Cryptography and Network Security Chapter 3. Fifth Edition by William Stallings
|
|
- Ῥαφαὴλ Ζαΐμης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Cryptography and Network Security Chapter 3 Fifth Edition by William Stallings
2 Κρυπτογραφικοι Αλγοριθµοι Τµηµατων (Block Ciphers) All the afternoon Mungo had been working on Stern's code, principally with the aid of the latest messages which he had copied down at the Nevin Square drop. Stern was very confident. He must be well aware London Central knew about that drop. It was obvious that they didn't care how often Mungo read their messages, so confident were they in the impenetrability of the code. Talking to Strange Men, Ruth Rendell
3 Συγχρονοι αλγοριθµοι Τµηµατων Ας δουµε τωρα τους συγχρονους κρυπτογραφικους αλγοριθµους Οι αλγοριθµοι τµηµατων ειναι απο τους πιο ευρεως χρησιµοποιουµενους τυπους κρυπτογραφικων αλγοριθµων. Χρησιµοποιουνται για τις υπηρεσιες τοσο της µυστικοτητας, οσο και της πιστοποιησης αυθεντικοτητας Θα εστιασουµε στον αλγοριθµο DES (Data Encryption Standard) προκειµενου να µελετησουµε τις σχεδιαστικες αρχες των αλγοριθµων τµηµατων.
4 Αλγοριθµοι τµηµατων (Βlock Ciphers) και Αλγοριθµοι Ροης (Stream Ciphers) Oι αλγοριθµοι τµηµατων επεξεργαζονται τα µηνυµατα κατα τµηµατα το καθενα απο τα οποια κρυπτογραφειται ή αποκρυπτογραφειται. Οι αλγοριθµοι ροης, οταν κρυπτογραφουν ή αποκρυπτογραφουν επεξεργαζονται ενα µονο bit ή byte καθε φορα. Πολλοι συγχρονοι αλγοριθµοι κρυπτογραφησης ειναι αλγοριθµοι τµηµατων. Αναλυονται καλυτερα Εχουν ευρυτερο πεδιο εφαρµογων
5 Block vs Stream Ciphers
6 Αρχες των Αλγοριθµων Τµηµατων Οι περισσοτεροι συµµετρικοι αλγοριθµοι τµηµατων βασιζονται σε δοµη Feistel Cipher Αποκρυπτογραφουν το ciphertext αποδοτικα Μπορουν να ειδωθουν ως µια εξαιρετικα µεγαλη αντικατασταση. Θα χρειαζονταν οµως εναν πινακα µε 2 64 entries για µια δεσµη των 64-bit bits Aποτελουνται απο µικροτερα δοµικα στοιχεια και χρησιµοποιουν την ιδεα του product cipher
7 Ideal Block Cipher
8 Ο Claude Shannon και οι Κρυπτογραφικοι Αλγοριθµοι Αντικαταστασης-Μεταθεσης (Substitution-Permutation Ciphers) Ο Shannon εισήγαγε την ιδεα των δικτυων Αντικαταστασης-Μεταθεσης [substitution- permutation (S-P P nets) s)] το Αποτελουν τη βαση των συγχρονων αλγοριθµων τµηµατων Tα S-P P nets βασιζονται σε δυο βασικες κρυπτογραφικες λειτουργιες: Αντικατασταση (substitution, S-box) Μεταθεση (permutation, P-box) Παρεχουν συγχυση και διαχυση του µηνυµατος και του κλειδιου.
9 Συγχυση και ιαχυση (Confusion and Diffusion) Ο κρυπτογραφικος αλγοριθµος πρεπει να συσκοτιζει τελειως τις στατιστικες ιδιοτητες του αρχικου µηνυµατος Αυτο το επιτυγχανει ενα κλειδι µιας χρησης (one-time pad) Ο Shannon προτεινε το συνδυασµο στοιχειων S & P (αντικαταστασης και µεταθεσης) για να επιτυχει: ιαχυση (diffusion) δυαλυει τη στατιστικη δοµη του plaintext. Συγχυση (confusion) κανει τη σχεση µεταξυ του ciphertext και του κλειδιου οσο το δυνατον πιο πολυπλοκη
