Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές
|
|
- Δημήτηρ Παπανδρέου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης Μαρκάκης Ευάγγελος
2 Περίληψη Shannon theory Εντροπία Μελέτη κρυπτοσυστηµάτων µε θεωρία πληροφορίας Τέλεια µυστικότητα Πλεονασµός Περίσσεια γλώσσας Ανίχνευση γλώσσας Έλεγχος Κάπα Έλεγχος Χι Διάλεξη 4-2
3 C. E. Shannon, Communication theory of secrecy systems, Bell Systems Technical Journal, , 1949 Cryptography via information theory Έστω Χ τυχαία µεταβλητή που παίρνει τιµές από ένα πεπερασµένο σύνολο {x 1,x 2,...x n }µε πιθανότητες P(X = x i ) = p(x i ) όπου 0 p(x i ) 1 για i = 1,, n, και Σ i p(x i ) = 1 Αν Υ επίσης τυχαία µεταβλητή, η απο κοινού κατανοµή θα συµβολίζεται µε p(x i, y j ) = P(X=x i, Y=y j ) Aν Χ, Υ είναι ανεξάρτητες τυχαίες µεταβλητές τότε p(x i, y j ) = p(x i ) p(y j ), για κάθε x i, y j Διάλεξη 4-3
4 Δεσµευµένες πιθανότητες p(x i y j ) = πιθ/τα η Χ να πάρει την τιµή x i δεδοµένου ότι η Υ έχει την τιµή y j p(x i y j ) = p(x i, y j ) / p(y j ), όταν p(y j ) > 0 Aν Χ, Υ είναι ανεξάρτητες τυχαίες µεταβλητές τότε p(x i y j ) = p(x i ) Διάλεξη 4-4
5 Εντροπία: µαθηµατική απεικόνιση για το µέγεθος της πληροφορίας που παρέχεται από παρατήρηση της Χ Ή η αβεβαιότητα για την έκβαση πριν από την παρατήρηση της Χ Ορισµός εντροπίας (Πληροφορία κατά Shannon): Η ποσότητα της αβεβαιότητας µίας µεταβλητής X είναι: Ιδιότητες: H(X) = Σ i p(x i ) lοg p(x i ) = Σ i p(x i ) log(1/p(x i )) H(X) = 0 iff p(x i ) = 1 για κάποιο i, και p(x j ) =0 για κάθε j i Δεν υπάρχει αβεβαιότητα για το αποτέλεσµα H(X) = logn iff p(x i ) = 1/n για κάθε i, 1 i n Και οι n εκβάσεις, x 1,,x n, ειναι ισοπίθανες Διάλεξη 4-5
6 Παράδειγµα: έστω τυχαία µεταβλητή Χ µε σύνολο τιµών {0,1} και p(0) = a, p(1) = 1-a. H(X) = -aloga -(1-a)log(1-a) Αν a=0 ή a=1, τότε H(X)=0 Δεν υπάρχει αβεβαιότητα για το αποτέλεσµα Για κάθε άλλη τιµή του a, η εντροπία είναι θετική και µεγιστοποιείται στο a=1/2 Εκεί που µεγιστοποιείται και ο βαθµός αβεβαιότητας Διάλεξη 4-6
7 Οµοίως ορίζεται η απο κοινού αβεβαιότητα: Η(Χ, Υ) = - Σ i Σ j p(x i, y j ) log p(x i, y j ) Καθώς και η υπο συνθήκη αβεβαιότητα: Η(Χ Υ) = - Σ i Σ j p(x i, y j ) log p(x i y j ) Ιδιότητες: Αν X, Y ανεξάρτητες, τότε H(X,Y) = H(X) + H(Y) (η αβεβαιότητα αθροίζεται) Γενικά, H(X,Y) H(X) + H(Y) Η(X Y) H(X) (η αβεβαιότητα µειώνεται όσο µαθαίνουµε) Η(Χ Υ, Ζ) Η(Χ Υ) (οµοίως) Η(Χ, Ζ Υ) Η(Χ Υ) (αβεβαιότητα αυξάνεται όταν αυξάνεται το σύνολο των πιθανών ενδεχοµένων) Αµοιβαία πληροφορία: Ι(Χ, Υ) = H(X) - Η(X Y) (χρησιµοποιείται στη µέτρηση διαρροής πληροφορίας) Διάλεξη 4-7
