c..), αν άρτιος αριθμός από αυτές είναι 1 τότε το αποτέλεσμα είναι 1, αλλιώς το αποτέλεσμα είναι 0. Κώστας Λιμνιώτης Κρυπτανάλυση στους stream ciphers 3
4 Τι είναι τα συστήματα παραγωγής κλειδοροής στην πράξη? Ως γεννήτρια ψευδοτυχαίων bits χρησιμοποιήθηκε αρχικά ένας γραμμικός καταχωρητής ολίσθησης με ανάδραση (LFSR) Έχουν καλή μαθηματική περιγραφή και οι ιδιότητές τους αναλύονται εύκολα Message stream Xor Shift register Cipher stream Key stream Κώστας Λιμνιώτης Κρυπτανάλυση στους stream ciphers 4
5 Λειτουργία ενός LFSR Αποτελείται από N βαθμίδες (θέσεις μνήμης): το περιεχόμενο κάθε μιας είναι είτε 0 είτε 1. Κάποιες από τις βαθμίδες αυτές γίνονται xor και το αποτέλεσμα πηγαίνει πίσω στην πρώτη βαθμίδα. Αν ο LFSR βρίσκεται σε μία κατάσταση (δηλαδή οι βαθμίδες του έχουν μία συγκεκριμένη τιμή), τότε η επόμενη κατάστασή του προσδιορίζεται εύκολα από τον ακόλουθο κανόνα: Όλες οι βαθμίδες (η τιμή τους δηλαδή) ολισθαίνουν κατά μία θέση δεξιά Η νέα τιμή για την πρώτη βαθμίδα είναι το αποτέλεσμα της παραπάνω XOR πράξης Κώστας Λιμνιώτης Κρυπτανάλυση στους stream ciphers 5
6 Σχηματική αναπαράσταση της λειτουργίας ενός LFSR Παράδειγμα: LFSR τριών βαθμίδων Έξοδος Αν η αρχική κατάσταση είναι 001, τότε η έξοδος είναι 1 (η δεξιότερηβαθμίδα). Την επόμενη χρονική στιγμή, η κατάσταση θα είναι 100 και η έξοδος 0. Το 100 προκύπτει ως εξής: το «1» είναι το XOR που είχαν αρχικά η δεύτερη και η τρίτη βαθμίδα (που ήταν 0 και 1 αντίστοιχα), ενώ το «00» είναι απλά ολισθημένες οι τιμές που είχαν αρχικά η πρώτη με τη δεύτερη βαθμίδα. Κώστας Λιμνιώτης Κρυπτανάλυση στους stream ciphers 6
7 Σχηματική αναπαράσταση της λειτουργίας ενός LFSR (II) Στον προηγούμενο LFSR, αν θεωρήσουμε ότι η αρχική κατάσταση είναι η 001, οι διαδοχικές καταστάσεις από τις οποίες περνάει (και η αντίστοιχη έξοδος που παράγεται) είναι: Κατάσταση Έξοδος Η 001 έχει ξαναεμφανιστεί, οπότε οι καταστάσεις επαναλαμβάνονται. Άρα, ο συγκεκριμένος LFSR παράγει την ακολουθία , η οποία επαναλαμβάνεται περιοδικά Κώστας Λιμνιώτης Κρυπτανάλυση στους stream ciphers 7
8 Ιδιότητες LFSRs Ένα LFSR μήκους L μπορεί να περάσει από 2 L -1 διαφορετικές καταστάσεις, άραμπορείναγεννήσει ακολουθίες με μέγιστη περίοδο 2 L -1. Γενικά, η ακολουθία εξόδου ενός LFSR εξαρτάται τόσο από την ανάδρασή του όσο και από την αρχική του κατάσταση. Στην πράξη προτιμούμε LFSRs που περνάνε από όλες τις καταστάσεις, έτσι ώστε η παραγόμενη κλειδοροή να έχει τη μέγιστη δυνατή περίοδο. Σημαντική ιδιότητα: ακολουθίες περιόδου 2 L -1 που παράγονται από LFSRs μήκους L (για οποιαδήποτε τιμή του L) παρουσιάζουν πολύ καλά χαρακτηριστικά ψευδοτυχαιότητας (εκτός από τη μεγάλη περίοδο) άρα, αυτοί οι LFSRs δείχνουν να είναι ιδανική επιλογή Κώστας Λιμνιώτης Κρυπτανάλυση στους stream ciphers 8
9 Berlekamp Massey αλγόριθμος (κρυπτανάλυση) Ο ελάχιστος LFSR που μπορεί να παράγει μία δοθείσα ακολουθία υπολογίζεται γρήγορα με τον αλγόριθμο Berlekamp-Massey. Αν το μήκος του μικρότερου LFSR που παράγει μία ακολουθία είναι L, τότε ο Berlekamp-Massey χρειάζεται μόνο 2L διαδοχικά bits της ακολουθίας για να υπολογίσει αυτόν τον ελάχιστο LFSR!! Συμπέρασμα: Οι ακολουθίες που παράγονται από LFSRs μπορούν εύκολα να προβλεφτούν!! Παράδειγμα: Έστω L=128. Τότε, παράγουμε μία ακολουθία περιόδου (που είναι πολύ μεγάλη). Ωστόσο, αν ξέρουμε μόνο 256 διαδοχικά bits της ακολουθίας τότε βρίσκουμε επακριβώς τον LFSR αυτόν άρα, ολόκληρη την ακολουθία! Μπορούμε να γνωρίζουμε ποτέ ένα τμήμα της κλειδοροής, έτσι ώστε κάνοντας χρήση του Berlekamp-Massey να τη βρίσκουμε ολόκληρη? Ναι!! Αν ξέρουμε ένα μικρό τμήμα του μηνύματος, τότε ουσιαστικά ξέρουμε το αντίστοιχο τμήμα της κλειδοροής!! Κώστας Λιμνιώτης Κρυπτανάλυση στους stream ciphers 9
