Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ"

Transcript

1 Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1

2 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση αυτή εκφράζεται με μια ισότητα, πράξεις και δύο μεταβλητές x και y. Σχηματικά, θα μπορούσαμε να θεωρήσουμε : Αf x Εξίσωση της συνάρτησης y = f(x) f(a) Πεδίο ορισμού Σύνολο τιμών Το εξαγόμενο της συνάρτησης, λέγεται τιμή της συνάρτησης στο x και είναι μοναδικό. Συμβολίζεται με y ή με f(x), συνεπώς: y = f(x). Πεδίο ορισμού της συνάρτησης είναι το σύνολο των τιμών του x, για τις οποίες ορίζεται (έχει νόημα) η συνάρτηση. Για μια συνάρτηση f, συνήθως, συμβολίζουμε το πεδίο ορισμού με Α ή Αf ή Df. Σύνολο τιμών της συνάρτησης είναι το σύνολο των τιμών της συνάρτησης, δηλαδή του y. Συμβολίζεται, συνήθως, ως f(α). Πώς λειτουργεί; Αυτό που συμβαίνει είναι πως για κάθε τιμή που θέτουμε στο x, αφού εκτελέσουμε τις πράξεις, η συνάρτηση μας δίνει μία και μόνο τιμή για το y, έτσι δημιουργούνται διατεταγμένα ζεύγη τιμών της μορφής: (x, y) ή (x, f(x). Διατεταγμένο σημαίνει με συγκεκριμένη σειρά, γιατί έχουμε συμφωνήσει να γράφουμε πάντα πρώτο το x. Τα ζεύγη αυτά μπορούμε να τα ταξινομήσουμε σε έναν κατανοητό πίνακα, ο οποίος ονομάζεται πίνακας τιμών της συνάρτησης. 2

3 x x1 x2 x3 f(x) f(x1) f(x2) f(x3) Τελικά, δοθέντος ενός ορθοκανονικού συστήματος συντεταγμένων, τα ζεύγη αυτά μπορούν να αναπαραστήσουν συντεταγμένες σημείων, πάνω στο επίπεδο. Δηλαδή: ( x, f(x) ) τετμημένη τεταγμένη Το σύνολο των σημείων, που αναπαριστούν όλα τα διατεταγμένα ζεύγη που παράγονται από μια συνάρτηση, σχηματίζουν τη γραφική παράσταση της συνάρτησης. y ( x2, f(x2) ) x 1 y 2 x 3 x x 2 x y 1 ( x1, f(x1) ) y 3 ( x3, f(x3) ) y 3

4 Όριο Συνάρτησης Ας χρησιμοποιήσουμε για παράδειγμα μια απλή συνάρτηση πχ. την f(x) = 2x 5. Αν θέσουμε στο x αριθμούς μικρότερους από το 3 αλλά ολοένα και πιο κοντά σε αυτό τότε παρατηρούμε ότι το y πλησιάζει με τη σειρά του τον αριθμό 1. x 2.9 0, ,98 2,999 0,998 2,9999 0,9998 2, , , , Αν κάνουμε το ίδιο με αριθμούς μεγαλύτερους από το 3, επίσης, όμως ολοένα και πιο κοντά σε αυτό τότε παρατηρούμε ότι το y πλησιάζει ξανά τον αριθμό 1. x 3,1 1,2 3,01 1,02 3,001 1,002 3,0001 1,0002 3, , , , y y 3 1 Αντί να χρησιμοποιούμε την έκφραση «το x πλησιάζει ολοένα και πιο κοντά στον αριθμό 3» θα λέμε συντομότερα «το x τείνει στον αριθμό 3». Αντίστοιχα, αντί της έκφρασης «το y πλησιάζει τον αριθμό 1» θα τη λέμε συντομότερα «το 1 είναι το όριο της συνάρτησης». Συμβολικά, θα γράφουμε: f(x) = 1. x 3 4

5 Γενικότερα, θα γράφουμε : x x f(x) = l o και θα διαβάζουμε ότι «το όριο της συνάρτησης f(x) όταν το x τείνει στον αριθμό xo είναι ο αριθμός l». ΟΡΙΣΜΟΣ Θα λέμε ότι μια συνάρτηση f: (α, x0) (x0, β), «έχει όριο τον πραγματικό αριθμό l όταν το x τείνει στο x0», αν οι τιμές της f(x) βρίσκονται οσοδήποτε κοντά στον αριθμό l, όταν το x είναι αρκετά κοντά στο x0 (αλλά δε γίνεται απαραίτητα ίσο με το x0). Θα συμβολίζουμε: f(x) = l 5