10 Η οµη Feistel Cipher Ο Horst Feistel επινοησε τον feistel cipher Βασιζεται στις ιδεες του Shannon Χωριζει το input block σε δυο ισα κοµµατια. Τα επεξεργαζεται µεσω πολλαπλων γυρων οι οποιοι Εκτελουν µια αντικατασταση στο αριστερο µισο των δεδοµενων Βασιζεται σε µια συναρτηση γυρου (round function) του δεξιου µισου και του υποκλειδιου. Στη συνεχεια πραγµατοποιει αντιµεταθεση µεταξυ των δυο µισων Εφαρµοζει την ιδεα των S-P P nets του Shannon
11 οµή Feistel Cipher
12 Σχεδιαστικα στοιχεια του Feistel Cipher Το µεγεθος των τµηµατων (block size) Το µεγεθος του κλειδιου (key size) Ο αριθµος των γυρων (number of rounds) Ο αλγοριθµος δηµιουργιας των υποκλειδιων (subkey generation algorithm) Η συναρτηση του γυρου (round function) Η δυνατοτητα για γρηγορη κρυπτογραφηση/αποκρυπτογραφηση αποκρυπτογραφηση µεσω λογισµικου (fast software en/decryption) Η ευκολια στην αναλυση
13 Data Encryption Standard (DES) O πιο ευρεως διαδεδοµενος κρυπτογραφικος αλγοριθµος τµηµατων στον κοσµο. Κρυπτογραφει δεδοµενα των 64-bit χρησιµοποιωντας κλειδι των 56-bits H ασφαλεια του εχει αµφισβητηθει
14 Αµφισβητηση του σχεδιασµου του DES Αν και το DES standard ειναι πασιγνωστο υπαρχει σηµαντικη αµφισβητηση για το σχεδιασµο του. Για την επιλογη κλειδιου των 56-bit (εναντι( 128-bit αλλων αλγοριθµων) Για το γεγονος οτι τα σχεδιαστικα του κριτηρια ειναι διαβαθµισµενα Ωστοσο µεταγενεστερα γεγονοτα και αναλυσεις δειχνουν οτι τελικα ο σχεδιασµος του DES ηταν σωστος
15 Κρυπτογραφηση DES
16 οµη του γυρου DES Χρησιµοποιει δυο µισα (Left & Right, L&R) των 32-bits. Oποιοσδηποτε Feistel cipher µπορει να περιγραφει ως εξης: L i = R i 1 R i = L i 1 F(R i 1, K i ) Η F παιρνει το δεξι µισο των 32-bits (R) και το υποκλειδι των 48-bits: Eπεκτεινεται το R στα 48-bits χρησιµοποιωντας τη µεταθεση Ε Στη συνεχεια γινεται ΧOR µε το υποκλειδι Οτι προκυπτει περναει µεσα απο 8 S-boxes S και προκυπτει αποτελεσµα των 32-bits Tελικα πραγµατοποιειται µεταθεση, χρησιµοποιωντας την 32-bit µεταθεση P
17 οµη του γύρου DES (DES Round Structure)
18 οµη του γύρου DES Υπολογισµος του F
19 Κουτια Αντικαταστασης S (Substitution Boxes S) Εχουµε 8 S-boxes που αντιστοιχουν καθε 6αδα bits σε µια 4αδα Kαθε S-box ειναι στην πραγµατικοτητα 4 µικρα boxes των 4 bits. Τα εξωτερικα bits 1 & 6 (row( bits) επιλεγουν µια γραµµη των 4 Τα εσωτερικα bits (col( bits) αντικαθιστανται Το αποτελεσµα ειναι 8 οµαδες των 4 bits, ή 32 bits Η επιλογη γραµµης εξαρταται τοσο απο τα δεδοµενα, οσο και απο το κλειδι Το χαρακτηριστικο αυτο ονοµαζεται autoclaving (autokeying( autokeying) Παραδειγµα: S( d ) = 5fd25e03
20 Aποκρυπτογραφηση DES (DES Decryption) Ακολουθειται ακριβως η αντιστροφη πορεια µε τα βηµατα της κρυπτογραφησης χρησιµοποιωντας τα υποκλειδια µε αντιστροφη σειρα (SK16 SK1) H αρχικη µεταθεση (IP) αναιρει το τελευταιo βηµα (FP) της κρυπτογραφησης. Ο πρωτος γυρος µε το υποκειδι SK16 αναιρει τον 16 ο γυρο της κρυπτογραφησης. Ο 16ος γυρος µε το υποκλειδι SK1 αναιρει τον πρωτο γυρο της κρυπτογραφησης Τελος το τελικο βηµα FP αναιρει το αρχικο βηµα IP της κρυπτογραφησης Κι ετσι καταληγουµε στα αρχικα δεδοµενα.