10 Berlekamp Massey αλγόριθμος (Περιγραφή) Κώστας Λιμνιώτης Κρυπτανάλυση στους stream ciphers 10
11 Berlekamp Massey αλγόριθμος (Παράδειγμα) Πηγή: : Κώστας Λιμνιώτης Κρυπτανάλυση στους stream ciphers 11
Κρυπτογραφία. Κεφάλαιο 2 Αλγόριθμοι ροής - Stream ciphers
Κρυπτογραφία Κεφάλαιο 2 Αλγόριθμοι ροής - Stream ciphers Γενικά χαρακτηριστικά Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από bits (ή bytes) Απαιτούν μία γεννήτρια ψευδοτυχαίας ακολουθίας
Διαβάστε περισσότεραΚρυπτογραφία. Εργαστηριακό μάθημα 1
Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,
Διαβάστε περισσότεραΚινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA
Κινητές επικοινωνίες Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA 1 Πολυπλεξία Η πολυπλεξία επιτρέπει την παράλληλη μετάδοση δεδομένων από διαφορετικές πηγές χωρίς αλληλοπαρεμβολές. Τρία βασικά είδη TDM/TDMA
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 9: Εισαγωγή στην τεχνική πολυπλεξίας Code Division Multiple Access - CDMA Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορισμός Σχέση CDMA με την TDMA και την
Διαβάστε περισσότεραΚρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας
Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38
Διαβάστε περισσότεραΚρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας
Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 34
Διαβάστε περισσότεραΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία
ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Συμμετρική Κρυπτογραφία Εισαγωγή Στην συνηθισμένη κρυπτογραφία, ο αποστολέας και ο παραλήπτης ενός μηνύματος γνωρίζουν και χρησιμοποιούν το ίδιο μυστικό κλειδί.
Διαβάστε περισσότεραΚρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας
Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37
Διαβάστε περισσότεραΚρυπτογραφία. Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής. Άρης Παγουρτζής - Πέτρος Ποτίκας
Κρυπτογραφία Ψευδοτυχαιότητα - Κρυπτοσυστήματα ροής Άρης Παγουρτζής - Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 37
Διαβάστε περισσότεραΚρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση
Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού
Διαβάστε περισσότεραΚρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας
Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη
Διαβάστε περισσότεραΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
Διαβάστε περισσότεραΚρυπτογραφία. Κωνσταντίνου Ελισάβετ
Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou AES Ιαν. 1997: Το NIST (National Institute of Standards and Technology) απευθύνει κάλεσμα για τη δημιουργία
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση
Διαβάστε περισσότεραΣυμμετρική Κρυπτογραφία
ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Ασφάλεια Πληροφοριακών Συστημάτων Εργαστήριο Συμμετρική Κρυπτογραφία Konstantinos Fysarakis, PhD kfysarakis@staff.teicrete.gr Εισαγωγή } Στην συνηθισμένη κρυπτογραφία,
Διαβάστε περισσότεραΚρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 26
Διαβάστε περισσότεραΚρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1
Διαβάστε περισσότεραΚρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers (κρυπτοσυστήματα
Διαβάστε περισσότεραΚρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία
Διαβάστε περισσότεραΚρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες
Διαβάστε περισσότεραΚρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική
Διαβάστε περισσότεραΣυμμετρικά κρυπτοσυστήματα
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Δίκτυα Feistel Σημαντικές
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.
