Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας α 3 +β 3 +3αβ(α+β)......
|
|
- Ἰοκάστη Ζαφειρόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 4. Βασικά Στοιχεία ιδακτικής της Άλγεβρας µε τη χρήση Ψηφιακών Τεχνολογιών Οι ψηφιακές τεχνολογίες που έχουν µέχρι τώρα αναπτυχθεί για τη διδασκαλία και τη µάθηση εννοιών της Άλγεβρας µπορούν να χωριστούν σε δύο οµάδες. Η πρώτη αποτελείται από τα Ψηφιακά Αλγεβρικά Συστήµατα (Computer Algebra Systems) ή CAS. Χαρακτηριστικός εκπρόσωπος είναι το λογισµικό FP. Η δεύτερη οµάδα αποτελείται από τα υπόλοιπα λογισµικά, καθώς µπορούν να χρησιµοποιηθούν για την διδασκαλία και τη µάθηση αλγεβρικών εννοιών τόσο λογισµικά συµβολικής έκφρασης, όπως ο Χελωνόκοσµος, όσο και λογισµικά δυναµικού χειρισµού γραφικών παραστάσεων όπως το GSP, το CABRI και το Geogebra. Μπορούν ακόµα να χρησιµοποιηθούν και προσοµοιωτές, όπως το Modelus ή το MoPiX ή ακόµα και λογισµικά φύλλα όπως το Εxcel. Από το σύνολο των λογισµικών αυτών, µόνο τα CAS είναι σχεδιασµένα κατ αποκλειστικότητα για τη διδακτική της Άλγεβρας. Ποιά µαθησιακά ζητήµατα µπορούν όµως να αντιµετωπιστούν µε τα εργαλεία αυτά; 4.1 Οι δυσκολίες στην Άλγεβρα Η Άλγεβρα αποτελεί µία περιοχή των µαθηµατικών που παρουσιάζει ιδιαίτερες δυσκολίες που σχετίζονται µε την κατανόηση των εννοιών της, δυσκολίες που αφορούν τόσο τον µαθητή όσο και τον διδάσκοντα. Πού όµως οφείλονται η δυσκολίες αυτές; Ποιά είναι η φύση τους; Ποια εµπόδια καλείται να ξεπεράσει ο µαθητής και πώς η τεχνολογία µπορεί να υποστηρίξει την διδασκαλία της; Η Άλγεβρα, µέσα στο τρέχον αναλυτικό πρόγραµµα του σχολείου και τα εγχειρίδια, προβάλλεται ως µία γενίκευση της αριθµητικής και από το σηµείο αυτό εµφανίζονται και οι πρώτες δυσκολίες. Η αριθµητική αποτελεί έναν τοµέα µέσα στον οποίο τα µαθηµατικά αντικείµενα είναι µια τάξη µεγέθους πιο συγκεκριµένα από την Άλγεβρα. Στο χώρο της Άλγεβρας τα αντικείµενα είναι γενικευµένοι αριθµοί και οι σχέσεις είναι σχέσεις µεταξύ γενικευµένων αριθµών ή αλλοιώς, ο ρυθµός µε τον οποίο αλλάζουν οι τιµές που µπορεί να πάρει ένας γενικευµένος αριθµός σε σχέση µε κάποιον άλλο. Ας δώσουµε ένα παράδειγµα ανεπτυγµένου επιπέδου αφαίρεσης. Ένα πολυώνυµο, π.χ ένα τριώνυµο, αποτελεί µία έκφραση, µία παράσταση της µορφής P(x) = 2x 2 +3x+1. Η 35
2 παράσταση αυτή αποτελεί ήδη µία γενίκευση αφού ορίζει µία ισότητα η οποία µπορεί να ισχύει για άπειρα ζεύγη αριθµών (x 0, P(x 0 )). Το νόηµα όµως του πολυωνύµου δεν περιορίζεται εδώ αφού µπορεί να θεωρηθεί ως ένα στοιχείο του συνόλου των πολυωνύµων, το οποίο µπορώ να προσθέσω, να αφαιρέσω και γενικά να εµπλέξω σε αλγεβρική επεξεργασία µε άλλα πολυώνυµα. Τι συµβαίνει όµως όταν στην θέση των συντελεστών του πολυωνύµου τοποθετήσω παραµέτρους; ηλαδή, ποιο είναι το νόηµα της έκφρασης P(x) = αx 2 +βx+γ; Εδώ πλέον έχουµε µία πολλαπλότητα πολυωνύµων που εκφράζεται µέσα από έναν γενικευµένο τύπο και στο σηµείο αυτό εντοπίζεται η δυσκολία κατανόησης εκ µέρους των µαθητών του Γυµνασίου και του Λυκείου. Αυτός ο τυπικός, αυστηρός και αφηρηµένος µαθηµατικός συµβολισµός εµφανίζεται στους µαθητές ως αυθαίρετος και πολλοί ειδικοί περί την διδακτική των µαθηµατικών