21 Ισχυς του DES Μεγεθος Κλειδιου Τα κλειδια των 56-bit εχουν 2 56 = 7.2 x τιµες υσκολο να σαρωθουν µε επιθεση brute force Οι σχετικα προσφατες εξελιξεις οµως, δειχνουν οτι αυτο ειναι δυνατο. Το 1997 µε χρηση του Internet σε λιγους µηνες Το 1998 µε χρηση ειδικα σχεδιασµενου hardware µεσα σε λιγες µερες. Το 1999 µε συνδυασµο των παραπανω µεσα σε 22 ώρες! Ωστοσο πρεπει παντα να εχει τη δυνατοτητα ο επιτιθεµενος να αναγνωριζει το plaintext
22 Ισχυς του DES Αναλυτικες Επιθεσεις Υπαρχουν αρκετες αναλυτικες επιθεσεις για τον DES Χρησιµοποιουν τη βαθεια δοµη του DES Συγκεντρωνοντας πληροφοριες για τις κρυπτογραφησεις µπορει κανεις να ανακαλυψει ολα τα µερικα η και ολα τα υποκλειδια Αν χρειαζεται, µπορει να ψαξει εξαντλητικα για τα υπολοιπα Γενικα αυτες ειναι στατιστικες επιθεσεις. ιαφορική Κρυπταναλυση (differential cryptanalysis) Γραµµικη Κρυπταναλυση (linear cryptanalysis) Επιθεσεις σχετιζοµενου κλειδιου (related key attacks)
23 Ισχυς του DES Επιθεσεις Χρονισµου Επιτιθεται στην υλοποιηση του αλγοριθµου Χρησιµοποιει γνωση των συνεπειων της υλοποιησης για να εξαγει πληροφοριες για µερικα ή ολα τα υποκλειδια Συγκεκριµενα, χρησιµοποιει το γεγονος οτι οι υπολογισµοι µπορουν να εχουν διαφορετικους χρονους εκτελεσης αναλογα µε το σε τι input εκτελουνται
24 Κρυπτανάλυση στον DES Όντας πρότυπο για πολλά χρόνια, ο DES κίνησε το ενδιαφέρον πολλών κρυπταναλυτών για την εύρεση µεθόδων που θα µπορούσαν να τον «σπάσουν» Βασικοί αλγόριθµοι κρυπτανάλυσης ιαφορική κρυπτανάλυση [differential cryptanalysis Biham and Shamir (1990)] Γραµµική κρυπτανάλυση [linear cryptanalysis Matsui (1993)] Συλλογή στοιχείων µε τις δύο αυτές µεθόδους υπάρχουν στη διεύθυνση: Οι µέθοδοι αυτές εφαρµόζονται σε κάθε νέο αλγόριθµο που προτείνεται, για τον έλεγχο της ασφάλειάς του
25 ιαφορική Κρυπτανάλυση Εξεταζει ζευγη κρυπτογραµµατων, των οποιων τα αρχικα µηνυµατα διαφερουν σε συγκεκριµενες θέσεις (chosenplaintext attack) Προσοµοιωνοντας τον αλγοριθµο, καποια κλειδια είναι πιο πιθανα από καποια άλλα, µε δεδοµενη την παραπάνω συνθηκη Οσο πιο πολλα κρυπτογραφηµατα αναλυονται, τοσο πιο πολλα κλειδιά «απορριπτονται» ως λιγοτερο πιθανα Οι λεπτοµερειες της µεθοδου εινα πολυ συνθετες Οι 8 γυροι του DES «σπανε» µε γνωστα 2 14 επιλεγµενα αρχικα µηνυµατα (chosen plaintexts). Ολοι οι 16 γύροι του DES οµως χρειαζονται 2 47 επιλεγµένα αρχικα µηνυµατα Αναφορά: «Differential Cryptanalysis of DES-like cryptosystems», Ε. Biham, A. Shamir, Crypto 1990
26 Γραµµική Κρυπτανάλυση Αναζητειται γραµµικοτητα στο συστηµα Εστω οτι γινονται XOR τα bits ενός αρχικου µηνυµατος, XOR τα bits του αντιστοιχου κρυπτογραµµατος και XOR τα δυο αποτελεσµατα. Ιδανικα, η πιθανοτητα αυτου του bit αποτελεσµατος να είναι 1 ή 0 θα έπρεπε να είναι ½. Οταν δεν ισχυει, µπορεί να εξαχθει καποια πληροφορια για το κλειδι Η παραπάνω πιθανοτητα εξαρταται κυριως από τη γραµµικοτητα των S-boxes Οι λεπτοµερειες της µεθοδου ειναι επισης συνθετες Καλα αποτελεσµατα για λιγους γυρους του DES, οχι οµως για το συνολο του (οπου χρειαζονται 2 43 επιλεγµενα γνωστα αρχικα µηνυµατα) Αναφορα: «Linear Cryptanalysis Method for DES Cipher», Matsui M., Advances in Cryptology -- EUROCRYPT '
27 Σχεδιαστικα Κριτηρια του DES (DES Design Criteria) Οπως αναφερεται απο τον Coppersmith [COPP94] 7 κριτηρια για τα S-boxes εξασφαλιζουν Μη γραµµικότητα Αντισταση στη διαφορικη κρυπταναλυση Καλη συγχυση 3 κριτηρια για την αντιµεταθεση P εξασφαλιζουν Αυξηµενη διαχυση
28 Triple DES (3DES) Παραλλαγή του DES, η οποία παρέχει περισσότερη ασφάλεια Ο 3DES χρησιµοποιεί τρία κλειδιά των 56-bit C=E k3 (D k2 (E k1 (P))) P=D k1 (E k2 (D k3 (C))) Σηµείωση: αν K1=K2, τότε 3DES=DES
29 AES- Advanced Encryption Standard Το 1997, ο NIST προσκάλεσε δηµόσια για ορισµό νέου προτύπου Ως ελάχιστο µήκος κλειδιού τέθηκε 128 bits υνατότητα υλοποίησης σε επεξεργαστές 8 bit To 1998, επελέχθησαν 15 επικρατέστεροι Αργότερα, έµειναν 5 επικρατέστεροι MARS (IBM - ΗΠΑ) RC6 (RSA Labs - ΗΠΑ) Rijndael (Daemen and Rijmen Βέλγιο) SERPENT (Anderson, Biham, and Knudsen Μεγάλη Βρετανία, Ισραήλ, Νορβηγία) TWOFISH (Schneier, Kelsey, και άλλοι - ΗΠΑ)
30 Advanced Encryption Standard (AES) (ΙΙ) Τελικοί βαθµοί των 5 επικρατέστερων αλγορίθµων: MARS RC6 Rijndael Serpent Twofish General Security Implementation of Security Software Performance Smart Card Performance Hardware Performance Design Features Το 2000, ανακοινωθηκε ως νικητης αλγοριθμος ο Rijndael.
