ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΣΥΝΤΑΞΗ: ΣΤΟΧΑΣΤΙΚΕΣ ΜΕΘΟΔΟΙ STOCHASTIC PARSING
|
|
- Ευφήμιος Γκόφας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΣΥΝΤΑΞΗ: ΣΤΟΧΑΣΤΙΚΕΣ ΜΕΘΟΔΟΙ STOCHASTIC PARSING
2 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Ιόνιο Πανεπιστήμιο» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 2
3 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons 3
4 Deductive (Συναγωγή) Route Στην προηγούμενη διάλεξη υλοποιήσαμε ένα μοντέλο κανόνων (γραμματική) και χρησιμοποιήσαμε συμπερασμό με βάση το μοντέλο κανόνων (rulebased reasoning) για να αναλύσουμε καινούρια δεδομένα (προτάσεις)
5 Στοχαστική Συντακτική Ανάλυση Μέχρι τώρα είδαμε πώς μπορούμε να κατασκευάσουμε χειρωνακτικά μία γραμματική Τέτοιες γραμματικές Απαιτούν πολύ κόπο και χρόνο Δεν μπορούν να αντεπεξέλθουν σε κείμενα του πραγματικού κόσμου Οι στοχαστικές μέθοδοι προσφέρουν μία καλή λύση αυτοματοποίησης.
6 Inductive Route (Επαγωγή) Στην σημερινή διάλεξη θα δημιουργήσουμε ένα στοχαστικό μοντέλο από ένα σώμα παραδειγμάτων (κειμένων) Με χρήση στατιστικού συμπερασμού (inference) από το μοντέλο θα επεξεργαστούμε καινούρια παραδείγματα σώμα κειμένων πιθανότητες
7 Θεωρία Πιθανοτήτων και Γλωσσική Τεχνολογία Επίλυση ασάφειας μέρους-του-λόγου fly: ουσιαστικό ή ρήμα Σχολιασμός κειμένου Tagging, text chunking Εμπλουτισμός υπαρχόντων γραμματικών Εισαγωγή πιθανοτήτων στους κανόνες Επίλυση ασάφειας έννοιας λέξεων βιβλιοθήκη: έπιπλο, κτίριο Κατανόηση ομιλίας Εύρεση της πιο πιθανής ακολουθίας λέξεων Ανάκτηση πληροφορίας Εύρεση των πιο σχετικών κειμένων με μία ερώτηση
8 Σώματα Κειμένων (Corpora) Οι στατιστικές μέθοδοι βασίζονται στην ανάλυση μεγάλων σωμάτων κειμένων που έχουν σχολιασθεί χειρονακτικά (manually annotated) Εξάγονται στατιστικές μετρήσεις fly: είναι ουσιαστικό στο 95% των περιπτώσεων που προηγείται άρθρο (the fly) Αυτές οι μετρήσεις βοηθούν στην ανάλυση νέων (μη-σχολιασμένων) κειμένων Χρησιμοποιούμε τη θεωρία πιθανοτήτων για να βρούμε πoια είναι η πιο πιθανή λύση
9 Θεωρία Πιθανοτήτων 0 P(x) 1 Πιθανότητα υπό συνθήκη P(Α Β) = Ρ(Α & Β) / Ρ(Β) P(Α Β) = Ρ(Β Α) * Ρ(Α) / Ρ(Β) Ανεξάρτητα γεγονότα Ρ(Α Β) = Ρ(Α) Αν σε ένα σώμα κειμένων έχουμε [Bayes rule] 150 εμφανίσεις της λέξης flies ως ουσιαστικό 50 εμφανίσεις της λέξης flies ως ρήμα Ρ(category=noun word=flies) = 150/200 = 0.75
10 Σχολιασμός Μερών του Λόγου Προηγείται της συντακτικής ανάλυσης Σε κάθε λέξη αποδίδεται μία ετικέτα (tag) μέρους-του-λόγου part-of-speech (POS) tagging Χρησιμοποιούμε πληροφορία από το περιβάλλον της λέξης (γειτονικές λέξεις) P(cat n =noun word n =flies & word n-1 =the)