υπογραµµίζουν τις παρανοήσεις των µαθητών σχετικά µε τα γράµµατα της αλφαβήτου τα οποία χρησιµοποιούνται για να δηλώσουν άλλοτε µια µεταβλητή, άλλοτε µία παράµετρο και άλλοτε έναν άγνωστο. Εάν επιχειρούσαµε να συνοψίσουµε τις δυσκολιες που παρουσιάζονται στην διδασκαλία της Άλγεβρας θα έπρεπε να εστιάσουµε στο πρόβληµα της νοηµατοδότησης των αλγεβρικών συµβόλων, των αλγεβρικών εκφράσεων και των µετασχηµατισµών που οι µαθητές καλούνται να εφαρµόσουν. Συγκεκριµένα το νόηµα που ο µαθητής αποδίδει στις µαθηµατικές οντότητες όταν επιχειρεί να λύση ένα πρόβληµα Άλγεβρας, µπορεί να προέρχεται είτε αποκλειστικά και µόνο από τον χώρο της Άλγεβρας (π.χ. σωστή εφαρµογή των κανόνων σύνταξης) είτε από έναν άλλο χώρο (αριθµητική, γεωµετρία, πραγµατικός κόσµος κ.λ.π). Το νόηµα, για παράδειγµα, της ταυτότητας (α+β) 3 =α 3 +β 3 +3αβ(α+β) πηγάζει από το γεγονός ότι η σωστή εφαρµογή της επιµεριστικής ιδιότητας και στα δύο µέλη οδηγεί στην ίδια αλγεβρική έκφραση, δηλαδή το νοηµα προέρχεται από την σωστή εφαρµογή των κανόνων αλγεβρικής επεξεργασίας. Το νόηµα όµως της ταυτότητας αυτής θα µπορούσε να προέρχεται από το γεγονός ότι οι αριθµητικές τιµές των δύο µελών της ταυτότητας ταυτίζονται κάθε φορά που κάνουµε αντικατάστση των α, β µε συγκεκριµένους αριθµούς. Τέλος, η ταυτότητα αυτή θα µπορούσε να αντλήσει νόηµα από µία γεωµετρική παράσταση των εκφράσεων που περιέχουν τα δύο µέλη της. Συγκεκριµένα ένας κύβος πλευράς (α+β) θα µπορούσε να αναλυθεί σε έναν κύβος πλευράς α, σε έναν κύβο πλευράς β, κα σε τρία ίσα ορθογώνια παραλληλεπίπεδα µε διαστάσεις α, β, (α+β). 36
3 Στον πίνακα που ακολουθεί παρουσιάζονται οι τρεις τρόποι νοηµατοδότησης της ταυτότητας. Αλγεβρική προσέγγιση Αριθµητική προσέγγιση Γεωµετρική προσέγγιση α β (α+β) 3 α 3 +β 3 +3αβ(α+β) (α+β) 3 (α+β) 3 = (α+β)(α+β)(α+β)=..= α 3 +β 3 +3αβ(α+β) α 3 +β 3 +3αβ(α+β) Η αλγεβρική προσέγγιση αποτελεί και την αυστηρή, τυπική απόδειξη της ταυτότητας ενώ οι δύο άλλες αποτελούν διαισθητικές προσεγγίσεις από τις οποίες όµως πηγάζει πλούσιο νόηµα για τον µαθητή. Έχει θεωρηθεί ότι ένας τρόπος υπέρβασης της δυσκολίας κατανόησης των αλγεβρικών συµβόλων και παραστάσεων είναι η επίλυση λεκτικών προβληµάτων η οποία συνδέει τον αλγεβρικό συµβολισµό µε πραγµατικές καταστάσεις. Φαίνεται ότι η επίλυση προβληµάτων δεν έχει αποδώσει τα επιδιωκόµενα αποτελέσµατα αφού παρατηρήθηκε το φαινόµενο οι µαθητές να περιορίζονται σε αποστήθιση κανόνων και µεθόδων αντιµετώπισης των προβληµάτων χωρίς να κατανοούν τις έννοιες που χρησιµοποιούν. Τον εύλογο ερώτηµα λοιπόν που τίθεται είναι πού οφείλεται αυτή η υστέρηση σε αποτελεσµατικότητα και γιατί τα προβλήµατα κατανόησης εκ µέρους των µαθητών παραµένουν; Μία απάντηση θα µπορούσε να αναζητηθεί στον χώρο των εργαλείων που διαθέτουν οι µαθητές, συγκεκριµένα στο γεγονός ότι τα προ-τεχνολογικά στατικά µέσα αναπαράστασης των εννοιών έχουν περιορισµένη διδακτική εµβέλεια. Η χρήση του τετραδίου και του πίνακα στην αναπαράσταση των αλγεβρικών εννοιών απαιτεί ιδιαίτερες νοητικές και αφαιρετικές δεξιότητες καθώς τα συγκεκριµένα στατικά µέσα δεν διαθέτουν διαδραστικά χαρακτηριστικά, δηλαδή δεν αντιδρούν στις ενέργειες του µαθητή. 37