8 Μελέτη κρυπτοσυστηµάτων µε θεωρία πληροφορίας Έστω ένα τυχαίο κείµενο που θέλουµε να κρυπτογραφήσουµε και έστω ότι επιλέγουµε τυχαία ένα κλειδί µε βάση κάποια κατανοµή πιθανότητας P τυχαία µεταβλητή για την τιµή του plaintext K τυχαία µεταβλητή για την τιµή του κλειδιού C τυχαία µεταβλητή για την τιµή του ciphertext Σε όλα τα συµµετρικά κρυπτοσυστήµατα: H(C P, K) = 0 (αν ξέρω το απλό κείµενο και το κλειδί δεν υπάρχει αβεβαιότητα για το ciphertext) Η(P C, K) = 0 (αν ξέρω το κρυπτοκείµενο και το κλειδί, µπορώ να αποκρυπτογραφήσω) Διάλεξη 4-8
9 Τέλεια µυστικότητα (perfect secrecy) Διαισθητικά: ο Oscar δεν µπορεί να αποκτήσει κάποια πληροφορία για το plaintext (ή για το κλειδί) παρατηρώντας το ciphertext Ορισµός: Ένα κρυπτοσύστηµα είναι perfectly secure ή unconditionally secure against ciphertext-only attacks αν H(P C) = H(P) Ισοδύναµα: αν για κάθε πιθανή τιµή x για το P, και κάθε πιθανή τιµή y για το C: Pr(P = x C=y) = Pr(P=x) Διάλεξη 4-9
10 Τέλεια µυστικότητα (perfect secrecy) Παράδειγµα: έστω ότι έχουµε 3 σύµβολα απλού κειµένου, p 1, p 2, p 3, που µπορούν να αντιστοιχιστούν σε 3 σύµβολα κρυπτοκειµένου ανάλογα µε το κλειδί που διαλέγουµε O Oscar βλέποντας το ciphertext δεν µπορεί να εξάγει κανένα συµπέρασµα για το plaintext Διάλεξη 4-10
11 Τέλεια µυστικότητα (perfect secrecy) Αντιθέτως, αν το κρυπτοσύστηµα ήταν: Όταν ο Oscar βλέπει c 1 ξέρει ότι το plaintext είναι p 1 Μόνη αβεβαιότητα όταν βλέπει c 2 Άρα δεν είναι perfectly secure Διάλεξη 4-11
12 Τέλεια µυστικότητα (perfect secrecy) Θεώρηµα 1: Έστω ότι στο shift cipher διαλέγουµε ισοπίθανα για κάθε σύµβολο του plaintext ένα τυχαίο κλειδί k Z 26. Τότε για κάθε κατανοµή πιθανότητας του plaintext, το κρυπτοσύστηµα είναι perfectly secure Θεώρηµα 2: Έστω ότι στο κρυπτοσύστηµα one-time pad διαλέγουµε ισοπίθανα για κάθε m-bit string του plaintext ένα τυχαίο κλειδί k {0,1} m. Τότε για κάθε κατανοµή πιθ/τας του plaintext, το κρυπτοσύστηµα είναι perfectly secure Κάνοντας XOR µε τυχαίο string, πετυχαίνουµε ότι Pr[C = y] = (1/2) m για οποιοδήποτε m-bit string y Διάλεξη 4-12
13 Τέλεια µυστικότητα (perfect secrecy) Έστω Κ ο χώρος των κλειδιών Όταν τα plaintext και ciphertext είναι ισοµεγέθη (m-bit blocks), για κάθε κλειδί, η συνάρτηση κρυπτογράφησης είναι ένα bijection Θεώρηµα 3: Όταν το plaintext, το ciphertext, και το κλειδί είναι ισοµεγέθη και κάθε κλειδί επιλέγεται ισοπίθανα, το σύστηµα έχει τέλεια µυστικότητα Ιδέα απόδειξης: κάθε κλειδί προσδιορίζει ένα µοναδικό bijection, Όταν το κλειδί επιλέγεται ισοπίθανα, ουσιαστικά επιλέγεται ένα τυχαίο bijection άρα το ciphertext δεν µπορεί να µειώσει την αβεβαιότητα του plaintext Διάλεξη 4-13