11 Παράδειγμα: POS Tagging
12 Ασάφεια (Ambiguity) Μέρους-του-λόγου Δημιουργεί πρόβλημα κυρίως στα Αγγλικά Οι λέξεις μπορεί να αντιστοιχούν σε περισσότερα από ένα POS tags The back door On my back Win the voters back (επίθετο) (ουσιαστικό) (επίρρημα) Promised to back the bill (ρήμα) 90% ακρίβεια αν στην κάθε λέξη αποδίδεται πάντα το πιο συχνό tag
13 POS Tagging Η πρώτη εργασία επεξεργασία φυσικής γλώσσας που αντιμετωπίστηκε επιτυχώς με στατιστικές μεθόδους Πολλές διαφορετικές μέθοδοι έχουν εφαρμοστεί Η αξιολόγηση είναι εύκολη (πόσα tags αποδόθηκαν σωστά) Τα tags μπορεί να αποδίδουν πιο σύνθετη μορφολογική πληροφορία (πτώση, γένος) ώστε να έχει μεγαλύτερη χρησιμότητα για άλλες γλώσσες
14 Χρησιμότητα POS Tagging Απαιτεί ελάχιστο χρόνο και μπορεί να βελτιώσει την απόδοση πιο σύνθετων συστημάτων Προεπεξεργασία σε ένα parser Δημιουργία επιτονισμού récord (ουσιαστικό), recórd (ρήμα) Εύρεση του λήμματος μιας λέξης saw (ουσιαστικό) -> saw saw (ρήμα) -> see
15 Αγγλικά tagsets: Penn Treebank (45)
16 Αγγλικά tagsets: Brown Corpus (87) CC: conjunction, coordinating and or but plus & either neither nor yet 'n' and/or minus an' CD: numeral, cardinal two one five three million ,119 fifty-three 7.5 bill 125,000 CD$: numeral, cardinal, genitive 1960's 1961's.404's CS: conjunction, subordinating that as after whether before while like because if since for than altho until so unless DO: do DO*: don't
17 Παράδειγμα επισημείωσης ΜΤΛ Jaguar shares stood at 405 pence before Ford 's initial announcement, but the subsequent takeover frenzy has driven them up. Jaguar/NN shares/nns stood/vbd at/in 405/CD pence/nn before/in Ford/NNP 's/pos initial/jj announcement/nn,/, but/cc the/dt subsequent/jj takeover/nn frenzy/nn has/vbz driven/vbn them/prp up/rb./.
18 Το Στατιστικό Μοντέλο Σε μία ακολουθία λέξεων w 1..w n θέλουμε να αποδώσουμε την πιο πιθανή ακολουθία κατηγοριών c 1..c n που μεγιστοποιεί την πιθανότητα P(c 1..c n w 1..w n ) P(art noun verb the man talks) P(c 1..c n w 1..w n ) = P(w 1..w n c 1..c n )*Ρ(c 1..c n ) / P(w 1..w n ) Η P(w 1..w n ) είναι ανεξάρτητη των c 1..c n. Έτσι μπορούμε να απλοποιήσουμε το μοντέλο argmax c1..cn (P(w 1..w n c 1..c n ) * Ρ(c 1..c n ))
19 Ένα πιο απλό μοντέλο: Ν-grams Αν υποθέσουμε ότι για μία λέξη η πιθανότητα μιας κατηγορίας c i εξαρτάται μόνο από την κατηγορία της προηγούμενης λέξης c i-1 Ρ(c 1..c n ) = Π i=1..n P(c i c i-1 ) Μοντέλο bigram Αν θεωρήσουμε τις δύο προηγούμενες λέξεις έχουμε το μοντέλο trigram Για n-1 προηγούμενες λέξεις: μοντέλο n-gram Ρ(c 1..c n ) = Π i=1..n P(c i c 1,,c n-1 )