4 4.2 Η διδασκαλία της Άλγεβρας και η ψηφιακή τεχνολογία Η υποστήριξη της διδασκαλίας της Άλγεβρας από τα ψηφιακά εργαλεία θα µπορούσε να αποτελέσει µία πρόταση για το ξεπέρασµα πολλών δυσκολιών που σχετίζονται µε τα υψηλά επίπεδα αφαίρεσης και τα στατικά µέσα που χρησιµοποιούνται στην παραδοσιακή διδασκαλία της. Ας δούµε όµως ποια χαρακτηριστικά των λογισµικών που υποστηρίζουν την διδασκαλία της Άλγεβρας συµβάλλουν σε µία διαφορετική προσέγγιση της διδασκαλίας της. ιάδραση Τα ψηφιακά εργαλεία για την εκµάθηση µαθηµατικών εννοιών, καθώς διαθέτουν δυνατότητες επικοινωνίας µε τον χρήστη, µπορούν επίσης να µετασχηµατίσουν τη διδακτική διαδικασία. Η διάδραση, δηλαδή η άµεση ανταπόκριση της µηχανής, και ο δυναµικός χαρακτήρας της τεχνολογίας αλλάζουν θεµελιακά αυτά που η διδακτική µπορεί να προσφέρει στην υποστήριξη της µαθησιακής διαδικασίας. Για παράδειγµα η δυνατότητα να αλλάζουµε δυναµικά τους συντελεστές ενός τριωνύµου και η µηχανή να µας αναφέρει άµεσα το πρόσηµο του τριωνύµου ή το πλήθος των ριζών δίνει νέα διάσταση στην διδασκαλία της έννοιας. Η διάσταση αυτή ενισχύει µία σηµαντική στάση των µαθητών για την µάθηση των µαθηµατικών, αυτήν της διερεύνησης και του πειραµατισµού. Ο καθηγητής έχει την δυνατότητα τώρα να σχεδιάσει µία διδακτική πορεία η οποία µπορεί αφενός να υποστηρίξει το τρέχον αναλυτικό πρόγραµµα και αφετέρου να το επεκτείνει σε θέµατα τα οποία δεν είναι δυνατόν να αντιµετωπιστούν µε τα στατικά µέσα που συνήθως χρησιµοποιούνται. Για παράδειγµα δεν είναι δυνατόν να γίνει διερεύνηση µέσα σε µία παραδοσιακή τάξη για τον τρόπο που µεταβάλλεται η γραφική παράσταση του τριωνύµου όταν µεταβάλλεται ο συντελεστής β ή και ο συντελεστής α. 38
5 Εικόνα 1: Καθώς αλλάζουµε τις τιµές των συντελεστών η µηχανή δίνει όλες τις πληροφορίες που αφορούν στο τριώνυµο. Στο σηµείο αυτό θα πρέπει να τονίσουµε και ένα άλλο τεχνικό χαρακτηριστικό των ψηφιακών µέσων, την ταχύτητα απόκρισης. Αν στο παράδειγµα της διδασκαλίας της ταυτότητας (α+β) 3 θελήσουµε να ακολουθήσουµε την αριθµητική προσέγγιση τότε οι αλεπάλληλες αντικαταστάσεις και αριθµητικές πράξεις θα δηµιουργήσουν αρνητική στάση των µαθητών. Αν καταφύγουµε σε ένα ψηφιακό µέσον (π.χ το FP) τότε µπορούµε να δηµιουργήσουµε στον µαθητή την αντίληψη ότι σε κάθε περίπτωση τα δύο µέλη της ταυτότητας δίνουν το ίδιο αριθµητικό αποτέλεσµα µετά από θεωρητικά άπειρες δοκιµές. 39
6 Πολλαπλές αναπαραστάσεις Ας έρθουµε τώρα σε ένα άλλο σηµαντικό χαρακτηριστικό των ψηφιακών µέσων υποστήριξης της διδασκαλίας της Άλγεβρας, την δυνατότητα πολλαπλών και δυναµικά συνδεδεµένων αναπαραστάσεων µιας αλγεβρικής έννοιας. Οι πολλαπλές αναπαραστάσεις µίας µαθηµατικής έννοιας αποτελούν µία δυνατότητα των ψηφιακών τεχνολογιών η οποία συµβάλει στον µετασχηµατισµό της αντίληψής µας για την έννοια αυτή µε χαρακτηριστικό παράδειγµα την συνάρτηση. Η παρουσίαση της έννοιας της συνάρτησης στην σχολική πρακτική βασίζεται σε µία αυστηρά καθορισµένη σειρά ενεργειών: Χρήση του τύπου - κατασκευή πίνακα τιµών - αναπαράσταση σε άξονες. Τα σύγχρονα λογισµικά για την Άλγεβρα δίνουν την δυνατότητα κατάργησης της σειράς αυτής και ενοποίησης όλων των αναπαραστάσεων µιας συνάρτησης. Για παράδειγµα στο λογισµικό Function Probe (FP) o πίνακας επικοινωνεί µε το γράφηµα και αντιστρόφως, µπορούµε να αποκόψουµε σηµεία από το γράφηµα και να τα στείλουµε στον πίνακα. Ο τύπος της συνάρτησης όταν αλλάζει µεταφέρει τις αλλαγές στην γραφική παράσταση και αντιστρόφως, όταν επεµβαίνουµε στην γραφική παράσταση προβάλλονται οι µεταβολές που υφίσταται ο τύπος της συνάρτησης. Εικόνα 2: Πολλαπλές αναπαραστάσεις της συνάρτησης. 40