6 Ιδιότητες Ορίων Αν f(x) = l 1 και g(x) = l 2 τότε: α. β. γ. δ. ε. x x x o x o [ f(x) ± g(x) ] = l 1 ± l 2 [ f(x) g(x) ] = l 1 l 2 l 2 f(x) l = 1 g(x) l 2 f(x) = l 1 [ f(x) ] ν = l 1 ν, εφόσον l 2 0 στ. κ f(x) = κ l 1, για κάθε κ, κ 2 6

7 Μεθοδολογία Γενικά, σε κάθε περίπτωση, το πρώτο πράγμα που κάνουμε είναι αντικατάσταση. Δηλαδή, στον τύπο της συνάρτησης αντικαθιστούμε το x0 στη θέση του x και εκτελούμε τις πράξεις. Απλές περιπτώσεις Στις πολύ απλές περιπτώσεις, μετά την ολοκλήρωση των πράξεων, έχουμε καταλήξει σε ένα μοναδικό αριθμό, ο οποίος αποτελεί και το ζητούμενο όριο. Εκεί τελειώνουμε. πχ. (x 2 + 3x 4) = = 6 x 2 Απροσδιόριστες Μορφές 0/0 Υπάρχουν όμως και περιπτώσεις, όταν έχουμε ρητές συναρτήσεις (κλάσματα), στις οποίες αν κάνουμε αντικατάσταση και στη συνέχεια τις πράξεις καταλήγουμε σε μηδενικό αποτέλεσμα, τόσο στον αριθμητή, όσο και (κυρίως) στον παρονομαστή. Τότε λέμε ότι έχουμε απροσδιόριστη μορφή 0 0. Στην περίπτωση αυτή δύο είναι οι συνηθέστεροι τρόποι που ξεπερνούμε αυτό το πρόβλημα. Α. Παραγοντοποίηση Χρειάζεται να θυμηθούμε μερικούς από τους βασικότερους τρόπους παραγοντοποίησης: α. Ο κοινός παράγοντας Σε κάθε παραγοντοποίηση, όσο εύκολη ή δύσκολη κι αν είναι, αρχικά θα ελέγχουμε πάντα αν βγαίνει κοινός παράγοντας από τους όρους της παράστασης. 7

8 πχ. 2x 2y = 2 (x y) Κοινός παράγοντας το 2 πχ. 3x + 12y = 3 (x + 4y) Κοινός παράγοντας το 3 πχ. x 3 xy = x (x 2 y) Κοινός παράγοντας το x πχ. x 2 y x 2 y 2 + x 3 y = x 2 y (1 y + x) Κοινός παράγοντας το x 2 y πχ. 9x 3 y xy 3 = 3xy 3 (3x 5y) Κοινός παράγοντας το 3xy 3 Είναι φανερό ότι αν έχουμε πολλούς κοινούς παράγοντες σε διάφορες δυνάμεις, τότε επιλέγουμε το μικρότερο εκθέτη από κάθε κοινό παράγοντα. β. Οι γνωστές ταυτότητες πχ. x 2 9 = x = (x 3)(x + 3) Διαφορά τετραγώνων πχ. 25 x 2 = 5 2 x 2 = (5 x)(5 + x) Διαφορά τετραγώνων πχ. 16x 2 36y 2 = (4x) 2 (6y) 2 = (4x 6y)(4x +6y) Διαφορά τετραγώνων πχ. x 3 8 = x = (x 2)(x 2 + 2x + 4) Διαφορά κύβων πχ x 3 = x 3 = (3 + x)(9 3x + x 2 ) Διαφορά κύβων Οι πιο γνωστές μας ταυτότητες είναι : (α + β) 2 = α 2 + 2αβ + β 2 Τετράγωνο αθροίσματος (α β) 2 = α 2 2αβ + β 2 Τετράγωνο διαφοράς (α + β)(α β) = α 2 β 2 Διαφορά τετραγώνων (α + β) 3 = α 3 + 3α 2 β + 3αβ 2 + β 3 Κύβος αθροίσματος (α β) 3 = α 3 3α 2 β + 3αβ 2 β 3 Κύβος διαφοράς α 3 + β 3 = (α + β)(α 2 αβ + β 2 ) Άθροισμα κύβων α 3 β 3 = (α β)(α 2 + αβ + β 2 ) Διαφορά κύβων Από αυτές, το πιο συχνά, θα συναντάμε τη διαφορά τετραγώνων. γ. Το τριώνυμο αx 2 + βx + γ Για να παραγοντοποιήσουμε ένα τριώνυμο, μπορούμε να χρησιμοποιήσουμε και τον επόμενο τρόπο, δηλαδή το σχήμα Horner. Ωστόσο, επειδή υπάρχουν ειδικές σχέσεις για το τριώνυμο, οφείλουμε να τις επισημάνουμε. Διακρίνουμε 3 περιπτώσεις, ανάλογα με τη διακρίνουσα του τριωνύμου : 8