20 Ένα ακόμα πιο απλό μοντέλο: Naïve Bayes Υποθέτουμε ότι η πιθανότητα μιας λέξης είναι κατά βάση ανεξάρτητη των γειτονικών λέξεων P(w 1..w n c 1..c n ) = Π i=1..n P(w i c i ) Η πιθανότητα της φράσης the man talks δεδομένης της ακολουθίας art noun verb είναι Ρ(the art) * P(man noun) * P(talks verb) Το στατιστικό μοντέλο τώρα γίνεται Π i=1..n P(c i c i-1 ) * P(w i c i )
21 Εύρεση Bigrams Υποθέτουμε ότι έχουμε ένα corpus σχολιασμένο με POS tags Υπολογίζουμε τα bigrams Ρ(cat i = verb cat i-1 = noun) = Ρ(cat i = verb & cat i-1 = noun) / P(cat i-1 = noun) = αριθμός ουσιαστικών που ακολουθούνται από ρήματα προς το συνολικό αριθμό των ουσιαστικών Ορίζουμε cat = 0 για την εκκίνηση μιας πρότασης Ρ(cat i = verb cat i-1 = 0) = αριθμός ρημάτων που ξεκινούν προτάσεις προς συνολικό αριθμό προτάσεων
22 Εύρεση Λεξιλογικών Πιθανοτήτων Οι πιθανότητες P(w i c i ) υπολογίζονται μετρώντας απλά το πλήθος των λέξεων που εμφανίζονται υπό συγκεκριμένη κατηγορία Παράδειγμα: John went to the river. He found his rod. A large fish swam past him. He caught the fish and ate it for his tea. P(fish noun) = 2 / 5
23 Ένας απλός tagger Για την ανάλυση μιας πρότασης Δημιούργησε όλες τις δυνατές ακολουθίες κατηγοριών Για την κάθε ακολουθία υπολόγισε την πιθανότητα εμφάνισης με βάση το corpus Διάλεξε την καλύτερη ακολουθία The fly flies Αν υπάρχουν Τ λέξεις και κάθε λέξη έχει Ν κατηγορίες, τότε απαιτούνται Ν Τ υπολογισμοί
24 Αλυσίδες Markov (Markov Chains) Οι πιθανότητες P(c i c i-1 ) μπορούν να αναπαρασταθούν ως ένα ειδικό δίκτυο μεταβάσεων που καλείται αλυσίδα Markov Το άθροισμα των πιθανοτήτων που εξέρχονται από ένα κόμβο πρέπει να είναι 1.
25 Υπολογισμός πιθανοτήτων Η πιθανότητα μιας ακολουθίας κατηγοριών είναι το γινόμενο των μονοπατιών Αυτή η προσέγγιση αγνοεί τις πιθανότητες των συγκεκριμένων λέξεων
26 Πρόσθεση λεξιλογικών πιθανοτήτων Τις πιθανότητες P(w i c i ) μπορούμε να τις προσθέσουμε ως πίνακα σε κάθε κόμβο Το μοντέλο αυτό ονομάζεται κρυμμένο μοντέλο Markov (Ηidden Μarkov model - HMM)
27 Αναγνώριση φράσεων (Text Chunking) Χωρισμός μιας πρότασης σε μη επικαλυπτόμενα τμήματα βάσει μιας απλής συντακτικής ανάλυσης Ανίχνευση βασικών φράσεων ονοματικών ρηματικών προθετικών επιρρηματικών Προπομπός full-parsing και περαιτέρω ανάλυσης
28 Chunking: Παράδειγμα Εύρεση βασικών ονοματικών φράσεων Προσκόληση προσδιορισμών σε βασικές ονοματικές φράσεις, εύρεση ρηματικών και άλλων τύπων φράσεων [N Some bankers N] [V are reporting V] [N more inquiries than usual N] [ADV since Friday ADV].