7 Εικόνα 3: υναµική διασύνδεση των αναπαραστάσεων της αρχικής και της νέας συνάρτησης y=0.5(0.5x^2). Τα παραπάνω χαρακτηριστικά ενός αλγεβρικού λογισµικού δίνουν την δυνατότητα διερεύνησης και πειραµατισµού µε τις αλγεβρικές έννοιες και µελέτης του τρόπου µε τον οποίο συνδέονται. Ανάδειξη των πολλαπλών πτυχών µιας έννοιας Μία µαθηµατική έννοια συχνά διαθέτει ένα πλήθος από πτυχές οι οποίες περιγράφονται και αναλύονται σε διαφορετικά σηµεία του ωρολογίου προγράµµατος ίσως δε και σε διαφορετικά εγχειρίδια. Ένα σύγχρονο αλγεβρικό λογισµικό επιτρέπει την ανάδειξη των πτυχών αυτών µέσα από διαφορετικές λειτουργίες που διαθέτει. Το σηµαντικό λοιπόν κατά την χρήση του λογισµικού είναι η αναζήτηση τρόπων διδακτικής αξιοποίησης των λειτουργιών του λογισµικού και η εµπλοκή των µαθητών µε τρόπο που αυτές θα τους επιτρέψουν την προσέγγιση και σύνδεση των πτυχών της µαθηµατικής έννοιας. Ένα χαρακτηριστικό παράδειγµα είναι η έννοια της παραγώγου. Αν επιχειρήσουµε να απαριθµήσουµε τις πολλαπλές πτυχές της έννοιας τότε θα έπρεπε να αναφέρουµε ότι η παράγωγος είναι: Όριο ενός λόγου. Κλίση της εφαπτοµένης σε ένα σηµείο της γραφικής παράστασης. 41
8 Η εικόνα της συνάρτησης κοντά σε ένα σηµείο, δηλαδή η µεγέθυνσή της σε µία περιοχή του σηµείου αυτού. Τιµή µιας συνάρτησης (της παραγώγου) σε ένα σηµείο x 0. Ας δούµε τώρα µε ποιον τρόπο, µε ποιες λειτουργίες ενός αλγεβρικού λογισµικού, όπως είναι το FP, αναδεικνύονται οι πτυχές αυτές. Όριο ενός λόγου Ο πίνακας τιµών του λογισµικού και η δυνατότητα να εκτελούµε πράξεις µεταξύ των τιµών δύο στηλών του επιτρέπει τον υπολογισµό του πηλίκου (ψ 2 ψ 1 )/(χ 2 χ 1 ) για πολύ κοντινές τιµές των χ 1 και χ 2. Κλίση της εφαπτοµένης σε ένα σηµείο της γραφικής παράστασης. Το λογισµικό διαθέτει λειτουργία κατασκευής εφαπτοµένης σε ένα σηµείο και στην συνέχεια µε άλλη λειτουργία µετρά την κλίση της. Εικόνα 4: Η εφαπτοµένη και η κλίση της Η εικόνα της συνάρτησης κοντά σε ένα σηµείο, δηλαδή η µεγέθυνσή της σε µία περιοχή του σηµείου αυτού. Το λογισµικό διαθέτει τη λειτουργία της µεγέθυνσης (zooming) οπότε ο µαθητής έχει την δυνατότητα να διερευνήσει την µορφή της γραφικής παράστασης κοντά σε ένα σηµείο της. 42
9 Εικόνα 5: 0 χ 4 και 0 ψ 4 1,5 χ 2,5 και 1,5 ψ 2,5 1,9 χ 2,1 και 1,8 ψ 2,2. Τιµή µιας συνάρτησης (της παραγώγου) σε ένα σηµείο x 0. Το λογισµικό έχει την δυνατότητα κατασκευής της γραφικής παράστασης της συνάρτησης αλλά και της παραγώγου της συνάρτησης στο ίδιο σύστηµα αξόνων οπότε δίνεται η δυνατότητα στον µαθητή να µελετά τις τιµές της συνάρτησης σε συνδυασµό µε τις αντίστοιχες τιµές της παραγώγου. Εικόνα 6: Γραφική παράσταση της f και της f. Προφανώς οι δυνατότητες που παρέχει στη διδασκαλία της Άλγεβρας ένα κατάλληλο λογισµικό δεν εξαντλούνται στις παραπάνω περιπτώσεις. Αυτό που θα πρέπει να υπογραµµιστεί για µία επιπλέον φορά είναι ότι το σηµαντικό κατά την χρήση της ψηφιακής 43