31 Αλγόριθµος Rijndael Μήκη κλειδιού 128, 192, 256 bits Μήκη blocks δεδοµένων 128, 192, 256 bits Εύκολη υλοποίηση hardware γύροι, ανάλογα µε το µήκος του κλειδιού Κάθε γύρος έχει 4 βήµατα: Αντικατάσταση byte (Byte substitution) χρήση s-boxes µε καλά χαρακτηριστικά Ολίσθηση (Shift row) Συνδυασµός πολλών bit (Mix Column) Πρόσθεση (XOR) του κλειδιού
32 Σύγκριση DES, 3DES, AES DES 3DES AES Key Length (bits) or , 192, 256 Strength Weak Strong Strong Processing Requirements Moderate High Modest RAM Requirements Moderate High Modest
33 Άλλοι Block Ciphers Blowfish (Schneier) ( CAST ( Int l Data Encryption Alg (IDEA), Lai and Masey ( rithm) Safer (Secure and Fast Encryption Routine) ( RC5 (
34 Συνοψη Κρυπτογραφικοι αλγοριθµοι τµηµατων εναντι ροης Σχεδιασµος και οµη Feistel cipher DES ιαφορικη και Γραµµικη Κρυπτανάλυση Triple DES AES Αναφορα Κ.Χαλατσης, «Εισαγωγη στην Κρυπτογραφια», Lecture Notes.
Κρυπτογραφία. Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers
Κρυπτογραφία Κεφάλαιο 3 Αλγόριθμοι τμήματος Block ciphers Αλγόριθμοι τμήματος Τμήμα (μπλοκ) αρχικού μηνύματος μήκους n encrypt decrypt Τμήμα (μπλοκ) κρυπτογράμματος μήκους n 2 Σχηματική αναπαράσταση Plaintext
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1
Αλγόριθµοι συµµετρικού κλειδιού
Αλγόριθµοι συµµετρικού κλειδιού Αλγόριθµοι συµµετρικού κλειδιού Χρησιµοποιούν το ίδιο κλειδί για την κρυπτογράφηση και την αποκρυπτογράφηση Υλοποιούνται τόσο µε υλικό (hardware) όσο και µε λογισµικό (software)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 3: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E
Κρυπτογραφία. Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα πακέτου (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers και ψευδοτυχαίες
Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία
Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Block ciphers (κρυπτοσυστήματα
Κρυπτογραφία. Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας
Κρυπτογραφία Κρυπτοσυστήματα τμήματος (Block ciphers) Άρης Παγουρτζής Στάθης Ζάχος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1 / 26
Κρυπτογραφία. Κωνσταντίνου Ελισάβετ
Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συμμετρικά Κρυπτοσυστήματα κλειδί k Αρχικό κείμενο (m) Αλγόριθμος Κρυπτογράφησης Ε c = E k (m) Κρυπτογραφημένο
Συμμετρικά κρυπτοσυστήματα
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Συμμετρικά κρυπτοσυστήματα Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Δίκτυα Feistel Σημαντικές
Δ Εξάμηνο. Κρυπτογραφία: Συμμετρική Κρυπτογράφηση
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Κρυπτογραφία: Συμμετρική Κρυπτογράφηση Διδάσκων : Δρ. Παρασκευάς Κίτσος http://www.diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών
ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής. Συμμετρική Κρυπτογραφία
ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Συμμετρική Κρυπτογραφία Εισαγωγή Στην συνηθισμένη κρυπτογραφία, ο αποστολέας και ο παραλήπτης ενός μηνύματος γνωρίζουν και χρησιμοποιούν το ίδιο μυστικό κλειδί.