29 To Chunking ως διαδικασία Tagging Στόχος είναι να αποδοθεί σε κάθε λέξη ένα tag που υποδεικνύει αν είναι στην αρχή ή εντός μίας φράσης Σύμβολα ορίων: Β: αρχή I: εντός Ο: εκτός Πλήρες tagset: NP-B: αρχή ονοματικής φράσης ΝP-I: εντός ονοματικής φράσης VP-B: αρχή ρηματικής φράσης VP-I: εντός ρηματικής φράσης...
30 Chunking ως Tagging: Παράδειγμα [N Some bankers N] [V are reporting V] [N more inquiries than usual N] [ADV since Friday ADV]. Some/ΝP-B bankers/np-i are/vp-b reporting/vp-i more/np-b inquiries/np-i than/np-i usual/np-i since/np-b Friday/NP-I./O
31 Προσάρτηση Προθετικών Φράσεων (PP attachment) Βλέπω τον άνθρωπο με το τηλεσκόπιο Η φράση «με το τηλεσκόπιο» προσαρτάται στο ρήμα ή στο αντικείμενο της πρότασης; Λέξη Συχν. εμφάνισης λέξης Συχν. συνεμφάνισης λέξης + «με» P( με λέξη) βλέπω /5156=0.118 άνθρωπο /1442=0.107
32 Στοχαστικές Γραμματικές Η θεωρία πιθανοτήτων μπορεί να βελτιώσει τις γραμματικές που έχουμε κατασκευάσει χειρονακτικά Μία απλή προσέγγιση είναι να καθορίσουμε μία πιθανότητα για τον κάθε κανόνα γραμματικής με βάση το πόσες φορές χρησιμοποιείται σε ένα σχολιασμένο corpus Στοχαστικές γραμματικές ελεύθερης σύνταξης (Probabilistic Context-free Grammars - PCFGs)
33 Τυπικός Ορισμός μιας PCFG Μία PCFG αποτελείται από: Ένα σύνολο τερματικών συμβόλων V T Ένα σύνολο μη-τερματικών συμβόλων V N έτσι ώστε V T V N = Μία μεταβλητή έναρξης S Ένα σύνολο κανόνων της μορφής Α Β, όπου Α ЄV Ν και Β μία ακολουθία τερματικών και μητερματικών συμβόλων Ένα αντίστοιχο σύνολο πιθανοτήτων για τους κανόνες έτσι ώστε για κάθε i Σ i P(A i B k ) = 1
34 Στοχαστικές Γραμματικές: Παράδειγμα Corpus: John talks. He laughs. He likes Mary. He puts the book on the shelf. Γραμματική: VP V VP V NP VP V NP PP (1) (2) (3) Πιθανότητες: (1) 0.5 (2) 0.25 (3) 0.25
35 Στοχαστικές Γραμματικές: Ανάλυση Μπορούμε να θεωρήσουμε ότι η πιθανότητα μετά την εφαρμογή ενός κανόνα είναι το γινόμενο της πιθανότητας του κανόνα επί τις πιθανότητες των συστατικών του δεξιού μέρους του κανόνα S NP VP (1.0) PP P NP (1.0) VP V (0.4) VP V NP (0.6) NP N (1.0) V saw (1.0) N astronomers (0.3) N stars (0.7)
36 Astronomers saw stars S(1.0) NP(0.3) VP(0.6) astronomers V(1.0) NP(0.7) saw stars P ( astronomers saw stars ) = 1.0*0.3*0.6*1.0*0.7 = 0.126
37 Deduction (Συναγωγή)-Induction (Επαγωγή): Πλεονεκτήματα Deduction: Η γλωσσολογική γνώση και διαίσθηση που έχουμε μπορεί να χρησιμοποιηθεί Ακρίβεια Induction: Γρηγορότερη η υλοποίηση του μοντέλου Καλή κάλυψη Robustness Μικρές απαιτήσεις σε γνώση (knowledge poor) Εφαρμόσιμη σε πραγματικά δεδομένα Το μοντέλο είναι εύκολα επεκτάσιμο