9 Διακρίνουσα Δ = β 2 4αγ Πόσες ρίζες; Παραγοντοποίηση Δ > 0 Το τριώνυμο έχει 2 ρίζες, πραγματικές και άνισες, έστω ρ1 και ρ2, τις οποίες βρίσκουμε από τον τύπο: - β ± Δ ρ1,2 = 2α Τότε το τριώνυμο παραγοντοποιείται σύμφωνα με τον τύπο: α(x ρ1)(x ρ2) Δ = 0 Το τριώνυμο έχει 1 διπλή ρίζα, έστω ρ, την οποία βρίσκουμε από τον τύπο: ρ = β 2α Τότε το τριώνυμο παραγοντοποιείται σύμφωνα με τον τύπο: α(x ρ) 2 Δ < 0 Το τριώνυμο δεν έχει πραγματικές ρίζες. Στην περίπτωση αυτή δεν είναι δυνατή η παραγοντοποίηση, κι έτσι το τριώνυμο μένει όπως είναι. πχ. Να παραγοντοποιηθεί το x 2 + 5x + 6. Δ = β 2 4αγ = = = 1 > 0 άρα υπάρχουν 2 ρίζες. ρ1,2 = -β ± Δ 2α = -5 ± = = 2-5 ± = = = = Συνεπώς, εφαρμόζοντας τον τύπο έχουμε: x 2 + 5x + 6 = 1 (x ( 2)) (x ( 3)) = (x + 2)(x + 3) πχ. Να παραγοντοποιηθεί το 4x 2 4x + 1. Δ = β 2 4αγ = (4) = = 0 άρα υπάρχει μόνο 1 ρίζα. 9

10 ρ = β = 2α = = Συνεπώς, εφαρμόζοντας τον τύπο έχουμε: 1 4x 2 4x + 1 = 4 x 2 2 δ. Το σχήμα Horner Για παραστάσεις βαθμού μεγαλύτερου του 2 (αλλά, επίσης, και για τα τριώνυμα ή τις ταυτότητες, αν δεν τις θυμόμαστε) εφαρμόζουμε την παρακάτω μέθοδο, που ονομάζεται σχήμα Horner. Προκειμένου να εφαρμόσουμε τη μέθοδο αυτή, χρειαζόμαστε έναν αριθμό "κλειδί" (στο παρακάτω παράδειγμα ο 1). Ο τυπικός τρόπος είναι να αναζητούμε αυτόν τον αριθμό στους διαιρέτες του σταθερού όρου (σε ένα πολυώνυμο, αυτός είναι ο τελευταίος όρος, δηλαδή ο μοναχικός αριθμός στο τέλος στο παρακάτω παράδειγμα ο 3). Ωστόσο, επειδή το σχήμα Horner θα μας χρειαστεί κυρίως στο όρια απροσδιόριστης μορφής, εμείς θα επιλέγουμε πάντα τον αριθμό στον οποίο τείνει το x. Με άλλα λόγια, εμείς θα εκτελούμε πάντα το σχήμα Horner με τη βοήθεια του αριθμού x x + 3x x 3 Παράδειγμα: Να υπολογιστεί το: x 1 x 1 Με μια απλή αντικατάσταση, διαπιστώνουμε ότι πρόκειται για απροσδιόριστη μορφή 0/0. Συνεπώς πρέπει πρώτα να κάνουμε παραγοντοποίηση. Προκειμένου να παραγοντοποιήσουμε τον αριθμητή, θα εφαρμόσουμε το σχήμα Horner με το x0, δηλαδή με τον αριθμό 1... Εδώ γράφουμε τους συντελεστές του αριθμητή. Αν κάποιος όρος λείπει, όπως εδώ το x 2 τότε συμπληρώνουμε με μηδέν. Εδώ γράφουμε το x o Κατεβάζουμε τον πρώτο αριθμό, όπως Πολλαπλασιάζουμε με το x o = 1 10