14 Τέλεια µυστικότητα (perfect secrecy) Ορισµός: Το effective key size του χώρου κλειδιών είναι lοg K (= πόσα bits χρειαζόµαστε για να προσδιορίσουµε ένα κλειδί) Αν τα κλειδιά είναι ισοπίθανα, η εντροπία του χώρου κλειδιών, Η(Κ), ισούται µε το effective key size Όταν τα plaintext και ciphertext είναι ισοµεγέθη (m-bit blocks), τέλεια µυστικότητα έχουµε όταν η εντροπία του χώρου κλειδιών είναι logm Τα συστήµατα που παρέχουν τέλεια µυστικότητα είναι πρακτικά ανεφάρµοστα σήµερα Τεράστιο µέγεθος κλειδιού Κόστος παραγωγής, µετάδοσης, αποθήκευσης, επεξεργασίας Στόχος της κρυπτογραφίας: Σχεδιασµός συστηµάτων µε το καλύτερο trade-off ως προς: Μέγεθος κλειδιού σχετικά µικρό (κρυπτογράφηση µεγάλων ακολουθιών χαρακτήρων χωρίς αλλαγή κλειδιού) Μέγεθος κλειδιού σχετικά µεγάλο (για να µην µπορεί να σπάσει µε brute force) Ασφάλεια που να πλησιάζει την τέλεια µυστικότητα Διάλεξη 4-14
15 Πλεονασµός Περίσσεια Γλώσσας Περίσσεια µίας γλώσσας (redundancy): ποσοστό συνδυασµών γραµµάτων που δεν αντιστοιχούν σε µηνύµατα που ανήκουν στη γλώσσα Π.χ. στην ελληνική γλώσσα, µε 4 χαρακτήρες, το «χέρι» είναι έγκυρη λέξη αλλά το «ουγκ» δεν είναι Απόλυτος ρυθµός γλώσσας (absolute rate): A = log(n), όπου n το πλήθος των γραµµάτων του αλφάβητου = πόσα bits χρειαζόµαστε για να αναπαραστήσουµε τα γράµµατα του αλφαβήτου Ο αριθµός των δυνατών µηνυµάτων µήκους m, σε γλώσσα µε απόλυτο ρυθµό Α, είναι 2 Am Έστω 2 Rm ο αριθµός των µηνυµάτων µήκους m γραµµάτων που ανήκουν στην γλώσσα (έγκυρα). Η περίσσεια της γλώσσας ορίζεται ως η ποσότητα: D=Α-R (είναι περίσσεια σε bits) Λατινικό αλφάβητο Το λατινικό αλφάβητο µεταφέρει lοg26=4,7 bits/character, άρα Α = 5 Από µετρήσεις, η µέση ποσότητα πληροφορίας που µεταφέρεται ανά character (percharacter entropy) σε κατανοήσιµο Αγγλικό κείµενο είναι 1.5 bits Ο πλεονασµός σε Αγγλικό κείµενο είναι 5 1,5 = 3,5 bits Διάλεξη 4-15
16 Πλεονασµός Περίσσεια Γλώσσας Είναι επιθυµητό η περίσσεια D µιας γλώσσας να είναι όσο το δυνατόν µικρότερη Αν είναι µικρή: Έστω ότι ο αντίπαλος έχει στην κατοχή του το κρυπτοκείµενο κατά την προσπάθεια αποκρυπτογράφησης του Οscar αυτό θα έχει µεγαλύτερη πιθανότητα να αντιστοιχίζεται σε πολλά έγκυρα απλά κείµενα. Αν η περίσσεια είναι µεγάλη ο αντίπαλος θα µπορεί πιο εύκολα να αναγνωρίσει το ζητούµενο απλό κείµενο ή να αποκλείσει κλειδιά τα λάθος κλειδιά θα αποκρυπτογραφούν το κρυπτοκείµενο σε µη έγκυρα κείµενα µε µεγάλη πιθανότητα. Υπάρχει εξάρτηση µεταξύ της περίσσειας της γλώσσας και του µεγέθους του κρυπτοκειµένου που χρειάζεται να έχει ο αντίπαλος για να ανακτήσει το απλό κείµενο Διάλεξη 4-16