38 Deduction (Συναγωγή)-Induction (Επαγωγή): Μειονεκτήματα Deduction: Μεγάλο κόστος και χρονική διάρκεια κατασκευής του μοντέλου Δύσκολα εφαρμόσιμη σε πραγματικά δεδομένα με καλή κάλυψη Το μοντέλο δεν μπορεί να επεκταθεί εύκολα Induction: Δεδομένα πολύ χαμηλής συχνότητας (sparse data) Δυσκολία υπολογισμού στατιστικής συσχέτισης γλωσσολογικών φαινομένων
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΑΡΣΗ ΑΜΦΙΣΗΜΙΑΣ ΛΕΞΕΩΝ (ΑΠΟΣΑΦΗΝΙΣΗ ΕΝΝΟΙΑΣ ΛΕΞΕΩΝ) WORD SENSE DISAMBIGUATION
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΑΡΣΗ ΑΜΦΙΣΗΜΙΑΣ ΛΕΞΕΩΝ (ΑΠΟΣΑΦΗΝΙΣΗ ΕΝΝΟΙΑΣ ΛΕΞΕΩΝ) WORD SENSE DISAMBIGUATION Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΣΥΝΤΑΞΗ: ΟΡΘΟΛΟΓΙΚΗ ΠΡΟΣΕΓΓΙΣΗ (FORMAL SYNTAX)
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΣΥΝΤΑΞΗ: ΟΡΘΟΛΟΓΙΚΗ ΠΡΟΣΕΓΓΙΣΗ (FORMAL SYNTAX) Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΣΗΜΑΣΙΟΛΟΓΙΑ - SEMANTICS
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΣΗΜΑΣΙΟΛΟΓΙΑ - SEMANTICS Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Ιόνιο
Συστήματα Γνώσης. Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Θεωρητικό Κομμάτι Μαθήματος Ενότητα 2: Βασικές Αρχές Αναπαράστασης Γνώσης και Συλλογιστικής Νίκος Βασιλειάδης, Αναπλ. Καθηγητής Άδειες
Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 6: Χωρική ανάλυση στα ΣΓΠ Μέρος 1ο Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #06 Πιθανοτικό Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Information Extraction
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Information Extraction Information Extraction Μορφή της πληροφορίας Δομημένα δεδομένα Relational Databases (SQL) XML markup Μη-δομημένα δεδομένα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Διαχείριση Web Περιεχομένου & Γλωσσικά Εργαλεία
Διαχείριση Web Περιεχομένου & Γλωσσικά Εργαλεία Μάθημα7 ο N-grams Σοφία Στάμου Άκ.Έτος 2008-09 Acknowledgement: McCoy, http://www.cis.udel.edu/~mccoy/courses/cisc882.03f/lectures/lect5-ngrams.ppt Μια μική
Εισαγωγή στη Γλωσσολογία Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στη Γλωσσολογία Ι Σύνταξη Διδάσκοντες: Επίκ. Καθ. Μαρία Λεκάκου, Λέκτορας Μαρία Μαστροπαύλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Περιεχόμενα Τι περιγράφει ένα ΣΔ ΣΔ και παραγωγές Θεωρία Υπολογισμού Ενότητα 15: Συντακτικά Δέντρα Επ. Καθ. Π. Κατσαρός Τμήμα Πληροφορικής Επ. Καθ. Π.