Διαβάστε περισσότεραΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 4: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΚρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)
Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ
Διαβάστε περισσότεραΚρυπτογραφία. Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις)
Κρυπτογραφία Εργαστηριακό μάθημα 11 (Επαναληπτικές ασκήσεις) Έστω ότι το κλειδί είναι ένας πίνακας 2 x 2. Αυτό σημαίνει ότι: Σπάμε το μήνυμα σε ζευγάρια γραμμάτων Κάθε γράμμα το αντιστοιχούμε σε έναν αριθμό
Διαβάστε περισσότεραΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτογραφικές Συναρτήσεις Χρήστος Ξενάκης Ψευδοτυχαίες ακολουθίες Η επιλογή τυχαίων αριθμών είναι ένα βασικό σημείο στην ασφάλεια των κρυπτοσυστημάτων
Διαβάστε περισσότεραΕπισκόπηση Κρυπτογραφίας: privacy. Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία. Επισκόπηση Κρυπτογραφίας: authentication, integrity
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Επισκόπηση
Διαβάστε περισσότεραΤμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης
Συμμετρική Κρυπτογραφία I Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης Συμμετρική Κρυπτογραφία I 1 Αρχές του Kerckhoff `La Cryptographie Militaire' (1883) Auguste Kerkhoffs, Ολλανδός φιλόλογος Πρώτη επιστημονική
Διαβάστε περισσότεραΚρυπτογραφία. Κωνσταντίνου Ελισάβετ
Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο
Διαβάστε περισσότεραΔ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Κρυπτογραφία: Συμμετρική Κρυπτογράφηση Διδάσκων : Δρ. Παρασκευάς Κίτσος http://www.diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Αριθμών Και Εφαρμογές Στην Κρυπτογραφία. Linux Random Number Generator
Στοιχεία Θεωρίας Αριθμών Και Εφαρμογές Στην Κρυπτογραφία Linux Random Number Generator Επιμέλεια Διαφανειών : Ι. Κατσάτος ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΑΘΗΝΑ Ορισμός: Τυχαίοι Αριθμοί Συχνά στην καθομιλουμένη, ο κόσμος
Διαβάστε περισσότεραEl Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2
Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:
Διαβάστε περισσότεραΠΑΡΑ ΕΙΓΜΑ 8 ΓΕΝΝΗΤΡΙΑ ΨΕΥ ΟΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ (PSEUDORANDOM GENERATOR) 8.0 ΓΕΝΙΚΑ
ΠΑΡΑ ΕΙΓΜΑ 8 ΓΕΝΝΗΤΡΙΑ ΨΕΥ ΟΤΥΧΑΙΩΝ ΑΡΙΘΜΩΝ (PSEUDORANDOM GENERATOR) 8. ΓΕΝΙΚΑ Στο παράδειγµα αυτό θα εξοµοιώσουµε ένα Hardware µοντέλο µιας ψευδοτυχαίας γεννήτριας αριθµών χρησιµοποιώντας τις εντολές
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Συμμετρική Κρυπτογραφία. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Συμμετρική Κρυπτογραφία Χρήστος Ξενάκης Χρονολογείται από την Αρχαία Αίγυπτο Η πλειοψηφία των συμμετρικών κρυπτοαλγορίθμων είναι κρυπτοαλγόριθμοι
Διαβάστε περισσότεραUP class. & DES και AES
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων UP class & DES και AES Επιμέλεια σημειώσεων: Ιωάννης Νέμπαρης Μάριος Κουβαράς Διδάσκοντες: Στάθης Ζάχος
Διαβάστε περισσότεραΑλγόριθµοι συµµετρικού κλειδιού
Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Χρησιµοποιούν το ίδιο κλειδί για την κρυπτογράφηση και την αποκρυπτογράφηση Υλοποιούνται τόσο µε υλικό (hardware) όσο και µε λογισµικό (software)
Διαβάστε περισσότεραΚρυπτογραφία. Εργαστηριακό μάθημα 2-3-4
Κρυπτογραφία Εργαστηριακό μάθημα 2-3-4 Ασκήσεις επανάληψης Αλγόριθμοι μετατόπισης Προσπαθήστε, χωρίς να γνωρίζετε το κλειδί, να αποκρυπτογραφήσετε το ακόλουθο κρυπτόγραμμα που έχει προκύψει από κάποιον
Διαβάστε περισσότεραΑσφάλεια Ασύρματων & Κινητών Επικοινωνιών
Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών Ασύρματες Επικοινωνίες Μέρος V Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Slide: 1/30 Περιεχόμενα IEEE 802.11i ΤΟ ΠΡΩΤΟΚΟΛΛΟ CCMP Γενικά Λίγα