17 Πλεονασµός Περίσσεια Γλώσσας [Shannon 1949]: unicity distance (UD)= η µέση ποσότητα του κρυπτοκειµένου που χρειάζεται για την ανάκτηση του απλού κειµένου = το µικρότερο µήκος του κρυπτοκειµένου µε το οποίο H(P/C)=0. Θεώρηµα (Shannon): UD = H(K) / D όσο µικρότερη η περίσσεια της γλώσσας, τόσο περισσότερο κρυπτοκείµενο απαιτείται για να εντοπισθεί το κλειδί Παράδειγµα ενός permutation cipher µε αντιµεταθέσεις µήκους t Έστω ότι το plaintext έχει πλεονασµό των D Π =3,2 bits/character H(K)/D Π = log(t!)/3,2 Για t=12, χρειαζόµαστε τουλάχιστον 9 χαρακτήρες Για t=27, χρειαζόµαστε τουλάχιστον 29 χαρακτήρες Διάλεξη 4-17
18 Ανίχνευση Γλώσσας Μέχρι τώρα υποθέσαµε ότι ο Oscar γνωρίζε σε ποια γλώσσα έχει γραφτεί το plaintext Αν υποθέσουµε ότι δεν ξέρει τη γλώσσα? Π.χ. Πολλές λατινογενείς γλώσσες έχουν το ίδιο αλφάβητο Έµφυτα χαρακτηριστικά γλώσσας που ένα ασφαλές κρυπτοσύστηµα θα πρέπει να έχει την ικανότητα να αποκρύπτει άνιση κατανοµή συχνοτήτων των συµβόλων του απλού κειµένου, περίσσεια µιας γλώσσας Έλεγχος Κάπα και έλεγχος Χι: εκµεταλλεύονται στατιστικά χαρακτηριστικά κρυπτοκειµένου για να προσδιορίσουν τη γλώσσα γραφής απλού κειµένου Διάλεξη 4-18
19 Ανίχνευση Γλώσσας Έλεγχος Κάπα: µέτρηση σχετικής συχνότητας εµφάνισης ενός συµβόλου στην ίδια θέση σε διαφορετικά κείµενα Έστω Μ=[m 1 m 2 m n ] και Μ =[m 1 m 2 m n ] δυο διαφορετικά κείµενα κοινού µήκους n. H ποσότητα Κάπα ή ποσότητα ταύτισης ορίζεται ως: κ(μ, Μ ) = (1/n)Σ i δ(m i, m i ) όπου { 1 αν α=β δ(α, β) = 0 αν α β Με στατιστικές αναλύσεις έχει βρεθεί ότι η ποσότητα κ εξαρτάται από τη γλώσσα στην οποία είναι τα κείµενα Μ, M και είναι διαφορετική για κάθε γλώσσα Για µονοαλφαβητικές αντικαταστάσεις και πολυαλφαβητικές γραµµικής φύσης (π.χ. Vigenere), η ποσότητα κ 2 κρυπτοκειµένων (µε το ίδιο κλειδί) είναι στατιστικά ίση µε την ποσότητα κ των 2 αντίστοιχων plaintexts Διάλεξη 4-19
20 Ανίχνευση Γλώσσας Έλεγχος Χι: Κρυπταναλυτικά πιο αδύναµος από τον έλεγχο Κάπα Μέτρηση συχνότητας εµφάνισης συµβόλου σε διαφορετικά κείµενα Έστω Μ=[m 1 m 2 m n ] και Μ =[m 1 m 2 m n ] δυο διαφορετικά κείµενα κοινού µήκους n και {x 1,x 2,,x m } το αλφάβητο των κειµένων Έστω f i και f i οι συχνότητες εµφάνισης του συµβόλου x i στα κείµενα Μ και M αντίστοιχα. Η ποσότητα Χι ορίζεται ως: χ(μ,μ )=(1/m 2 )Σ i f i * f i Με στατιστικές αναλύσεις έχει βρεθεί ότι η ποσότητα Χι εξαρτάται από τη γλώσσα στην οποία είναι τα κείµενα Μ, M και είναι διαφορετικό για κάθε γλώσσα Μόνο για µονοαλφαβητική αντικατάσταση Διάλεξη 4-20