Θεωρία Υπολογισμού νότητα 15: Συντακτικά Δέντρα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 1: Elements of Syntactic Structure Το περιεχόμενο του μαθήματος διατίθεται με άδεια
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 17: Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 11: Επιλογή μεταβλητών στην παλινδρόμηση Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #08 Συµπίεση Κειµένων Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 18: Λήμμα Άντλησης για ΓΧΣ Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 5: Ισοδυναμία Πιστωτικών Τίτλων Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 4 ο : Συντακτική ανάλυση. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 4 ο : Συντακτική ανάλυση Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Γλωσσική Τεχνολογία, Μάθημα 4 ο, Συντακτική
Στατιστική Ι. Ενότητα 6: Kατανομή Poisson. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 6: Kατανομή Poisson Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 12: Ασυνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 11: The Unreal Past Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 7 η : Εντολές Επανάληψης Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Διοίκησης Επιχειρήσεων
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 2: Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 1 η : Βασικές Έννοιες Πιθανότητας Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ. Άδειες
ΟΡΟΛΟΓΙΑ -ΞΕΝΗ ΓΛΩΣΣΑ
ΟΡΟΛΟΓΙΑ -ΞΕΝΗ ΓΛΩΣΣΑ Ενότητα 8: Time Clauses Σταυρούλα Ταβουλτζίδου ΜΗΧ/ΚΩΝ ΠΕΡΙΒΑΛ.&ΜΗΧ/ΚΩΝ ΑΝΤΙΡ.ΤΕ-ΜΗΧ/ΚΩΝ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Απλό παράδειγμα προσομοίωσης χρηματιστηρίου Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ελαστικότητα και εφαρμογές Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 4(β): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Προγραμματισμός Η/Υ. Συναρτήσεις & Υποπρογράμματα. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Συναρτήσεις & Υποπρογράμματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τμηματικός Προγραμματισμός Η επίλυση ενός προβλήματος διευκολύνεται
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 5(γ): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 8: Ανάλυση δικτύων στα ΣΓΠ Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Θέματα υπολογισμού στον πολιτισμό
Θέματα υπολογισμού στον πολιτισμό Ενότητα 4: Μοντελοποίηση υπολογισμού: Γραμματικές Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons
«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα
«Τεχνογλωσσία VIII» Εξαγωγή πληροφοριών από κείμενα Σεμινάριο 4: Συντακτική Ανάλυση Ευάγγελος Καρκαλέτσης, Γεώργιος Πετάσης Εργαστήριο Τεχνολογίας Γνώσεων & Λογισμικού, Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών,
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
Η εξέλιξη στα συστήματα Μηχανικής Μετάφρασης
Η εξέλιξη στα συστήματα Μηχανικής Μετάφρασης Σοφιανόπουλος Σωκράτης Ινστιτούτο Επεξεργασίας του Λόγου Δομή παρουσίασης Τι είναι η Μηχανική Μετάφραση (Machine Translation) Ιστορική αναδρομή Είδη συστημάτων
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 9: Inversion Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 2 η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 25: Γραμματικές Χωρίς Περιορισμούς Τμήμα Πληροφορικής ΘΥ 25: Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