Διαβάστε περισσότεραΚρυπτογραφία. Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers
Κρυπτογραφία Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers Αλγόριθμοι τμήματος Τμήμα (μπλοκ) αρχικού μηνύματος μήκους n encrypt decrypt Τμήμα (μπλοκ) κρυπτογράμματος μήκους n 2 Σχηματική αναπαράσταση Plaintext
Διαβάστε περισσότεραSymmetric Cryptography. Dimitris Mitropoulos
Symmetric Cryptography Dimitris Mitropoulos dimitro@di.uoa.gr Ορολογία Αρχικό Κείμενο (Plaintext): Αποτελεί το αρχικό μήνυμα (ή τα αρχικά δεδομένα) που εισάγεται στον αλγόριθμο κρυπτογράφησης. Αλγόριθμος
Διαβάστε περισσότερα8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές
Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative
Διαβάστε περισσότεραΚρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου
Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου 2013-2014 Project Ορισμοί Ιστορία Η αποκρυπτογράφηση στις μέρες μας Κρυπτογράφηση Αποκρυπτογράφηση Αποκρυπτογραφημένο-Κρυπτογραφημένο
Διαβάστε περισσότεραΑσφάλεια Πληροφοριακών Συστημάτων
Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Lab 1 Κλασική Κρυπτογραφία ΤΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Γενικές Πληροφορίες Βαθμολόγηση
Διαβάστε περισσότεραΟικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Διάλεξη 6-1 5-1 Περίληψη
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής
Διαβάστε περισσότεραΣτοιχεία Κρυπτογραφίας
Κεφάλαιο 1 ο Στοιχεία Κρυπτογραφίας 1.1 Εισαγωγή Κρυπτογραφία (cryptography) είναι η μελέτη τεχνικών που βασίζονται σε μαθηματικά προβλήματα με δύσκολη επίλυση, με σκοπό την εξασφάλιση της α- σφάλειας
Διαβάστε περισσότερα4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
4 ΚΡΥΠΤΟΓΡΑΦΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4.1. Εισαγωγή Τα προηγούμενα κεφάλαια αποτελούν μια εισαγωγή στην κρυπτολογία, στις κατηγορίες κρυπτογραφικών πράξεων καθώς και στα βασικά μοντέλα κρυπτανάλυσης και αξιολόγησης
Διαβάστε περισσότεραΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία
ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα
Διαβάστε περισσότεραΑσφάλεια Υπολογιστικών Συστημάτων
Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 2: Συμμετρική κρυπτογραφία Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΑσφάλεια Πληροφοριακών Συστημάτων
Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Θεοδωρακοπούλου Ανδριάνα atheodorak@outlook.com Βαθμολόγηση Ασκήσεις Εργαστηρίου: 40% Τελική Εξέταση: 60% Ρήτρα: Βαθμός τελικής εξέτασης > 3.5 ΠΡΟΣΟΧΗ στις
Διαβάστε περισσότεραΤμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις
Διαβάστε περισσότεραΚεφάλαιο 1. Βασικές έννοιες στην κρυπτογραφία
Κεφάλαιο 1. Κρυπτογραφία (cryptography) είναι η μελέτη τεχνικών που βασίζονται σε μαθηματικά προβλήματα δύσκολο να λυθούν, με σκοπό την εξασφάλιση της ασφάλειας (εμπιστευτικότητα, ακεραιότητα, αυθεντικότητα)
Διαβάστε περισσότεραΠληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος
Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου
Διαβάστε περισσότεραΕισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές
Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο
Διαβάστε περισσότεραΠράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων
Διαβάστε περισσότεραΕισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας
Διαβάστε περισσότεραΣωστή απάντηση το: Γ. Απάντηση
Ειδικά Θέματα Ελέγχου Ορθής Λειτουργίας VLSI Συστημάτων - Σχεδιασμός για Εύκολο Έλεγχο Εξετάσεις ΟΣΥΛ & ΕΤΥ 4-7- 2016 Ειδικά Θέματα Σχεδίασης Ψηφιακών Συστημάτων Εξετάσεις μαθήματος επιλογής Τμήματος Μηχανικών