10 τεχνολογίας στην διδασκαλία είναι οι τρόποι µε τους οποίους οι µαθητές εµπλέκονται σε δραστηριότητες µε το λογισµικό και όχι µόνο οι λειτουργίες του λογισµικού. 4.3 Σύνοψη Ανακεφαλαιώνοντας την µικρή αυτή αναφορά στην διδασκαλία της Άλγεβρας µε χρήση της ψηφιακής τεχνολογίας θα πρέπει να υπογραµµίσουµε ότι: Οι διδακτικές δυσκολίες στην κατανόηση των αλγεβρικών εννοιών και προτάσεων εκτός των άλλων εντοπίζονται: α) Στο υψηλό επίπεδο αφαίρεσης των συµβόλων β) Στην έλλειψη σύνδεσης των συµβόλων µε άλλες έννοιες ώστε να αποκτήσουν νόηµα. γ) Τα στατικά µέσα που χρησιµοποιούνται κατά την διδασκαλία της άλγεβρας. Οι δυνατότητες των ψηφιακών µέσων υποστηρίζουν την διδασκαλία της Άλγεβρας µέσα από τα παρακάτω χαρακτηριστικά. α) Είναι διαδραστικά, δηλαδή αντιδρούν στις ενέργειες του χρήστη β) ίνουν την δυνατότητα πολλαπλών συνδεδεµένων αναπαραστάσεων της ίδιας έννοιας γ) ίνουν την δυνατότητα δυναµικού χειρισµού των αναπαραστάσεων της έννοιας. δ) ίνουν την δυνατότητα διερεύνησης και πειραµατισµού µε τις αλγεβρικές έννοιες. ε) Επιτρέπουν την ανάδειξη πολλαπλών πτυχών της ίδιας µαθηµατικής έννοιας µέσα από τις διαφορετικές λειτουργίες που διαθέτουν. 44
Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ
ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών
Διαβάστε περισσότεραΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για
Διαβάστε περισσότεραΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ
ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Εκπαιδευτικό
Διαβάστε περισσότερα«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»
«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας
Διαβάστε περισσότεραΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ
ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί
Διαβάστε περισσότεραΤο σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.
9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή
Διαβάστε περισσότερα1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση
1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση Στη βασική παιδεία, τα μαθηματικά διδάσκονται με στατικά μέσα α) πίνακα/χαρτιού β) κιμωλίας/στυλού γ) χάρτινου βιβλίου.
Διαβάστε περισσότεραΓεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.
Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη
Διαβάστε περισσότερα«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»
Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο
Διαβάστε περισσότεραΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.
Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο
Διαβάστε περισσότεραΤο σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.
9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη
Διαβάστε περισσότεραΕρωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).
τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο
Διαβάστε περισσότεραΕναλλακτικά µπoρεί να χρησιµοποιηθεί και το MaLT, η τρισδιάστατη έκδοση του Χελωνόκοσµου.