ΘΕΜΑ 1 Τεχνικές Εξαγωγής Συµφράσεων από εδοµένα Κειµένου και Πειραµατική Αξιολόγηση
ΘΕΜΑ 1 Τεχνικές Εξαγωγής Συµφράσεων από εδοµένα Κειµένου και Πειραµατική Αξιολόγηση Οι συµφράσεις είναι ακολουθίες όρων οι οποίοι συνεµφανίζονται σε κείµενο µε µεγαλύτερη συχνότητα από εκείνη της εµφάνισης
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 5 η : Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
ΑΓΓΛΙΚΑ IV. Ενότητα 6: Analysis of Greece: Your Strategic Partner in Southeast Europe. Ιφιγένεια Μαχίλη Τμήμα Οικονομικών Επιστημών
Ενότητα 6: Analysis of Greece: Your Strategic Partner in Southeast Europe Ιφιγένεια Μαχίλη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 9: Σύγκριση ντετερμινιστικών / στοχαστικών μοντέλων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων
Στατιστική Επιχειρήσεων Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 1: Στοιχεία Πιθανοθεωρίας Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και
Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ. Μάθημα 2 ο : Βασικές έννοιες. Γεώργιος Πετάσης. Ακαδημαϊκό Έτος:
ΓΛΩΣΣΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Μάθημα 2 ο : Βασικές έννοιες Γεώργιος Πετάσης Ακαδημαϊκό Έτος: 2012 2013 ΤMHMA MHXANIKΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ, Πανεπιστήμιο Πατρών, 2012 2013 Γλωσσική Τεχνολογία, Μάθημα 2 ο, Βασικές
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν
Διδακτική Πληροφορικής
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 12: Επίλυση προβλημάτων σε προγραμματιστικό περιβάλλον Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #11 Suffix Arrays Φοίβος Μυλωνάς fmylonas@ionio.gr Ανάκτηση Πληροφορίας 1 Άδεια χρήσης Το παρόν
ΑΣΚΗΣΗ 11: ΕΠΕΞΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΓΛΩΣΣΑΣ - ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΛΥΣΗ (PARSING)
ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΗΣ ΝΟΗΜΟΣΥΝΗΣ (Prolog) ΕΞΑΜΗΝΟ: Δ - Εαρινό 2013-14 ΚΑΘΗΓΗΤΕΣ: Δ.ΣΤΑΜΑΤΗΣ, Κ.ΔΙΑΜΑΝΤΑΡΑΣ ΑΣΚΗΣΗ 11: ΕΠΕΞΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ ΓΛΩΣΣΑΣ -
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Η ψηφιακή τεχνολογία στην ερευνητική δραστηριότητα Θέματα κουίζ. Υψηλάντης Γεώργιος, Βαβούρας Θεόδωρος Τμήμα Ιταλικής Γλώσσας & Φιλολογίας
Η ψηφιακή τεχνολογία στην ερευνητική δραστηριότητα Θέματα κουίζ Υψηλάντης Γεώργιος, Βαβούρας Θεόδωρος Τμήμα Ιταλικής Γλώσσας & Φιλολογίας Θεσσαλονίκη, Ιούνιος 2013 Η ψηφιακή τεχνολογία στην ερευνητική
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 2 η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #8: Όριο και Συνέχεια Συνάρτησης Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Αρχιτεκτονική Υπολογιστών
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 7: Αποκωδικοποίηση Εντολής x86 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons
Διαδικασίες Markov Υπενθύμιση
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Διαδικασίες Markov Υπενθύμιση Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 3 η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