11 Προσθέτουμε 1 4 Πολλαπλασιάζουμε με το x o = 1 Συνεχίζοντας με τον ίδιο τρόπο, καταλήγουμε στο εξής σχήμα: x 3 x 2 x Οι αριθμοί που έχουμε βρεί κάτω από τη γραμμή, δηλαδή τα 1, 4, 4 και 3, αποτελούν τους συντελεστές ενός νέου πολυωνύμου, βαθμού κατά ένα μικρότερο από το αρχικό, δηλαδή 3 ου βαθμού στο παράδειγμά μας. Η παραγοντοποίηση έχει, τότε, ως εξής : x x 3 x 3 = (x x x + 3) (x 1) Άρα: x x x x 3 x 1 (x = x x 2 + 4x + 3)(x 1) x 1 = (x x x 2 + 4x + 3) = = 12 Β. Συζυγείς παραστάσεις Αν στις παραστάσεις περιλαμβάνονται και τετραγωνικές ρίζες, τότε δεν κάνουμε παραγοντοποίηση όπως πριν, αλλά ακολουθούμε μια διαφορετική πορεία, προκειμένου να "εξαφανίσουμε" τις ρίζες, που δημιουργούν πρόβλημα, και να κάνουμε απλοποίηση. Για να γίνει αυτό, εφαρμόζουμε ένα "τρικ" ώστε να προκύψει η ταυτότητα διαφορά τετραγώνων. α 2 β 2 = (α + β)(α β) Οι παραστάσεις (α + β) και (α β) λέγονται συζυγείς. Λέμε δηλαδή ότι η (α + β) είναι η συζυγής παράσταση της (α β) και αντίστροφα. 11

12 Βήμα 1 ο. Πολλαπλασιάζουμε αριθμητή και παρονομαστή με τη συζυγή της παράστασης που έχει τη ρίζα. Βήμα 2 ο. Εφαρμόζουμε την ταυτότητα «διαφορά τετραγώνων» και κατόπιν απαλοίφουμε τη ρίζα με το τετράγωνο. Βήμα 3 ο. Εκτελούμε τις πράξεις. Βήμα 4 ο. Απλοποιούμε. Βήμα 5 ο. Αντικαθιστούμε όπου x το xo και βρίσκουμε το όριο. 12

13 Πλευρικά Όρια Το πιο συχνά, οι συναρτήσεις που θα καλούμαστε να αντιμετωπίσουμε θα χωρίζονται σε κλάδους, όπου κάθε κλάδος θα έχει διαφορετική εξίσωση. Σε αυτές τις περιπτώσεις θα υπάρχει κάποιος αριθμός ο οποίος θα είναι το «σύνορο» στο οποίο αλλάζει ο τύπος της συνάρτησης. Συνήθως, θα μας ζητούν να βρούμε το όριο στον αριθμό αυτόν. Τότε είμαστε αναγκασμένοι να βρούμε δύο ξεχωριστά όρια : Α. Όταν το x πλησιάζει το xo από μικρότερες τιμές, δηλαδή x < xo. Τότε γράφουμε x xo και διαβάζουμε: «το x τείνει στο xo από αριστερά» Β. Όταν το x πλησιάζει το xo από μεγαλύτερες τιμές, δηλαδή x > xo. Τότε γράφουμε x xo + και διαβάζουμε: «το x τείνει στο xo από δεξιά» Τα δύο αυτά όρια ονομάζονται πλευρικά όρια της συνάρτησης και τα υπολογίζουμε με κάποιον απ τους τρόπους που αναλύθηκαν παραπάνω, δηλ. είτε με αντικατάσταση, είτε με παραγοντοποίηση, είτε με συζυγείς παραστάσεις. Πότε θα υπάρχει το όριο μιας συνάρτησης, σε κάποιο xo; Το όριο μιας συνάρτησης γενικά θα υπάρχει μόνο αν τα δύο πλευρικά όρια υπάρχουν και μάλιστα είναι ίσα μεταξύ τους! Δηλαδή, αν: f(x) = f(x) x x o + = f(x) Διαφορετικά, αν f(x) x x o + συνάρτησης στο x0, απλά, δεν υπάρχει! f(x) τότε θα λέμε ότι το όριο της 13