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής
Διαβάστε περισσότεραΧρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πιθανότητες Πληροφορία Μέτρο
Διαβάστε περισσότεραΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
Διαβάστε περισσότεραΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
Διαβάστε περισσότεραΠρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9
Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις
Διαβάστε περισσότεραΚρυπτογραφία. Εργαστηριακό μάθημα 1
Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,
Διαβάστε περισσότεραΚρυπτογραφία. Κωνσταντίνου Ελισάβετ
Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση
Διαβάστε περισσότεραΠρόβληµα 2 (12 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον
Διαβάστε περισσότεραΘέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΚρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση
Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού
Διαβάστε περισσότεραΟικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com Περίληψη Συµµετρικά κρυπτοσυστήµατα Block ciphers (κρυπτογράφηση
Διαβάστε περισσότεραΘέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 5: Βασική Θεωρία Πληροφορίας Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΥπολογιστική Κρυπτογραφία
Υπολογιστική Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 32 Ιστορικά
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση
Διαβάστε περισσότεραΠρόβληµα 2 (15 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές
Διαβάστε περισσότερα3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
3 ΟΙ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ 3.. Θεωρία της πληροφορίας Το 948 και το 949 ο Shannon παρουσίασε δύο εργασίες ορόσημα στις επικοινωνίες και στην ασφάλεια της πληροφορίας. Στο σημείο αυτό θα
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ
Διαβάστε περισσότεραΘεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1
Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας
Διαβάστε περισσότερα( ) log 2 = E. Σεραφείµ Καραµπογιάς
Παρατηρούµε ότι ο ορισµός της Η βασίζεται στη χρονική µέση τιµή. Για να ισχύει ο ορισµός αυτός και για µέση τιµή συνόλου πρέπει η πηγή να είναι εργοδική, δηλαδή H ( X) ( ) = E log 2 p k Η εντροπία µιας
Διαβάστε περισσότεραΘεωρία της Πληροφορίας 3 ο Εξάμηνο
Σμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Πώς? 13 Διαλέξεις.
