Αναδρομικός αλγόριθμος
|
|
- Ζώσιμη Παπαντωνίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Αναδρομικός αλγόριθμος Ένας αναδρομικός αλγόριθμος επιλύει ένα πρόβλημα για κάποιες τιμές δεδομένων λύνοντας το ίδιο πρόβλημα για άλλες (σχετιζόμενες) τιμές δεδομένων Είναι απαραίτητο βέβαια να λύνεται το πρόβλημα απευθείας για κάποιες συγκεκριμένες τιμές
2 Αναδρομικός αλγόριθμος Ένας αναδρομικός αλγόριθμος επιλύει ένα πρόβλημα για κάποιες τιμές δεδομένων λύνοντας το ίδιο πρόβλημα για άλλες (σχετιζόμενες) τιμές δεδομένων Είναι απαραίτητο βέβαια να λύνεται το πρόβλημα απευθείας για κάποιες συγκεκριμένες τιμές είναι συχνά πιο αποδοτικός (εύκολος, γρήγορος, απλός) από τον ισοδύναμο μη αναδρομικό
3 Αναδρομικός αλγόριθμος Ένας αναδρομικός αλγόριθμος επιλύει ένα πρόβλημα για κάποιες τιμές δεδομένων λύνοντας το ίδιο πρόβλημα για άλλες (σχετιζόμενες) τιμές δεδομένων Είναι απαραίτητο βέβαια να λύνεται το πρόβλημα απευθείας για κάποιες συγκεκριμένες τιμές είναι συχνά πιο αποδοτικός (εύκολος, γρήγορος, απλός) από τον ισοδύναμο μη αναδρομικό υλοποιείται με υποπρόγραμμα που πρέπει να καλεί τον εαυτό του
4 Αναδρομικός αλγόριθμος Ένας αναδρομικός αλγόριθμος επιλύει ένα πρόβλημα για κάποιες τιμές δεδομένων λύνοντας το ίδιο πρόβλημα για άλλες (σχετιζόμενες) τιμές δεδομένων Είναι απαραίτητο βέβαια να λύνεται το πρόβλημα απευθείας για κάποιες συγκεκριμένες τιμές είναι συχνά πιο αποδοτικός (εύκολος, γρήγορος, απλός) από τον ισοδύναμο μη αναδρομικό υλοποιείται με υποπρόγραμμα που πρέπει να καλεί τον εαυτό του Στη Fortran 95 τα υποπρογράμματα έχουν τη δυνατότητα να καλούν τον εαυτό τους, αν τροποποιηθούν κατάλληλα
5 Παράδειγμα: παραγοντικό Δύο ισοδύναμοι ορισμοί για το παραγοντικό ακέραιου μη αρνητικού αριθμού: Μη αναδρομικός n! = { 1 2 (n 1) n, n > 0, 1, n = 0 Aναδρομικός n! = { (n 1)! n, n > 0, 1, n = 0
6 Αναδρομική συνάρτηση παραγοντικού Όχι απόλυτα σωστός κώδικας Στις εντολές γράφουμε ακριβώς ό,τι μας λέει ο μαθηματικός ορισμός:
7 Αναδρομική συνάρτηση παραγοντικού Όχι απόλυτα σωστός κώδικας Στις εντολές γράφουμε ακριβώς ό,τι μας λέει ο μαθηματικός ορισμός: Ο παραπάνω κώδικας δεν είναι ΑΠΟΛΥΤΑ ΣΩΣΤΟΣ Χρειάζεται τροποποίηση Ας δούμε πρώτα πώς λειτουργεί
8 Αναδρομική συνάρτηση παραγοντικού (2/2) Πώς λειτουργεί Αν γράψουμε ο compiler εκτελεί την par με
9 Αναδρομική συνάρτηση παραγοντικού (2/2) Πώς λειτουργεί Αν γράψουμε ο compiler εκτελεί την par με Το αποτέλεσμα της είναι Δεν μπορεί να το επιστρέψει: καλείται μια συνάρτηση (η par για )
10 Αναδρομική συνάρτηση παραγοντικού (2/2) Πώς λειτουργεί Αν γράψουμε ο compiler εκτελεί την par με Το αποτέλεσμα της είναι Δεν μπορεί να το επιστρέψει: καλείται μια συνάρτηση (η par για ) Το αποτέλεσμα της είναι Δεν μπορεί να το επιστρέψει: καλείται μια συνάρτηση (η par για )
11 Αναδρομική συνάρτηση παραγοντικού (2/2) Πώς λειτουργεί Αν γράψουμε ο compiler εκτελεί την par με Το αποτέλεσμα της είναι Δεν μπορεί να το επιστρέψει: καλείται μια συνάρτηση (η par για ) Το αποτέλεσμα της είναι Δεν μπορεί να το επιστρέψει: καλείται μια συνάρτηση (η par για ) Το αποτέλεσμα της είναι Αυτό επιστρέφεται
12 Αναδρομική συνάρτηση παραγοντικού (2/2) Πώς λειτουργεί Αν γράψουμε ο compiler εκτελεί την par με Άρα Το αποτέλεσμα της είναι Δεν μπορεί να το επιστρέψει: καλείται μια συνάρτηση (η par για ) Το αποτέλεσμα της είναι Δεν μπορεί να το επιστρέψει: καλείται μια συνάρτηση (η par για ) Το αποτέλεσμα της είναι Αυτό επιστρέφεται par(2) par(1)*2 (par(0)*1)*2 (1*1)*2 = 2!