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2
ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση
Διαβάστε περισσότεραΔιπλωματική Εργασία. Τίτλος:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Μεταπτυχιακό Πρόγραμμα Σπουδών Πληροφορική και Επικοινωνίες Διπλωματική Εργασία Τίτλος: Ανάλυση και υλοποίηση κρυπτογραφικού
Διαβάστε περισσότεραΚρυπτογραφία. Διάλεξη 7 Κρυπταλγόριθμοι τμήματος: Αλγόριθμος AES Τρόποι λειτουργίας
Κρυπτογραφία Διάλεξη 7 Κρυπταλγόριθμοι τμήματος: Αλγόριθμος AES Τρόποι λειτουργίας AES- Advanced Encryption Standard Το 1997, ο NIST προσκάλεσε δημόσια για ορισμό νέου προτύπου που θα λάμβανε το όνομα
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E
Διαβάστε περισσότεραHash Functions. μεγεθος h = H(M) ολους. στο μηνυμα. στο συγκεκριμενο hash (one-way property)
Hash Functions Συρρικνωνει μηνυμα οποιουδηποτε μηκους σε σταθερο μεγεθος h = H(M) Συνηθως θεωρουμε οτι η hash function ειναι γνωστη σε ολους Το hash χρησιμοποιειται για να ανιχνευσει τυχον αλλαγες στο
Διαβάστε περισσότεραΚρυπτογραφία. Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις)
Κρυπτογραφία Εργαστηριακό μάθημα 10 (Επαναληπτικές ασκήσεις) Εύρεση αντίστροφου αριθμού Mod n Έχουμε ήδη δει ότι πολύ συχνά συναντάμε την ανάγκη να βρούμε τον αντίστροφο ενός αριθμού a modulo n, δηλαδή
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια
Διαβάστε περισσότεραΚατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Θεµέλια 27
Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xv xx I Θεµέλια 27 1 Μαθηµατικά 29 1.1 Κριτήρια διαιρετότητας................ 30 1.2 Μέγιστος κοινός διαιρέτης και Ευκλείδειος αλγόριθµος 31 1.3 Πρώτοι αριθµοί....................
Διαβάστε περισσότεραΕισαγωγή στην Κρυπτολογία 3. Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κωδικός DIΤ114 Σταύρος ΝΙΚΟΛΟΠΟΥΛΟΣ
Εισαγωγή στην Κρυπτολογία 3 Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κωδικός DIΤ114 Σταύρος ΝΙΚΟΛΟΠΟΥΛΟΣ Ακεραιότητα Μονόδρομη Κρυπτογράφηση Ακεραιότητα Αυθεντικότητα μηνύματος Ακεραιότητα μηνύματος Αυθεντικότητα
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης
Διαβάστε περισσότεραΛύσεις Ασκήσεων ΣΕΙΡΑ 1 η. Πρόσημο και μέγεθος
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΕΞΑΜΗΝΟ: 1 ο /2015-16 ΤΜΗΜΑ: ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ Καθηγητής: Θ. Τσιλιγκιρίδης Άσκηση 1η Περιεχόμενα μνήμης Λύσεις
Διαβάστε περισσότεραΠρόβληµα 2 (12 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον
Διαβάστε περισσότεραΟικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Περίληψη Shannon theory Εντροπία Μελέτη κρυπτοσυστηµάτων
Διαβάστε περισσότερα6/1/2010. Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών. Περιεχόμενα. Εισαγωγή /1 IEEE
Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών Ασύρματες Επικοινωνίες Μέρος III Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Slide: 1/42 Περιεχόμενα IEEE 802.11 WIRED EQUIVALENT PRIVACY (WEP)
Διαβάστε περισσότεραΑσφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ
Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ Περιγραφή μαθήματος Η Κρυπτολογία είναι κλάδος των Μαθηματικών, που ασχολείται με: Ανάλυση Λογικών Μαθηματικών
Διαβάστε περισσότεραΠρόβληµα 2 (15 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή
Διαβάστε περισσότεραΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ
ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ Θεωρητικό
Διαβάστε περισσότερα7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ
7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ. Τι είναι ένας καταχωρητής; O καταχωρητής είναι μια ομάδα από flip-flop που μπορεί να αποθηκεύσει προσωρινά ψηφιακή πληροφορία. Μπορεί να διατηρήσει τα δεδομένα του αμετάβλητα
Διαβάστε περισσότεραΚρυπτογραφία. Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir)
Κρυπτογραφία Εργαστηριακό μάθημα 9 (Πρωτόκολλα πιστοποίησης ταυτότητας μηδενικής γνώσης Fiat-Shamir) Πρωτόκολλα μηδενικής γνώσης Βασική ιδέα: Ένας χρήστης Α (claimant) αποδεικνύει την ταυτότητά του σε
Διαβάστε περισσότεραΑσφάλεια Πληροφοριακών Συστημάτων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 6: Κρυπτογραφία Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΚρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας
Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 35 Περιεχόμενα 1 Message
Διαβάστε περισσότεραΑσφάλεια Πληροφοριακών Συστημάτων
Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το
Διαβάστε περισσότεραΚρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας
Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38 Περιεχόμενα 1 Message
Διαβάστε περισσότεραΠρογραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 4: Τελεστές Τελεστές: Τελεστής Ανάθεσης 2 Το σύμβολο της ανάθεσης είναι το = Προσοχή: το σύμβολο ελέγχου ισότητας είναι το ==. Η μορφή των προτάσεων ανάθεσης είναι:
Διαβάστε περισσότεραΣυμπίεση Δεδομένων Δοκιμής (Test Data Compression) Νικολός Δημήτριος, Τμήμα Μηχ. Ηλεκτρονικών Υπολογιστών & Πληροφορικής, Παν Πατρών
Συμπίεση Δεδομένων Δοκιμής (Test Data Compression), Παν Πατρών Test resource partitioning techniques ΑΤΕ Automatic Test Equipment (ATE) based BIST based Έλεγχος παραγωγής γής βασισμένος σε ΑΤΕ Μεγάλος
Διαβάστε περισσότεραΤεχνικές διόρθωσης και ανίχνευσης σφαλµάτων
Τεχνικές διόρθωσης και ανίχνευσης σφαλµάτων Εντοπισµός σφαλµάτων Εντοπισµός ιόρθωση Προστίθενται bit πλεονασµού Αν µπορεί διορθώνει, (forward error correction) αλλιώς ζητά επανεκποµπή (backward error correction)
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους
ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ
Διαβάστε περισσότεραΨευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013
Ψευδο-τυχαιότητα Συναρτήσεις µιας Κατεύθυνσης και Γεννήτριες Ψευδοτυχαίων Αριθµών Παύλος Εφραιµίδης 2013/02 1 Αριθµοί και String Όταν θα αναφερόµαστε σε αριθµούς θα εννοούµε ουσιαστικά ακολουθίες από δυαδικά
Διαβάστε περισσότεραΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ Η/Υ
ΕΡΓΑΣΤΗΡΙΟ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ Η/Υ 4 ο Εξάμηνο Μαδεμλής Ιωάννης ΛΟΓΙΚΕΣ ΠΡΑΞΕΙΣ Οι λογικές πράξεις που υποστηρίζει η Assembly του 8088 είναι : Πράξη AND Πράξη OR Πράξη NOT Πράξη XOR Με τις λογικές πράξεις μπορούμε
Διαβάστε περισσότεραΔυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή (ως τρόπος οργάνωσης αρχείου) μέγεθος
Διαβάστε περισσότεραΔιαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 4 η Τελεστές Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην Εφαρμογή Σωτήρης
Διαβάστε περισσότεραΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Καταχωρητές Παράλληλης
Διαβάστε περισσότεραΛειτουργικά Συστήματα (ΗΥ321)
Λειτουργικά Συστήματα (ΗΥ321) Διάλεξη 19: Ασφάλεια Κρυπτογράφηση Βασική ιδέα: Αποθήκευσε και μετάδωσε την πληροφορία σε κρυπτογραφημένη μορφή που «δε βγάζει νόημα» Ο βασικός μηχανισμός: Ξεκίνησε από το
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2: Χειρισµός εδοµένων
ΚΕΦΑΛΑΙΟ 2: Χειρισµός εδοµένων 2.1 Αρχιτεκτονική Υπολογιστών 2.1 Αρχιτεκτονική Υπολογιστών 2.2 Γλώσσα Μηχανής 2.3 Εκτέλεση προγράµµατος 2.4 Αριθµητικές και λογικές εντολές 2.5 Επικοινωνία µε άλλες συσκευές
Διαβάστε περισσότερα