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης
Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >
Διαβάστε περισσότεραΨευδο-τυχαιότητα. Αριθµοί και String. Μονόδροµες Συναρτήσεις 30/05/2013
Ψευδο-τυχαιότητα Συναρτήσεις µιας Κατεύθυνσης και Γεννήτριες Ψευδοτυχαίων Αριθµών Παύλος Εφραιµίδης 2013/02 1 Αριθµοί και String Όταν θα αναφερόµαστε σε αριθµούς θα εννοούµε ουσιαστικά ακολουθίες από δυαδικά
Διαβάστε περισσότεραΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ
ΤΕΙ Κρήτης ΕΠΠ Εργαστήριο Ασφάλεια Πληροφοριακών Συστηµάτων ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τµηµα Εφαρµοσµενης Πληροφορικης Και Πολυµεσων Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Εισαγωγή
Διαβάστε περισσότεραΑσκήσεις μελέτης της 16 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 16 ης διάλεξης 16.1. (α) Έστω ένα αντικείμενο προς κατάταξη το οποίο
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους
ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1
Διαβάστε περισσότεραΥπολογιστική Κρυπτογραφία
Υπολογιστική Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 42 Ιστορικά
Διαβάστε περισσότεραUP class. & DES και AES
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων UP class & DES και AES Επιμέλεια σημειώσεων: Ιωάννης Νέμπαρης Μάριος Κουβαράς Διδάσκοντες: Στάθης Ζάχος
Διαβάστε περισσότεραΚρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας
Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη
Διαβάστε περισσότεραΕισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας
Διαβάστε περισσότεραKEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ
Βασικές έννοιες KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ Ένα κρυπτοσύστηµα όπου οι χώροι των καθαρών µηνυµάτων, των κρυπτογραφηµένων µυνηµάτων και των κλειδιών είναι ο m,,,... m = καλείται ψηφιακό κρυπτοσύστηµα.
Διαβάστε περισσότεραΘεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Διακριτές πηγές πληροφορίας με μνήμη Μαρκοβιανές αλυσίδες Τάξη μακροβιανών αλυσίδων
Διαβάστε περισσότεραΕισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές
Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο
Διαβάστε περισσότεραΣυμμετρικά κρυπτοσυστήματα
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Δίκτυα Feistel Σημαντικές
Διαβάστε περισσότεραΜάθημα Εισαγωγή στις Τηλεπικοινωνίες Κωδικοποίηση πηγής- καναλιού Μάθημα 9o
Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Κωδικοποίηση πηγής- καναλιού Μάθημα 9o ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τομέας Επικοινωνιών και Επεξεργασίας Σήματος Τμήμα Πληροφορικής & Τηλεπικοινωνιών
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E
Διαβάστε περισσότεραΔίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:
Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη
Διαβάστε περισσότεραΨηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Κωδικοποίηση Πηγής Ψηφιακή Μετάδοση Υπάρχουν ιδιαίτερα εξελιγμένες τεχνικές αναλογικής μετάδοσης (που ακόμη χρησιμοποιούνται σε ορισμένες εφαρμογές) Επίσης,
Διαβάστε περισσότεραΕισαγωγή στη θεωρία πληροφορίας
Θεωρία πληροφορίας Εισαγωγή στη θεωρία πληροφορίας Τηλεπικοινωνιακά συστήματα Όλα τα τηλεπικοινωνιακά συστήματα σχεδιάζονται για να μεταφέρουν πληροφορία Σε κάθε τηλεπικοινωνιακό σύστημα υπάρχει μια πηγή
Διαβάστε περισσότεραΚρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey
Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από
Διαβάστε περισσότεραCryptography and Network Security Chapter 2. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 2 Fifth Edition by William Stallings Κεφαλαιο 2 Κλασσικες Τεχνικες Κρυπτογράφησης "I am fairly familiar with all the forms of secret writings, and am myself the
Διαβάστε περισσότεραΤεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
Διαβάστε περισσότεραΣεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1
Ο αλγόριθµος Lempel-iv Ο αλγόριθµος Lempel-iv ανήκει στην κατηγορία των καθολικών universal αλγορίθµων κωδικοποίησης πηγής δηλαδή αλγορίθµων που είναι ανεξάρτητοι από τη στατιστική της πηγής. Ο αλγόριθµος
Διαβάστε περισσότεραΧρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά
Διαβάστε περισσότεραΘεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Διαβάστε περισσότεραΠληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος
Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου
Διαβάστε περισσότεραΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία
ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Συμμετρική Κρυπτογραφία Εισαγωγή Στην συνηθισμένη κρυπτογραφία, ο αποστολέας και ο παραλήπτης ενός μηνύματος γνωρίζουν και χρησιμοποιούν το ίδιο μυστικό κλειδί.