2. Εκπαιδευτικό λογισµικό για τα µαθηµατικά Το σκεπτικό της επιλογής του εκπαιδευτικού λογισµικού για την ευρεία επιµόρφωση για τους συναδέλφους µαθηµατικούς είναι άµεσα συνδεδεµένο µε την προβληµατική
Διαβάστε περισσότεραΒοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.
Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται
Διαβάστε περισσότεραάλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου
άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου άλγεβρα από την επίλυση εξισώσεων στη μελέτη των μεταβολών, των σχέσεων, των κανονικοτήτων και δομών, σε ένα περιβάλλον αναλυτικού συμβολικού συλλογισμού με
Διαβάστε περισσότεραTo σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.
Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο
Διαβάστε περισσότεραΕισαγωγή στην έννοια της συνάρτησης
Εισαγωγή στην έννοια της συνάρτησης Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΖΑΝΤΖΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ
Διαβάστε περισσότεραΤα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.
Διαβάστε περισσότεραΓ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση
Διαβάστε περισσότεραΣενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον
Διαβάστε περισσότεραΗ λογαριθµική συνάρτηση και οι ιδιότητές της
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν
Διαβάστε περισσότεραΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΟΣ ΣΤΗ ΦΥΣΙΚΗ
ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΟΣ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΣΚΩΝ: ΣΦΑΕΛΟΣ Ι. ΤΑΞΗ: Α ΛΥΚΕΙΟΥ ΘΕΜΑ: ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ - ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ Βασική ιδέα: Οι µαθητές παρακολουθώντας τις προσοµοιώσεις για την ελεύθερη πτώση, την πτώση σώµατος
Διαβάστε περισσότεραΣενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).
Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση
Διαβάστε περισσότεραΤα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης
Τα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης Α. Αξιολόγηση επιμέρους παιδαγωγικών και διδακτικών πτυχών του σεναρίου (40) 1 Τίτλος γνωστική περιοχή και θέμα (5)
Διαβάστε περισσότεραΚαθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος
Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013
Διαβάστε περισσότεραΔιδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα
Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Διδακτική Μαθηματικών Ι: Ενδεικτικές οδηγίες για τη δραστηριότητα (εργασία) (To
Διαβάστε περισσότερα1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός
Διαβάστε περισσότεραΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή
ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο
Διαβάστε περισσότερατων θετικών µαθηµάτων Ηµερήσιου και Εσπερινού Γυµνασίου για το σχ.
Παραγοντοποίηση του τριωνύµου αx + βx + γ (α ) ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ3 e-mail@p-theodoropoulos.gr Πρόλογος Η παραγοντοποίηση ενός πολυωνύµου είναι µία από τις πιο βασικές
Διαβάστε περισσότεραΠρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Άρθρα - Υλικό Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Χειραπτικά εργαλεία Υλικά/εργαλεία στο νέο Πρόγραμμα σπουδών
Διαβάστε περισσότεραΓ Τάξη Γυμνασίου. Ι. Διδακτέα ύλη
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.
Διαβάστε περισσότεραάλγεβρα και αλγεβρική σκέψη στην πρώτη σχολική περίοδο (Νηπιαγωγείο Δημοτικό) μαρία καλδρυμίδου
άλγεβρα και αλγεβρική σκέψη στην πρώτη σχολική περίοδο (Νηπιαγωγείο Δημοτικό) μαρία καλδρυμίδου κάποια ερωτήματα τι είναι η άλγεβρα; τι περιλαμβάνει η άλγεβρα; ποια η σχέση της με την αριθμητική; γιατί
Διαβάστε περισσότεραΕκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου
Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2
Διαβάστε περισσότεραΟ πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).
Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο
Διαβάστε περισσότεραΜονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Μονώνυμα Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πράξεις με μονώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης ενότητας είναι να μάθουν
Διαβάστε περισσότεραΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ
Διαβάστε περισσότεραΣύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού
Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1
Διαβάστε περισσότεραΠαιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων
Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της
Διαβάστε περισσότεραΚαραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ
Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Σχολικό Έτος: 2014-2015 Μαθηματικός Περιηγητής 1 Διδακτέα ύλη και οδηγίες διδασκαλίας
Διαβάστε περισσότερααντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και
1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ
ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,
Διαβάστε περισσότεραΆλγεβρα και Στοιχεία Πιθανοτήτων
Άλγεβρα και Στοιχεία Πιθανοτήτων I. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως της πιθανότητας, της απόλυτης τιμής, των προόδων, της συνάρτησης
Διαβάστε περισσότεραΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου»
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός
Διαβάστε περισσότεραΣενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου
Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής
Διαβάστε περισσότεραΠαρεµβολή ή Παλινδρόµηση - Συνέργειες οµίλων Προτύπων ΓΕΛ
Παρεµβολή ή Παλινδρόµηση Συνέργειες οµίλων Προτύπων ΓΕΛ Σωτήρης. Χασάπης Πρότυπο Γενικό Λύκειο Ευαγγελικής Σχολής Σµύρνης 9η Μαθηµατική Εβδοµάδα Θεσσαλονίκη Τετάρτη 15 Ιουνίου 2016 Περιεχόµενα Εισαγωγή
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής
Διαβάστε περισσότεραΕξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ
Εξισώσεις α βαθμού. Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
Διαβάστε περισσότεραΠαιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο
Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών
Διαβάστε περισσότεραΕλένη Λυμπεροπούλου. Σχολική Συμβουλος Μαθηματικών Γ Αθήνας
Ελένη Λυμπεροπούλου Σχολική Συμβουλος Μαθηματικών Γ Αθήνας Curriculum ή Αναλυτικό πρόγραμμα; Philippe Perrenoud In Houssaye, J. (dir.) La pédagogie : une encyclopédie pour aujourd hui, Paris, ESF, 1993,
Διαβάστε περισσότεραΣτ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
Διαβάστε περισσότερα4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού
4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το θεώρημα Μέσης Τιμής του διαφορικού λογισμού χωρίς την απόδειξή του. Στόχοι της δραστηριότητας
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 36 Κεφάλαιο 3ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ. Σ 4. Λ. Λ 3. Λ 4. Λ 3. Σ 4. Σ 43. Σ 4. Λ 5. Σ 44. Σ 5. Σ 6. Σ 45. Λ 6.
Διαβάστε περισσότεραΚατασκευή δυναµικής γραµµατοσειράς
Κατασκευή δυναµικής γραµµατοσειράς Γνωστική περιοχή: Γεωµετρία. Θέµα: Η διερεύνηση της αυξοµείωσης γεωµετρικών κατασκευών µε χρήση εργαλείων συµβολικής έκφρασης και δυναµικού χειρισµού γεωµετρικών αντικειµένων.
Διαβάστε περισσότεραΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η
Διαβάστε περισσότεραΕ π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ
Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.
Διαβάστε περισσότεραΤεχνολογικά εργαλεία To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Χελωνόκοσµος.
Σενάριο 2. Κατασκευή δυναµικής γραµµατοσειράς Γνωστική περιοχή: Γεωµετρία. Θέµα: Η διερεύνηση της αυξοµείωσης γεωµετρικών κατασκευών µε χρήση εργαλείων συµβολικής έκφρασης και δυναµικού χειρισµού γεωµετρικών
Διαβάστε περισσότεραΕνότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων
Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων Σενάριο 8 (Τροποποιηµένο): Η γραµµική συνάρτηση ψ=αx Γνωστική περιοχή: Άλγεβρα Α Λυκείου. - Η γραµµική συνάρτηση ψ=αx. Θέµα: Το προτεινόµενο θέµα αφορά
Διαβάστε περισσότεραΠαιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx
Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
Διαβάστε περισσότερατο σύστηµα ελέγχει διαρκώς το µαθητή,
Α/Α Τύπος Εκφώνηση Απαντήσεις Ένας νηπιαγωγός, προκειµένου να διδάξει σε παιδιά προσχολικής ηλικίας το λεξιλόγιο των φρούτων Σωστό και λαχανικών που συνδέονται µε τις διατροφικές συνήθειες µας, δε ζητάει
Διαβάστε περισσότεραΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ
ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΒΑΣΙΛΗΣ ΦΑΓΟΓΕΝΗΣ ΣΧΟΛΕΙΟ 5 ο ΓΕΛ ΚΕΡΚΥΡΑΣ ΚΕΡΚΥΡΑ 25.6.2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Με χρήση του λογισμικού
Διαβάστε περισσότεραΑπαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)
Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά
Διαβάστε περισσότεραCabri II Plus. Λογισμικό δυναμικής γεωμετρίας
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή
Διαβάστε περισσότεραΖάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)
Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β
Διαβάστε περισσότερα1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ
. A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q
Διαβάστε περισσότεραΕικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.
Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου
Διαβάστε περισσότεραΕφαρμογές παραγώγων. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΒΑΣΙΛΙΚΗ ΘΩΜΑ
Εφαρμογές παραγώγων Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΒΑΣΙΛΙΚΗ ΘΩΜΑ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότερα4.3 Δραστηριότητα: Θεώρημα Fermat
4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών
Διαβάστε περισσότεραΕισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου)
Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Συστάδα Β1.3: Μαθηματικά, Πληροφορική, Οικονομία Διοίκηση Επιχειρήσεων Συνεδρία 5 ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΧΡΗΣΕΙΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΚΕΙΜΕΝΟΥ
Διαβάστε περισσότεραΒ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 7
Διαβάστε περισσότεραΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ
ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
Διαβάστε περισσότεραΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ
184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 3 Κεφάλαιο ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ο ΜΕΡΟΣ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 6. Λ 8. Λ. Σ 7. Σ 9. Λ 3. Λ 8. Λ 3. Σ 4. Σ 9. Σ 3. α) Σ 5. Σ. Σ β) Σ 6.
Διαβάστε περισσότεραΣενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics»
Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» ΣΧΟΛΕΙΟ Π.Π.Λ.Π.Π. ΤΑΞΗ: Α ΜΑΘΗΜΑ: Β Νόµος του Νεύτωνα ΚΑΘΗΓΗΤΗΣ: Σφαέλος Ιωάννης Συνοπτική Παρουσίαση
Διαβάστε περισσότεραΆλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται
Διαβάστε περισσότεραΤα σχέδια μαθήματος 1 Εισαγωγή
Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες
Διαβάστε περισσότερατεχνολογίας στη μαθηματική εκπαίδευση
1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη μαθηματική εκπαίδευση Πριν εμπλακούμε με το πώς θα εντάξουμε τη χρήση των ψηφιακών τεχνολογιών στη Μαθηματική Παιδεία πρέπει να εξετάσουμε
Διαβάστε περισσότεραΠρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Α+Β Δημοτικού
Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Α+Β Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 1.1 Αριθμοί 1-1000 Γραφή, Ανάγνωση, Απαγγελία, Απαρίθμηση, Σύγκριση, Συμπλήρωση (κατά αύξουσα
Διαβάστε περισσότεραΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου για το σχολικό έτος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότερα2.1 Δραστηριότητα: Εισαγωγή στο όριο συνάρτησης σε σημείο
2.1 Δραστηριότητα: Εισαγωγή στο όριο συνάρτησης σε σημείο Θέμα της δραστηριότητας Η δραστηριότητα αυτή, με αφορμή τον υπολογισμό της στιγμιαίας ταχύτητας, εισάγει στο όριο συνάρτησης σε σημείο. Στόχοι
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα
Διαβάστε περισσότερα1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός
Διαβάστε περισσότερα. Ερωτήσεις διάταξης. να διαταχθούν από τη µικρότερη προς τη µεγαλύτερη οι τιµές: f (3), f (0), f (-1), f (5), f (-2), f ( ), f (1).
. Ερωτήσεις διάταξης. Οι συναρτήσεις f (x) = x, g (x) = x, h (x) = x, φ (x) = 3x, ρ (x) = 5x, t (x) = 7x έχουν κοινό πεδίο ορισµού το Α = [- 3, 3]. Να γράψετε τις συναρτήσεις σε µια σειρά έτσι ώστε η γραφική
Διαβάστε περισσότεραΣυγκεκριμένα: ΜΕΡΟΣ Β : Ανάλυση. Κεφάλαιο 1ο (Προτείνεται να διατεθούν 37 διδακτικές ώρες) Ειδικότερα:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
Διαβάστε περισσότεραΤα διδακτικά σενάρια
2.2.4.1 Τα διδακτικά σενάρια Το ζήτηµα της διδακτικής αξιοποίησης του λογισµικού αποτελεί σηµείο προβληµατισµού ερευνητών και εκπαιδευτικών που ασχολούνται µε την ένταξη των ΤΠΕ στην εκπαιδευτική διαδικασία
Διαβάστε περισσότεραInteractive Physics και να περιγράψουν το φαινόµενο που εξελίσσεται στο στην οθόνη του υπολογιστή τους. Οι µαθητές εύκολα διαπιστώνουν το φαινόµενο τη
Ι ΑΣΚΑΛΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ Ι ΑΣΚΟΥΣΑ: ΕΥΣΤΑΘΙΟΥ ΑΓΓΕΛΙΚΗ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΘΕΜΑ: ΘΕΩΡΗΜΑ ROLLE - ΜΕΣΗΣ ΤΙΜΗΣ ΙΑΡΚΕΙΑ: 5 διδακτικές ώρες Βασική ιδέα: Η µαθηµατική µοντελοποίηση
Διαβάστε περισσότεραΗ ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ
1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 171 Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ Νίκος Καμπράνης Μαθηματικός, Επιμορφωτής νέων τεχνολογιών http://www.geocities.com/kampranis ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΑΞΗ:.
Διαβάστε περισσότερα