Κρυπτογραφία. Διάλεξη 7 Κρυπταλγόριθμοι τμήματος: Αλγόριθμος AES Τρόποι λειτουργίας
Κρυπτογραφία Διάλεξη 7 Κρυπταλγόριθμοι τμήματος: Αλγόριθμος AES Τρόποι λειτουργίας AES- Advanced Encryption Standard Το 1997, ο NIST προσκάλεσε δημόσια για ορισμό νέου προτύπου που θα λάμβανε το όνομα
Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση
Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού
Symmetric Cryptography. Dimitris Mitropoulos
Symmetric Cryptography Dimitris Mitropoulos dimitro@di.uoa.gr Ορολογία Αρχικό Κείμενο (Plaintext): Αποτελεί το αρχικό μήνυμα (ή τα αρχικά δεδομένα) που εισάγεται στον αλγόριθμο κρυπτογράφησης. Αλγόριθμος
Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας
Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη
Συμμετρική Κρυπτογραφία
ΤΕΙ Κρήτης Τμήμα Μηχανικών Πληροφορικής Ασφάλεια Πληροφοριακών Συστημάτων Εργαστήριο Συμμετρική Κρυπτογραφία Konstantinos Fysarakis, PhD kfysarakis@staff.teicrete.gr Εισαγωγή } Στην συνηθισμένη κρυπτογραφία,
Κρυπτογραφία. Κωνσταντίνου Ελισάβετ
Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou AES Ιαν. 1997: Το NIST (National Institute of Standards and Technology) απευθύνει κάλεσμα για τη δημιουργία
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Διάλεξη 6-1 5-1 Περίληψη
ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΚΡΥΠΤΟΓΡΑΦΙΑΣ
ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΚΡΥΠΤΟΓΡΑΦΙΑΣ 2. ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΚΡΥΠΤΟΓΡΑΦΙΑΣ 2.1 Εισαγωγικές Παρατηρήσεις Στο κεφάλαιο αυτό επεξηγούνται οι βασικές ενότητες από την Εφαρμοσμένη Κρυπτογραφία που θεωρούνται απαραίτητες για
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2016-2017 Περίληψη! Substitution-Permutation networks! Feistel networks!
Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης
Συμμετρική Κρυπτογραφία I Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Κρήτης Συμμετρική Κρυπτογραφία I 1 Αρχές του Kerckhoff `La Cryptographie Militaire' (1883) Auguste Kerkhoffs, Ολλανδός φιλόλογος Πρώτη επιστημονική
Ασφάλεια Υπολογιστικών Συστημάτων
Ασφάλεια Υπολογιστικών Συστημάτων Ενότητα 2: Συμμετρική κρυπτογραφία Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές
Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Διάλεξη 6-1 5-1 Περίληψη Substitution-Permutation networks
Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων
Βασικά Θέματα Κρυπτογραφίας Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιά Αντικείμενο μελέτης Εφαρμοσμένη Κρυπτογραφία, απαραίτητη για την Ασφάλεια Δικτύων Υπολογιστών Χαρακτηριστικά των
Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ
Ασφάλεια Τηλεπικοινωνιακών Συστημάτων ΣΤΑΥΡΟΣ Ν ΝΙΚΟΛΟΠΟΥΛΟΣ 03 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ Περιγραφή μαθήματος Η Κρυπτολογία είναι κλάδος των Μαθηματικών, που ασχολείται με: Ανάλυση Λογικών Μαθηματικών
Βασικές έννοιες της κρυπτογραφίας
ΚΕΦΑΛΑΙΟ 4 Βασικές έννοιες της κρυπτογραφίας Στο κεφάλαιο αυτό εισάγονται οι ϐασικές έννοιες της κρυπτογρα- ϕίας, όπως τα είδη των αλγορίθµων ανάλογα µε το κλειδί, τα είδη αλγορίθµων ανάλογα µε το πως
Ασφάλεια Πληροφοριακών Συστημάτων. Συμμετρική Κρυπτογραφία ΙΙ. Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης. Ασφάλεια Πληροφοριακών Συστημάτων
Συμμετρική Κρυπτογραφία ΙΙ Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Συμμετρική Κρυπτογραφία ΙΙ 1 Συμβατική κρυπτογραφία Συμμετρική Κρυπτογραφία ΙΙ 2 Triple DES Χρειαζόταν αντικαταστάτης του DES Θεωρητικές επιθέσεις
Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true
Cryptography and Network Security Chapter 2. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 2 Fifth Edition by William Stallings Κεφαλαιο 2 Κλασσικες Τεχνικες Κρυπτογράφησης "I am fairly familiar with all the forms of secret writings, and am myself the
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές
Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative
ΕΠΛ 674: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES
ΕΠΛ 674: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES Παύλος Αντωνίου Εαρινό Εξάμηνο 2011 Department of Computer Science 1 S-DES Γενικά (1) Ο απλοποιημένος συμμετρικός αλγόριθμος S- DES.