Διαβάστε περισσότεραΚρυπτογραφία. Κεφάλαιο 2 Αλγόριθμοι ροής - Stream ciphers
Κρυπτογραφία Κεφάλαιο 2 Αλγόριθμοι ροής - Stream ciphers Γενικά χαρακτηριστικά Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από bits (ή bytes) Απαιτούν μία γεννήτρια ψευδοτυχαίας ακολουθίας
Διαβάστε περισσότεραΟικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος ttouskas@aueb.gr
Διαβάστε περισσότεραΠανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτογραφικές Συναρτήσεις. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτογραφικές Συναρτήσεις Χρήστος Ξενάκης Ψευδοτυχαίες ακολουθίες Η επιλογή τυχαίων αριθμών είναι ένα βασικό σημείο στην ασφάλεια των κρυπτοσυστημάτων
Διαβάστε περισσότεραΥπολογιστική Κρυπτογραφία
Υπολογιστική Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Υπολογιστική
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής
Διαβάστε περισσότεραΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 19 Φεβρουαρίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
Διαβάστε περισσότεραΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
Διαβάστε περισσότεραΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 2: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΜοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία
Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Παναγιώτης Γροντάς ΕΜΠ - Κρυπτογραφία 09/10/2015 1 / 46 (ΕΜΠ - Κρυπτογραφία) Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία Περιεχόμενα Ορισμός Κρυπτοσυστήματος
Διαβάστε περισσότεραΘεωρία της Πληροφορίας 3 ο Εξάμηνο
Τμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Κάθε πότε?
Διαβάστε περισσότεραΟικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com
Διαβάστε περισσότεραΔ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Κρυπτογραφία: Συμμετρική Κρυπτογράφηση Διδάσκων : Δρ. Παρασκευάς Κίτσος http://www.diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών
Διαβάστε περισσότεραΑσκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
Διαβάστε περισσότεραp(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη
Διαβάστε περισσότεραΑπαντήσεις σε απορίες
Ερώτηση Η µέση ποσότητα πληροφορίας κατά Shannon είναι Η(Χ)=-Σp(xi)logp(xi)...σελ 28 Στο παραδειγµα.3 στη σελιδα 29 στο τέλος δεν καταλαβαίνω πως γίνεται η εφαρµογή του παραπάνω τύπου ηλαδη δεν βλεπω συντελεστη
Διαβάστε περισσότεραΚρυπτογραφία και Ασφάλεια Υπολογιστών
Κρυπτογραφία και Ασφάλεια Υπολογιστών Εργαστηριακές Ασκήσεις 0 Σ ε λ ί δ α Απόστολος Φούρναρης, Πάρης Κίτσος και Νικόλαος Σκλάβος 4/29/15 Κρυπτογραφία και Ασφάλεια Υπολογιστών 1 Σ ε λ ί δ α ΠΕΡΙΕΧΟΜΕΝΑ
Διαβάστε περισσότεραΒασικές αρχές. κρυπτανάλυσης. ΚΕΦΑΛΑΙΟ 1
ΚΕΦΑΛΑΙΟ 1 Βασικές αρχές κρυπτανάλυσης Στο κεφάλαιο αυτό παρουσιάζονται οι ϐασικές αρχές και τα µέσα τα οποία χρησιµοποιεί η κρυπτανάλυση, προκειµένου να γίνουν πιο κατανοητοί οι στόχοι των επόµενων κεφαλαίων.