13 Γενικός ορισμός αναδρομικής συνάρτησης Στον ορισμό (και τη δήλωση) της συνάρτησης πρέπει δηλώσουμε ότι είναι αναδρομική και να διαχωρίσουμε το όνομα με το οποίο γίνεται η κλήση της συνάρτησης από τη μεταβλητή του ονόματος της συνάρτησης: όνομα(παράμετροςα, παράμετροςβ, ) & (όνομα2) τύπος_παραμέτρου_α, (xxx) :: παράμετροςα τύπος_παραμέτρου_β, (yyy) :: παράμετροςβ τύπος_επιστρεφόμενης_ποσότητας :: όνομα2 τύπος_α :: τοπική_μεταβλητή_α, τύπος_β :: τοπική_μεταβλητή_β,! κώδικας όνομα2 = όνομα
14 Αναδρομική συνάρτηση παραγοντικού Τροποποίηση του ορισμού Ο παραπάνω κώδικας είναι ΣΩΣΤΟΣ
15 Γενικός ορισμός αναδρομικής υπορουτίνας Σε υπορουτίνα που καλεί τον εαυτό της χρειάζεται μόνο η προσθήκη της λέξης πριν το : όνομα(παράμετροςα, παράμετροςβ, ) τύπος_παραμέτρου_α, (xxx) :: παράμετροςα τύπος_παραμέτρου_β, (yyy) :: παράμετροςβ τύπος_α :: τοπική_μεταβλητή_α, τύπος_β :: τοπική_μεταβλητή_β,! κώδικας όνομα
16 Παράδειγμα: πολυώνυμα Hermite (1/2) Στη Μαθηματική Φυσική χρησιμοποιείται η οικογένεια πολυωνύμων Hermite: H 0 (x) = 1, H 1 (x) = 2x, H 2 (x) = 4x 2 2, H 3 (x) = 8x 3 12x, H 4 (x) = 16x 4 48x , Τα πολυώνυμα H n (x) ικανοποιούν την αναδρομική σχέση: H n (x) = 2xH n 1 (x) 2(n 1)H n 2 (x), n 2
17 Παράδειγμα: πολυώνυμα Hermite (2/2) Αναδρομική συνάρτηση που υπολογίζει τα H n (x):
18 Υποπρογράμματα κατά στοιχείο (ELEMENTAL) Στις ενσωματωμένες συναρτήσεις το όρισμα μπορεί να είναι μία τιμή αλλά επιτρέπεται να είναι και διάνυσμα: Επιθυμούμε το ίδιο να μπορεί να γίνει και σε δικά μας υποπρογράμματα που δέχονται απλές μεταβλητές Γι αυτό συμπληρώνουμε τη δήλωση με το πριν τη λέξη ή
19 Παράδειγμα υπορουτίνας ELEMENTAL (1/2) Ορισμός
20 Παράδειγμα υπορουτίνας ELEMENTAL (2/2) Δήλωση και κλήση
21 Υπορουτίνα παραγωγής τυχαίων αριθμών (1/2) Η υπορουτίνα δέχεται μια πραγματική μεταβλητή Κάθε φορά που καλείται αποδίδει στο όρισμα τυχαία τιμή στο διάστημα [0, 1) Η υπορουτίνα είναι άρα δέχεται και διάνυσμα πραγματικών στους οποίους αποδίδει τυχαίες τιμές
22 Υπορουτίνα παραγωγής τυχαίων αριθμών (1/2) Η υπορουτίνα δέχεται μια πραγματική μεταβλητή Κάθε φορά που καλείται αποδίδει στο όρισμα τυχαία τιμή στο διάστημα [0, 1) Η υπορουτίνα είναι άρα δέχεται και διάνυσμα πραγματικών στους οποίους αποδίδει τυχαίες τιμές Παράδειγμα
23 Υπορουτίνα παραγωγής τυχαίων αριθμών (2/2) Αλλαγή διαστήματος Αν r είναι τυχαίος πραγματικός αριθμός στο [0, 1), τότε κάνουμε τη μετατροπή x = κr + λ και επιλέγουμε τους συντελεστές κ, λ ώστε η ποσότητα x να βρίσκεται εντός των επιθυμητών ορίων Εύκολα επαληθεύεται ότι ο x = (b a)r + a ικανοποιεί τις σχέσεις a x < b, άρα ο x είναι τυχαίος πραγματικός στο διάστημα [a, b)
24
Συναρτήσεις. Υποπρόγραμμα
Συναρτήσεις Υποπρόγραμμα Ένα σύνολο από εντολές που κάνουν κάτι συγκεκριμένο, έχουν στενή σχέση/εξάρτηση μεταξύ τους, έχουν «χαλαρή» σύνδεση με τον υπόλοιπο κώδικα, μπορεί να εξαχθεί από το πρόγραμμά μας