Συστήματα Πληροφοριών Διοίκησης Ενότητα 1: Η έννοια των Πληροφοριακών Συστημάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Πληροφοριών Διοίκησης Ενότητα 1: Η έννοια των Πληροφοριακών Συστημάτων Διονύσιος Γιαννακόπουλος, Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών Εργαστήριο: XQuery - 2 Όνομα Καθηγητή: Χρήστος Νικολάου Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 9α: Περιορισμοί (Constraints) Εναύσματα (Triggers) Ευαγγελίδης Γεώργιος Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9α: Περιορισμοί (Constraints) Εναύσματα (Triggers) Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Τεχνολογία Πολιτισμικού Λογισμικού
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Τεχνολογία Πολιτισμικού Λογισμικού Ενότητα 2: Φάσεις ανάπτυξης πολιτισμικού λογισμικού Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
ΤΕΧΝΟΓΛΩΣΣΙΑ VIII ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΣΚΟΝΤΕΣ: ΜΑΪΣΤΡΟΣ ΓΙΑΝΗΣ, ΠΑΠΑΚΙΤΣΟΣ ΕΥΑΓΓΕΛΟΣ ΑΣΚΗΣΗ: ΔΙΟΡΘΩΣΗ ΕΚΦΡΑΣΕΩΝ (Β )
ΤΕΧΝΟΓΛΩΣΣΙΑ VIII ΛΟΓΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΣΚΟΝΤΕΣ: ΜΑΪΣΤΡΟΣ ΓΙΑΝΗΣ, ΠΑΠΑΚΙΤΣΟΣ ΕΥΑΓΓΕΛΟΣ ΑΣΚΗΣΗ: ΔΙΟΡΘΩΣΗ ΕΚΦΡΑΣΕΩΝ (Β ) ΣΚΟΠΟΣ Σκοπός της άσκησης είναι ο σχεδιασμός και η υλοποίηση συστήματος διόρθωσης
Στατιστική Επιχειρήσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων Ενότητα # 2: Στατιστικοί Πίνακες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης
Αρχιτεκτονική Υπολογιστών
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 10: Ιεραρχία Μνήμης. Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
3 η ΕΝΟΤΗΤΑ Συναρτήσεις στο MATLAB
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 3 η ΕΝΟΤΗΤΑ Συναρτήσεις στο MATLAB Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ(Visual Basic)
ΜΑΘΗΜΑ: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ(Visual Basic) ΔΙΔΑΣΚΩΝ: ΚΥΡΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΚΟΖΑΝΗ) 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ψυχογλωσσολογία. Ενότητα 4 : Επεξεργασία προτάσεων. Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας
Ψυχογλωσσολογία Ενότητα 4 : Επεξεργασία προτάσεων Χριστίνα Μανουηλίδου, Επίκουρη Καθηγήτρια Τμήμα Φιλολογίας Σκοποί ενότητας Συντακτική επεξεργασία-ανάλυση (parsing) Στρατηγικές συντακτικής επεξεργασίας
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #3: Αρχή της Επέκτασης - Ασαφείς Σχέσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης
ΡΑΔΙΟΧΗΜΕΙΑ 1. ΜΕΤΑΠΤΩΣΕΙΣ ΡΑΔΙΕΝΕΡΓΩΝ ΣΤΟΙΧΕΙΩΝ ΚΕΦΑΛΑΙΟ 3. ΡΑΔΙΕΝΕΡΓΑ ΣΤΟΙΧΕΙΑ ΔΙΑΧΕΙΡΙΣΗ ΡΑΔΙΕΝΕΡΓΩΝ ΑΠΟΒΛΗΤΩΝ ΤΟΞΙΚΟΤΗΤΑ ΡΑΔΙΕΝΕΡΓΩΝ ΙΣΟΤΟΠΩΝ
ΡΑΔΙΟΧΗΜΕΙΑ ΔΙΑΧΕΙΡΙΣΗ ΡΑΔΙΕΝΕΡΓΩΝ ΑΠΟΒΛΗΤΩΝ ΤΟΞΙΚΟΤΗΤΑ ΡΑΔΙΕΝΕΡΓΩΝ ΙΣΟΤΟΠΩΝ Τμήμα Χημικών Μηχανικών ΚΕΦΑΛΑΙΟ 3. ΡΑΔΙΕΝΕΡΓΑ ΣΤΟΙΧΕΙΑ 1. ΜΕΤΑΠΤΩΣΕΙΣ ΡΑΔΙΕΝΕΡΓΩΝ ΣΤΟΙΧΕΙΩΝ Ιωάννα Δ. Αναστασοπούλου Βασιλική
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 5: ΣΓΠ και τοπολογία Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Ακουστική)και)Ψυχοακουστική
Ακουστικά'A'ηλεκτροακουστικά'συστήματα Ακουστική)και)Ψυχοακουστική Κάθε'ηχητικό'σύστημα'μπορεί'να'περιγραφεί'ως'διαδοχή'επιμέρους' A Ακουστικών'υποσυστημάτων' A Ηλεκτρικών'υποσυστημάτων' A Ηλεκτροακουστικών'υποσυστημάτων'
Αξιολόγηση Επενδυτικών Σχεδίων
Αξιολόγηση Επενδυτικών Σχεδίων Ενότητα 4: Ανάλυση ευαισθησίας και πιθανολογική ανάλυση Δ. Δαμίγος Μ. Μενεγάκη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 6 η : Θεωρητικές Κατανομές Πιθανότητας για Συνεχή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Αλγόριθμοι ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Ανάπτυξη Λογισμικού Η διαδικασία ανάπτυξης λογισμικού μπορεί να παρομοιαστεί