Διαβάστε περισσότεραΚρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers (κρυπτοσυστήματα
Διαβάστε περισσότεραΕπισκόπηση Κρυπτογραφίας: privacy. Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία. Επισκόπηση Κρυπτογραφίας: authentication, integrity
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Επισκόπηση
Διαβάστε περισσότεραΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 4: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της
Διαβάστε περισσότεραΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org
Διαβάστε περισσότεραΕργαστήριο Ασφάλειας Πληροφοριακών και Επικοινωνιακών Συστημάτων Πανεπιστήμιο Αιγαίου. Μέτρα ανωνυμίας και τεχνικές διασφάλισης της Ιδιωτικότητας
Εργαστήριο Ασφάλειας Πληροφοριακών και Επικοινωνιακών Συστημάτων Πανεπιστήμιο Αιγαίου Μέτρα ανωνυμίας και τεχνικές διασφάλισης της Ιδιωτικότητας Π. Ριζομυλιώτης 24/1/2012 1 Πρόγραμμα εργασιών 9/12: (9.00-11.00,
Διαβάστε περισσότεραΚρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 26
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.
Διαβάστε περισσότεραΚρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2
ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση
Διαβάστε περισσότεραCryptography and Network Security Chapter 3. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 3 Fifth Edition by William Stallings Κρυπτογραφικοι Αλγοριθµοι Τµηµατων (Block Ciphers) All the afternoon Mungo had been working on Stern's code, principally with
Διαβάστε περισσότεραΑσφάλεια Πληροφοριακών Συστημάτων
Εργαστήριο Ασφάλεια Πληροφοριακών Συστημάτων Θεοδωρακοπούλου Ανδριάνα atheodorak@outlook.com Βαθμολόγηση Ασκήσεις Εργαστηρίου: 40% Τελική Εξέταση: 60% Ρήτρα: Βαθμός τελικής εξέτασης > 3.5 ΠΡΟΣΟΧΗ στις
Διαβάστε περισσότεραΚρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου
Κρυπτογράφηση Αποκρυπτογράφηση Ερευνητική εργασία Β'1 1 ο Γενικό Λύκειο Ευόσμου 2013-2014 Project Ορισμοί Ιστορία Η αποκρυπτογράφηση στις μέρες μας Κρυπτογράφηση Αποκρυπτογράφηση Αποκρυπτογραφημένο-Κρυπτογραφημένο
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων
Διαβάστε περισσότεραΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 5 Μαρτίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
Διαβάστε περισσότεραΕλληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 10 : Ασφάλεια. Δρ. Γκόγκος Χρήστος
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 10 : Ασφάλεια Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής
Διαβάστε περισσότεραΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία
ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα
Διαβάστε περισσότεραΚρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία
Διαβάστε περισσότεραΟικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr
Διαβάστε περισσότεραΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ
KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,
Διαβάστε περισσότεραΥπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή - Κλασσικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ
Διαβάστε περισσότεραΕπιθέσεις και Ασφάλεια Κρυπτοσυστημάτων
Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών
Διαβάστε περισσότεραHash Functions. μεγεθος h = H(M) ολους. στο μηνυμα. στο συγκεκριμενο hash (one-way property)
Hash Functions Συρρικνωνει μηνυμα οποιουδηποτε μηκους σε σταθερο μεγεθος h = H(M) Συνηθως θεωρουμε οτι η hash function ειναι γνωστη σε ολους Το hash χρησιμοποιειται για να ανιχνευσει τυχον αλλαγες στο
Διαβάστε περισσότεραΕΑΠ/ΠΛΗ22/ΑΘΗ.3. 4 η ΟΣΣ
ΕΑΠ/ΠΛΗ22/ΑΘΗ.3 4 η ΟΣΣ 19.03.2017 Σχόλια για τη ΓΕ3 & Συμπληρωματικές Διαφάνειες στα Κανάλια Επικοινωνίας και τους Κώδικες Διόρθωσης Σφαλμάτων Νίκος Δημητρίου ΕΑΠ / ΠΛΗ22 /ΑΘΗ.3 / 4η ΟΣΣ / 19.03.2017
Διαβάστε περισσότεραΑνάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #08 Συµπίεση Κειµένων Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης
Διαβάστε περισσότεραΚρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας
Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38 Περιεχόμενα 1 Message
Διαβάστε περισσότερα