14 Συνέχεια Συνάρτησης ΟΡΙΣΜΟΣ 1 Για να λέγεται συνεχής μια συνάρτηση, σε κάποιον αριθμό x0 του πεδίου ορισμού της, θα πρέπει: α. Να υπάρχει το όριο της στο x0, δηλαδή : x x o f(x) = f(x) x + x o = f(x) β. Κι επίσης, το όριο αυτό να ισούται με την τιμή της συνάρτησης στο x0, δηλαδή : f(x) = f(xo) Γενικά, διακρίνουμε δύο περιπτώσεις (αυτό μπορεί να συμβεί και στα πλευρικά όρια) : Α. Συναρτήσεις όπου παίρνουν την τιμή x = x0 σε έναν από τους κλάδους τους. πχ. f(x) = 2x 1 2 x + x + 2 x 3 x > 3 Να βρεθεί το όριο στο x0 = 3. Στην περίπτωση αυτή, η τιμή της f(x) στο 3 ισούται με το αριστερό της όριο. Β. Συναρτήσεις όπου παίρνουν την τιμή x = x0 σε ξεχωριστό, αυτόνομο κλάδο. πχ. f(x) = x 2 1 x 1 x 1 Να βρεθεί το όριο στο x0 = 1. 5 x = 1 Στην περίπτωση αυτή, τα δύο πλευρικά όρια ταυτίζονται, συνεπώς η παραπάνω συνάρτηση μπορεί να γραφτεί, ισοδύναμα: 14

15 2 x 1 x 1 f(x) = 5 2 x 1 x 1 x < 1 x = 1 x < 1 Είναι φανερό, τώρα, ότι στην περίπτωση αυτή δεν έχει νόημα να πάρουμε τα πλευρικά όρια ξεχωριστά, αφού θα λύσουμε τις ίδιες ακριβώς εξισώσεις. Άρα, υπολογίζουμε απλά ένα όριο, όταν x x0. ΟΡΙΣΜΟΣ 2 Μια συνάρτηση f: (α, β) θα ονομάζεται συνεχής στοδιάστημα (α, β), όταν είναι συνεχής σε κάθε σημείο x0 του (α, β). ΟΡΙΣΜΟΣ 3 Μια συνάρτηση f: [α, β] θα ονομάζεται συνεχής στοδιάστημα [α, β], όταν είναι συνεχής σε κάθε σημείο x0 του (α, β) και επιπλέον έχουμε ότι: f(x) + x α = f(α) και f(x) x β = f(β) 15

16 Ιδιότητες Συνέχειας Αν οι συναρτήσεις f, g: A είναι συνεχείς στο xo A, τότε: α. Η συνάρτηση h(x) = f(x) ± g(x) είναι συνεχής στο xo. β. Η συνάρτηση h(x) = κ f(x) είναι συνεχής στο xo (με κ ). γ. Η συνάρτηση h(x) = f(x) g(x) είναι συνεχής στο xo. f(x) δ. Η συνάρτηση h(x) = είναι συνεχής στο x o (με g(x) 0). g(x) ε. Η συνάρτηση h(x) = f(x) είναι συνεχής στο xo. στ. Η συνάρτηση h(x) = κ f(x) είναι συνεχής στο xo (με f(x) 0). Για τη σύνθεση δύο συναρτήσεων έχουμε: Έστω f: Α και g: Β με f(a) B. Αν η f είναι συνεχής στο x0 A και η g συνεχής στο f(x0) B, τότε και η σύνθεσή τους gof: A είναι συνεχής στο x0. 16