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Οι Αλγόριθμοι Κρυπτογραφίας και οι Ιδιότητές τους Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
Cryptography and Network Security Chapter 13. Fifth Edition by William Stallings
Cryptography and Network Security Chapter 13 Fifth Edition by William Stallings Chapter 13 Digital Signatures To guard against the baneful influence exerted by strangers is therefore an elementary dictate
Οι απειλές. Απόρρητο επικοινωνίας. Αρχές ασφάλειας δεδομένων. Απόρρητο (privacy) Μέσω κρυπτογράφησης
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2014-015 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα που ανταλλάσσονται
ΕΠΛ 475: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES
ΕΠΛ 475: Εργαστήριο 2 Ο απλοποιημένος αλγόριθμος κρυπτογράφησης S-DES ρ. Παύλος Αντωνίου Department of Computer Science 1 S-DES Γενικά (1) Ο αλγόριθμος DES χρησιμοποιεί κλειδιά μεγέθους 56 bit Ο απλοποιημένος
Συμμετρικά Κρυπτοσυστήματα
Κεφάλαιο 5 Συμμετρικά Κρυπτοσυστήματα 5.1 Εισαγωγή 5.1.1 Το πρόβλημα Όπως αναφέραμε στην εισαγωγή 1.1, ένα από τα προβλήματα που καλείται να λύσει η σύγχρονη κρυπτογραφία (και το οποίο είναι και το ιδρυτικό
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας
Hash Functions. μεγεθος h = H(M) ολους. στο μηνυμα. στο συγκεκριμενο hash (one-way property)
Hash Functions Συρρικνωνει μηνυμα οποιουδηποτε μηκους σε σταθερο μεγεθος h = H(M) Συνηθως θεωρουμε οτι η hash function ειναι γνωστη σε ολους Το hash χρησιμοποιειται για να ανιχνευσει τυχον αλλαγες στο
Ασφάλεια Υπολογιστικών Συστηµάτων
Ορισµοί Κρυπτογράφηση: η διεργασία µετασχηµατισµού ενός µηνύµατος µεταξύ ενός αποστολέα και ενός παραλήπτη σε µια ακατανόητη µορφή ώστε αυτό να µην είναι αναγνώσιµο από τρίτους Αποκρυπτογράφηση: η διεργασία
Στοιχεία Κρυπτογραφίας
Κεφάλαιο 1 ο Στοιχεία Κρυπτογραφίας 1.1 Εισαγωγή Κρυπτογραφία (cryptography) είναι η μελέτη τεχνικών που βασίζονται σε μαθηματικά προβλήματα με δύσκολη επίλυση, με σκοπό την εξασφάλιση της α- σφάλειας
Βασικές αρχές. κρυπτανάλυσης. ΚΕΦΑΛΑΙΟ 1
ΚΕΦΑΛΑΙΟ 1 Βασικές αρχές κρυπτανάλυσης Στο κεφάλαιο αυτό παρουσιάζονται οι ϐασικές αρχές και τα µέσα τα οποία χρησιµοποιεί η κρυπτανάλυση, προκειµένου να γίνουν πιο κατανοητοί οι στόχοι των επόµενων κεφαλαίων.
Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π ΑΤ Ρ Ω Ν
Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π ΑΤ Ρ Ω Ν ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ Ε Ρ ΓΑ Σ Ι Α Ε Ξ Α Μ Η Ν Ο Υ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΔΙΚΤΥΑ ΔΗΜΟΣΙΑΣ ΧΡΗΣΗΣ ΚΑΙ ΔΙΑΣΥΝΔΕΣΗ ΔΙΚΤΥΩΝ ΚΡΥΠΤΑΛΓΟΡΙΘΜΟΣ
ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία
ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα
Ο Σ ο β ι ε τ ι κ ό ς Κ ρ υ π τ α λ γ ό ρ ι θ μ ο ς G O S T
Ο Σ ο β ι ε τ ι κ ό ς Κ ρ υ π τ α λ γ ό ρ ι θ μ ο ς G O S T Στην παρούσα εργασία παρουσιάζεται η υλοποίηση του Σοβιετικού κρυπταλγορίθμου GOST για την πλατφόρμα επεξεργαστήσυνεπεξεργαστή(αναδιατασ σόμενης
Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC
Αυθεντικότητα Μηνυμάτων Συναρτήσεις Hash/MAC Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Αυθεντικότητα Μηνυμάτων 1 Αυθεντικότητα Μηνύματος Εφαρμογές Προστασία ακεραιότητας Εξακρίβωση ταυτότητας αποστολέα Μη άρνηση
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)
ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 4: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού
Αυθεντικοποίηση μηνύματος και Κρυπτογραφία δημόσιου κλειδιού Μ. Αναγνώστου 13 Νοεμβρίου 2018 Συναρτήσεις κατακερματισμού Απλές συναρτήσεις κατακερματισμού Κρυπτογραφικές συναρτήσεις κατακερματισμού Secure
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Περίληψη Shannon theory Εντροπία Μελέτη κρυπτοσυστηµάτων
Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Συμμετρική Κρυπτογραφία. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Συμμετρική Κρυπτογραφία Χρήστος Ξενάκης Χρονολογείται από την Αρχαία Αίγυπτο Η πλειοψηφία των συμμετρικών κρυπτοαλγορίθμων είναι κρυπτοαλγόριθμοι
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.
Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια
Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές
Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο 2015 1 ΤΙ ΕΙΝΑΙ Η ΚΡΥΠΤΟΛΟΓΙΑ?
KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ
Βασικές έννοιες KEΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΑ ΚΡΥΠΤΟΣΥΣΤΗΜΑΤΑ Ένα κρυπτοσύστηµα όπου οι χώροι των καθαρών µηνυµάτων, των κρυπτογραφηµένων µυνηµάτων και των κλειδιών είναι ο m,,,... m = καλείται ψηφιακό κρυπτοσύστηµα.