Ο Ρ Ι Ο & Σ Υ Ν Ε Χ Ε Ι Α Σ Υ Ν Α Ρ Τ Η Σ Η Σ Όριο Συνάρτησης

Ο Ρ Ι Ο & Σ Υ Ν Ε Χ Ε Ι Α Σ Υ Ν Α Ρ Τ Η Σ Η Σ Όριο Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Ο Ρ Ι Ο & Σ Υ Ν Ε Χ Ε Ι Α Σ Υ Ν Α Ρ Τ Η Σ Η Σ Όριο Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω; Πότε θα λέμε ότι μια συνάρτηση f: (α x0) (x0 β) έχει όριο τον πραγματικό αριθμό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»

ΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( )

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. lim( x 3 1) 0. = δηλαδή το όριο είναι της. . Θα προσπαθήσουμε να βγάλουμε κοινό παράγοντα από αριθμητή και ( ) ( )( ) ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 4: ΕΝΝΟΙΑ ΟΡΙΟΥ ΣΤΟ R - ΠΛΕΥΡΙΚΑ ΟΡΙΑ ΣΤΟ R - ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΟΡΙΣΜΟΥ ΟΡΙΟΥ ΣΤΟ R - ΟΡΙΟ ΚΑΙ ΔΙΑΤΑΞΗ - ΟΡΙΑ ΚΑΙ ΠΡΑΞΕΙΣ [Κεφ 4: Όριο Συνάρτησης

Διαβάστε περισσότερα

Περιεχόμενα μεθόδευση του μαθήματος

Περιεχόμενα μεθόδευση του μαθήματος Περιεχόμενα μεθόδευση του μαθήματος. Πως ορίζεται η έννοια. Το όριο. To f() f() ; f() εφόσον υπάρχει είναι μονοσήμαντα ορισμένο; εξαρτιέται από τα άκρα α, β των ( α, ) και (, β ) ;. Πως ορίζονται τα πλευρικά

Διαβάστε περισσότερα

Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ

Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ Γιώργος Καριπίδης-Ανθούλα Σοφιανοπούλου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΟΡΙΑ ΣΥΝΑΡΤΗΣΗΣ ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ του ορίου συνάρτησης όταν χ χ Για να έχει νόημα το όριο συνάρτησης f με πεδίο

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Η έννοια του ορίου στο x ο Υπάρχουν συναρτήσεις οι τιμές των οποίων πλησιάζουν ένα πραγματικό αριθμό L, όταν η ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός

Διαβάστε περισσότερα

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0

Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση x 0 5 Όριο συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για την τοπική μελέτη μιας συνάρτησης f ενδιαφέρον έχει η συμπεριφορά της συνάρτησης γύρω απο κάποια θέση (δηλαδή όταν το βρίσκεται πολύ κοντά στο ) ή στο

Διαβάστε περισσότερα

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Πραγματική Συνάρτηση ρισμός Έστω Α ένα υποσύνολο του R. νομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

9 Πολυώνυμα Διαίρεση πολυωνύμων

9 Πολυώνυμα Διαίρεση πολυωνύμων 4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(

Διαβάστε περισσότερα

Παράδειγμα 8. Να βρείτε την τιμή της παράστασης:

Παράδειγμα 8. Να βρείτε την τιμή της παράστασης: Μιγαδικοί αριθμοί Σελ 10 ΜΕΘΟΔΟΛΟΓΙΑ 104 Ασκήσεις με παραστάσεις της μορφής συγκεκριμένοι μιγαδικοί z 1 z με z 1,z i Εξετάζουμε μήπως οι μιγαδικοί συνδέονται με σχέση της μορφής z i 1 z ii Αντικάθιστούμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.

Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π. ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+

Διαβάστε περισσότερα

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x

O1 ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f x O ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΟΡΙΟΥ lim f ) Εντοπίζω τα σημεία που συναντώνται οι δύο καμπύλες ) Η τεταγμένη y αυτού του σημείου είναι το όριο της f και η τετμημένη η θέση y lim f Πλευρικά όρια lim f λ lim

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της

ΣΗΜΕΙΩΣΕΙΣ. x A αντιστοιχίζεται (συσχετίζεται) με ένα μόνο. = ονομάζεται εξίσωση της ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου

4.1. Πολυώνυμα. Η έννοια του πολυωνύμου 4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι

Διαβάστε περισσότερα

Α) Αν το τριώνυμο έχει δύο ρίζες x 1

Α) Αν το τριώνυμο έχει δύο ρίζες x 1 αν είναι θ < 0, τότε έχουμε πάλι ότι x!. Παράδειγμα 1. Για την ανίσωση x 3 4 έχουμε x 3 4 x 3 4 ή x 3 4 x 7 ή x 1 x (, 1] [7,+ ). Παράδειγμα. Για την ανίσωση x +1 3 έχουμε x +1 3 η x +1 3 x η x 1 η x (,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί

Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΟΝΥΜΙΚΕΣ Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί Όταν έχουμε μία εξίσωση που περιέχει παρονομαστές ή ρίζες, πρέπει να βάζουμε περιορισμούς. Το νόημα

Διαβάστε περισσότερα

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί

4. Να βρείτε τον βαθμό των πολυωνύμων ως προς χ, ως προς ψ και ως προς χ και ψ μαζί 1 ΑΣΚΗΣΕΙΣ 1. Να εκτελέσετε τις προσθέσεις, όπου αυτό είναι δυνατόν α) χ 3 +5ψ 3 β) χ 3 +6χ 3 γ) 4χ 5 ω-7ωχ 5 δ) 3χ 5 +4χ ε) χ 4 +3χ 4 ζ) χ -χ η) χ +χ θ) χ +χ ι) χ+χ 3 κ) χ -χ λ) 3χ 4-4χ 4 μ) 3χ-3χ 3.

Διαβάστε περισσότερα

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι:

( ) Άρα το 1 είναι ρίζα του P, οπότε το x 1 είναι παράγοντάς του. Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x 1) είναι: ( x) Άρα το είναι ρίζα του P, οπότε το x είναι παράγοντάς του 4 Το πηλίκο της διαίρεσης ( x 3x + 5x 3) : ( x ) είναι: 3 π ( x) = x + x x + 3 Η ταυτότητα της προηγούμενης διαίρεσης είναι: 4 3 x 3x + 5x

Διαβάστε περισσότερα

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ

ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 ΚΕΦΑΛΑΙΟ 1ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι Πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι είναι οι πραγματικοί αριθμοί ; Ποιοι είναι οι

Διαβάστε περισσότερα

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R

1.1 ΣΥΝΑΡΤΗΣΕΙΣ. 1. Ορισµός. 2. Συµβολισµός. 3. Επεξήγηση συµβόλων. 4. Γραφική παράσταση της συνάρτησης f : A R . ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε συνάρτηση µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου συνόλου Β. Σηµείωση: Στο εξής θα είναι Α R και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ

4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ 4.3 ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ & ΑΝΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Πολυωνυµική εξίσωση Λέγεται κάθε εξίσωση της µορφής Ρ(x) = 0, όπου Ρ(x) πολυώνυµο.. Ρίζα πολυωνυµικής εξίσωσης Λέγεται κάθε ρίζα του αντίστοιχου πολυωνύµου.

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ

Π.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες

Διαβάστε περισσότερα

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ

ΜΑΘΗΜΑΤΙΚΑ Ι Β ΜΕΡΟΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ ΔΕΟ Msc. Θεωρητικά Μαθηματικά ΚΑΛΑΜΑΤΑ 2016 0 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;

Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι; Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Περί εξισώσεων με ένα άγνωστο

Περί εξισώσεων με ένα άγνωστο 1 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΑΝΙΩΝ 19 Φεβρουαρίου 013 ΤΑΞΗ Α Σημειώσεις Άλγεβρας Περί εξισώσεων με ένα άγνωστο Εξίσωση με ένα άγνωστο λέμε την ισότητα δύο παραστάσεων μιας μεταβλητής. Πχ f(x) = g(x) όπου x μεταβλητή

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η

ΑΛΓΕΒΡΑ Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η Τ Ν Ο Π Σ Ι Κ Η Τ Λ Η ΑΛΓΕΒΡΑ Τα ςημαντικότερα ςημεία τησ θεωρίασ Ερωτήςεισ εμπζδωςησ- απαντήςεισ Μεθοδολογία αςκήςεων Προτεινόμενεσ αςκήςεισ του βιβλίου - διεξοδική ανάλυςη των λφςεων (ςκζψη-βήματα-επεξήγηςη