Κρυπτογραφία. Εργαστηριακό μάθημα 1
Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Ασφάλεια Πληροφοριακών Συστημάτων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ασφάλεια Πληροφοριακών Συστημάτων Ενότητα 6: Κρυπτογραφία Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Συναρτήσεις Κατακερματισμού και Πιστοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο
Πληροφορική Ι. Μάθημα 10 ο Ασφάλεια. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Δρ. Γκόγκος Χρήστος
Οι διαφάνειες έχουν βασιστεί στο βιβλίο «Εισαγωγή στην επιστήμη των υπολογιστών» του B. Forouzanκαι Firoyz Mosharraf(2 η έκδοση-2010) Εκδόσεις Κλειδάριθμος Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου
Κρυπτογραφία και Ασφάλεια Υπολογιστών
Κρυπτογραφία και Ασφάλεια Υπολογιστών Εργαστηριακές Ασκήσεις 0 Σ ε λ ί δ α Απόστολος Φούρναρης, Πάρης Κίτσος και Νικόλαος Σκλάβος 4/29/15 Κρυπτογραφία και Ασφάλεια Υπολογιστών 1 Σ ε λ ί δ α ΠΕΡΙΕΧΟΜΕΝΑ
Διατμηματικό Μεταπτυχιακό Πρόγραμμα Ηλεκτρονική και Επεξεργασία της Πληροφορίας
Ειδική Επιστημονική Εργασία Συμμετρικοί Αλγόριθμοι Κρυπτογράφησης Δεδομένων Οι περιπτώσεις των αλγορίθμων DES και TDEA Φλωκατούλα Δώρα, Μηχανικός Η/Υ & Πληροφορικής Επιβλέπων : Μπακάλης Δημήτριος, Επίκουρος
Αλγόριθµοι δηµόσιου κλειδιού
Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Ηδιανοµή του κλειδιού είναι ο πιο αδύναµος κρίκος στα περισσότερα κρυπτογραφικά συστήµατα Diffie και Hellman, 1976 (Stanford Un.) πρότειναν ένα
Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών
Ασφάλεια Ασύρματων & Κινητών Επικοινωνιών Ασύρματες Επικοινωνίες Μέρος V Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιώς Slide: 1/30 Περιεχόμενα IEEE 802.11i ΤΟ ΠΡΩΤΟΚΟΛΛΟ CCMP Γενικά Λίγα
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων
Κρυπτογραφία. Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey
Κρυπτογραφία Εργαστηριακό μάθημα 5 Stream ciphers Κρυπτανάλυση με τον αλγόριθμο Berlekamp-Massey Γενικά χαρακτηριστικά των stream ciphers Keystream Generator K i P i C i Δουλεύουν πάνω σε ένα ρεύμα από
Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9
Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 11: Ασφάλεια Πληροφοριακών Συστημάτων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
UP class. & DES και AES
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων UP class & DES και AES Επιμέλεια σημειώσεων: Ιωάννης Νέμπαρης Μάριος Κουβαράς Διδάσκοντες: Στάθης Ζάχος
Πρόβληµα 2 (15 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΗΣ ΑΣΦΑΛΟΥΣ ΕΠΙΚΟΙΝΩΝΙΑΣ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΗΣ ΑΣΦΑΛΟΥΣ ΕΠΙΚΟΙΝΩΝΙΑΣ» Δόλλας Νικόλαος Α.Μ.: 2113007 Επιβλέπων καθηγητής: Σταμούλης Γεώργιος Συνεπιβλέπων
ρ. Κ. Σ. Χειλάς, ίκτυα Η/Υ ΙΙΙ, Τ.Ε.Ι. Σερρών, 2007
Ψηφιακές υπογραφές Ψηφιακές υπογραφές Υπάρχει ανάγκη αντικατάστασης των χειρόγραφων υπογραφών µε ψηφιακές (ΨΥ) Αυτές πρέπει να διαθέτουν τα εξής χαρακτηριστικά: Ο παραλήπτης πρέπει να είναι σε θέση να
Κεφάλαιο 1. Βασικές έννοιες στην κρυπτογραφία
Κεφάλαιο 1. Κρυπτογραφία (cryptography) είναι η μελέτη τεχνικών που βασίζονται σε μαθηματικά προβλήματα δύσκολο να λυθούν, με σκοπό την εξασφάλιση της ασφάλειας (εμπιστευτικότητα, ακεραιότητα, αυθεντικότητα)
Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων
Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Άρης Παγουρτζής Στάθης Ζάχος Διαφάνειες: Παναγιώτης Γροντάς Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών
Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Θεµέλια 27
Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xv xx I Θεµέλια 27 1 Μαθηµατικά 29 1.1 Κριτήρια διαιρετότητας................ 30 1.2 Μέγιστος κοινός διαιρέτης και Ευκλείδειος αλγόριθµος 31 1.3 Πρώτοι αριθµοί....................
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Τμήμα Τηλεπληροφορικής & Διοίκησης Κατάλογος Περιεχομένων ΕΙΣΑΓΩΓΉ ΣΤΟ CRYPTOOL... 3 DOWNLOADING CRYPTOOL... 3 ΜΗΧΑΝΙΣΜΟΊ ΚΑΙ ΑΛΓΌΡΙΘΜΟΙ ΚΡΥΠΤΟΓΡΑΦΊΑΣ ΣΤΟ CRYPTOOL...
ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους
ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής
Κρυπτογραφία. MAC - Γνησιότητα/Ακεραιότητα μηνύματος. Πέτρος Ποτίκας
Κρυπτογραφία MAC - Γνησιότητα/Ακεραιότητα μηνύματος Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 38 Περιεχόμενα 1 Message
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ. Διάλεξη 8 η. Βασίλης Στεφανής
Εισ. Στην ΠΛΗΡΟΦΟΡΙΚΗ Διάλεξη 8 η Βασίλης Στεφανής Περιεχόμενα Τι είναι κρυπτογραφία Ιστορική αναδρομή Αλγόριθμοι: Καίσαρα Μονοαλφαβιτικοί Vigenere Vernam Κρυπτογραφία σήμερα Κρυπτογραφία Σκοπός Αποστολέας
Μελέτη απόδοσης αλγορίθμων κρυπρογράϕησης σε CUDA
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης Μελέτη απόδοσης αλγορίθμων κρυπρογράϕησης σε CUDA ΠΑΝΑΓΙΩΤΑ Ι. ΜΠΙΛΙΑΝΟΥ Επιβλέπων Καθηγητής:
ΣΥΣΤΗΜΑΤΑ ΠΙΣΤΟΠΟΙΗΣΗΣ - ΚΡΥΠΤΟΓΡΑΦΙΑ - ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ
Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΣΥΣΤΗΜΑΤΑ ΠΙΣΤΟΠΟΙΗΣΗΣ - ΚΡΥΠΤΟΓΡΑΦΙΑ - ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ ΜΥΤΙΛΗΝΑΚΗΣ ΘΕΟΔΩΡΟΣ Α.Μ 2012 ΙΟΥΝΙΟΣ 2013 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΧΑΤΖΗΣ
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία
Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Επιθέσεις και Ασφάλεια Κρυπτοσυστημάτων Διδάσκοντες: Άρης Παγουρτζής Στάθης Ζάχος Αρχικές διαφάνειες: Παναγιώτης Γροντάς Τροποποιήσεις: Άρης Παγουρτζής Εθνικό
ΕΠΑΝΑΛΗΠΤΙΚΟ ΤΕΣΤ ΣΤΗΝ ΕΝΟΤΗΤΑ
ΕΠΑ.Λ. Άμφισσας Σχολικό Έτος : 2011-2012 Τάξη : Γ Τομέας : Πληροφορικής Μάθημα : ΔΙΚΤΥΑ ΥΠΟΛΟΓΙΣΤΩΝ ΙΙ Διδάσκων : Χρήστος Ρέτσας Η-τάξη : tiny.cc/retsas-diktya2 ΕΠΑΝΑΛΗΠΤΙΚΟ ΤΕΣΤ ΣΤΗΝ ΕΝΟΤΗΤΑ 8.3.4-8.3.6
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΜΣ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΣΤΟΛΙΔΟΥ ΚΥΡΙΑΚΗ ΕΠΙΒΛΕΠΩΝ: ΜΠΙΣΜΠΑΣ ΑΝΤΩΝΙΟΣ, Καθηγητής
Κεφάλαιο 2. Κρυπτογραφικά εργαλεία
Κεφάλαιο 2 Κρυπτογραφικά εργαλεία Συμμετρική κρυπτογράφηση Καθολικά αποδεκτή τεχνική που χρησιμοποιείται για τη διαφύλαξη της εμπιστευτικότητας δεδομένων τα οποία μεταδίδονται ή αποθηκεύονται Γνωστή και
Ασφάλεια Πληροφοριακών Συστηµάτων. Αυθεντικότητα Μηνυµάτων 1
Αυθεντικότητα Μηνυµάτων Συναρτήσεις Hash/MAC Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Αυθεντικότητα Μηνυµάτων 1 Αυθεντικότητα Μηνύµατος Εφαρμογές Προστασία ακεραιότητας Εξακρίβωση ταυτότητας αποστολέα Μη άρνηση
Ηλεκτρονικό εμπόριο. HE 7 Τεχνολογίες ασφάλειας
Ηλεκτρονικό εμπόριο HE 7 Τεχνολογίες ασφάλειας Πρόκληση ανάπτυξης ασφαλών συστημάτων Η υποδομή του διαδικτύου παρουσίαζε έλλειψη υπηρεσιών ασφάλειας καθώς η οικογένεια πρωτοκόλλων TCP/IP στην οποία στηρίζεται
Εφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο
Ασφάλεια Πληροφοριακών Συστημάτων
Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο
ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Κρυπτοαλγόριθμοι. Χρήστος Ξενάκης
Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Κρυπτοαλγόριθμοι Χρήστος Ξενάκης Θεωρία Πληροφορίας Η Θεωρία πληροφορίας (Shannon 1948 1949) σχετίζεται με τις επικοινωνίες και την ασφάλεια
Ασφάλεια ικτύων (Computer Security)
Ασφάλεια ικτύων (Computer Security) Τι Εννοούµε µε τον Όρο Ασφάλεια ικτύων; Ασφάλεια Μόνο ο αποστολέας και ο προοριζόµενος παραλήπτης µπορούν να διαβάσουν και να κατανοήσουν ένα µήνυµα. Ο αποστολέας το