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός

Διαβάστε περισσότερα

Σχόλια στα όρια. Γενικά

Σχόλια στα όρια. Γενικά Σχόλια στα όρια. Γενικά Η αναζήτηση του ορίου έχει νόημα όταν η συνάρτηση ορίζεται κοντά στο x, δηλαδή σε διάστημα (α,x ) (x,β) ή φυσικά σε (α,β) με x (α,β) και όχι κατ ανάγκη στο ίδιο το x. Για παράδειγμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και

Διαβάστε περισσότερα

ΠΩΣ; Το «σωσίβιό» σου στον ωκεανό της Γ Λυκείου! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ ΑΝΑΝΕΩΜΕΝΗ ΣΥΜΠΕΠΛΗΡΩΜΕΝΗ ΕΚΔΟΣΗ!

ΠΩΣ; Το «σωσίβιό» σου στον ωκεανό της Γ Λυκείου! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ ΑΝΑΝΕΩΜΕΝΗ ΣΥΜΠΕΠΛΗΡΩΜΕΝΗ ΕΚΔΟΣΗ! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ Καθηγητής Μαθηµατικών άμιλλα φροντιστήρια ΠΩΣ; Βασικά στοιχεία από την Άλγεβρα της Α και Β Λυκείου, αλλά και από την Κατεύθυνση της Β Λυκείου, που είναι απαραίτητα στα Μαθηµατικά Κατεύθυνσης

Διαβάστε περισσότερα

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)

Διαβάστε περισσότερα

Παραγοντοποίηση. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Παραγοντοποίηση. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Παραγοντοποίηση Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ενότητα 4 η Ταυτότητες Παραγοντοποίηση Σκοπός Ο σκοπός της 4 η ενότητας είναι να αποκτήσουν την ικανότητα

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ. ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ. ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ 1 ΚΕΦΑΛΑΙΟ 4ο ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΑ 1. Τι καλούμε μονώνυμο, τι πολυώνυμο, τι όροι,τι συντελεστές

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 1: Βασικές Γνώσεις Άλγεβρας Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114 1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1

Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Εξίσωση πρώτου βαθμού ή πρωτοβάθμια εξίσωση με άγνωστο x ονομάζεται κάθε εξίσωση της μορφής

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ & ΟΡΓΑΝΙΣΜΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Περιληπτικές Σημειώσεις-Ασκήσεις Β ΜΕΡΟΣ ΦΩΤΟΥΛΑ ΑΡΓΥΡΟΠΟΥΛΟΥ KAΘ. ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑΤΟΣ

Διαβάστε περισσότερα

x y z xy yz zx, να αποδείξετε ότι x=y=z.

x y z xy yz zx, να αποδείξετε ότι x=y=z. ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y

Διαβάστε περισσότερα

f(x) = 2x+ 3 / Α f Α.

f(x) = 2x+ 3 / Α f Α. ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»

Διαβάστε περισσότερα

a = f( x ) =. (Μονάδες 8) 2 = =,από όπου προκύπτει ( υψώνοντας στο τετράγωνο ), x =, επομένως x = 0 x = ή Άσκηση 4679 Δίνεται η συνάρτηση:

a = f( x ) =. (Μονάδες 8) 2 = =,από όπου προκύπτει ( υψώνοντας στο τετράγωνο ), x =, επομένως x = 0 x = ή Άσκηση 4679 Δίνεται η συνάρτηση: Άσκηση 4679 Δίνεται η συνάρτηση: a = + 4 f( x) x x α) Να βρείτε τις τιμές του πραγματικού αριθμού α, ώστε το πεδίο ορισμού της συνάρτησης f να είναι το σύνολο. (Μονάδες 0) β) Αν είναι γνωστό ότι η γραφική

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΕΥΡΕΣΗ ΟΡΙΩΝ

ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΕΥΡΕΣΗ ΟΡΙΩΝ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΗΝ ΕΥΡΕΣΗ ΟΡΙΩΝ o A. Ρητή της μορφής (0/0), με παραγοντοποίηση εμφανίζουμε το (χ-χ ο ) σε αριθμητή και παρονομαστή, απλοποιούμε και στη συνέχεια κάνουμε αντικατάσταση σε ό,τι έμεινε!

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη

Μαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς

Διαβάστε περισσότερα