ΚΕΦΑΛΑΙΟ 10 ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ
ΚΕΦΑΛΑΙΟ 10 Όπως είδαμε και σε προηγούμενο κεφάλαιο μια από τις βασικότερες τεχνικές στον Δομημένο Προγραμματισμό είναι ο Τμηματικός Προγραμματισμός. Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης
ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ Α.Ε.Π.Π. ΟΝΟΜΑ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ Α.Ε.Π.Π. ΟΝΟΜΑ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη.
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση ονομάζεται ένα τμήμα κώδικα (ή υποπρόγραμμα) το
Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,
Τι είναι υποπρόγραμμα; Τμήμα προγράμματος το οποίο επιτελεί ένα αυτόνομο υπολογιστικό έργο (γράφεται χωριστά από το υπόλοιπο πρόγραμμα)
Τι είναι υποπρόγραμμα; Τμήμα προγράμματος το οποίο επιτελεί ένα αυτόνομο υπολογιστικό έργο (γράφεται χωριστά από το υπόλοιπο πρόγραμμα) Επικοινωνία Το υποπρόγραμμα δέχεται τιμές από το πρόγραμμα Επιστρέφει,
1. Καταχωρεί σ ένα πίνακα ΠΟΛΕΙΣ[10] τις 10 πόλεις της Ελλάδας.
Θέμα με τετραγωνικό, συμμετρικό πίνακα Το υπουργείο τουρισμού θέλει να ενημερώσει τους τουρίστες σχετικά με τις χιλιομετρικές αποστάσεις μεταξύ 10 πόλεων της Ελλάδας. Να γραφεί πρόγραμμα το οποίο να: 1.
Επικοινωνία:
Σπύρος Ζυγούρης Καθηγητής Πληροφορικής Επικοινωνία: spzygouris@gmail.com Πως ορίζεται ο τμηματικός προγραμματισμός; Πρόγραμμα Εντολή 1 Εντολή 2 Εντολή 3 Εντολή 4 Εντολή 5 Εντολή 2 Εντολή 3 Εντολή 4 Εντολή
Προγραμματισμός Η/Υ. Συναρτήσεις & Υποπρογράμματα. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Συναρτήσεις & Υποπρογράμματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τμηματικός Προγραμματισμός Η επίλυση ενός προβλήματος διευκολύνεται
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 10 ΟΥ ΚΕΦΑΛΑΙΟΥ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1. Πως ορίζεται ο τμηματικός προγραμματισμός; Τμηματικός προγραμματισμός
Κεφάλαιο 10 ο Υποπρογράµµατα
Κεφάλαιο 10 ο Υποπρογράµµατα Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Η αντιµετώπιση των σύνθετων προβληµάτων και η ανάπτυξη των αντίστοιχων προγραµµάτων µπορεί να γίνει µε την ιεραρχική σχεδίαση,
Κεφάλαιο 10 Υποπρογράμματα. Καραμαούνας Πολύκαρπος
Κεφάλαιο 10 Υποπρογράμματα 1 10.1 Τμηματικός προγραμματισμός Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα σύνολο από απλούστερα τμήματα προγραμμάτων.
Κεφάλαιο 10 Υποπρογράμματα. Καραμαούνας Πολύκαρπος
Κεφάλαιο 10 Υποπρογράμματα 1 10.1 Τμηματικός προγραμματισμός Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα σύνολο από απλούστερα τμήματα προγραμμάτων.
1. Λογικά λάθη ονομάζονται αυτά που οφείλονται σε σφάλματα κατά την υλοποίηση του αλγόριθμου.
ΑΕσΠΠ-Κεφ 10.Υποπρογράμματα 1 1. Λογικά λάθη ονομάζονται αυτά που οφείλονται σε σφάλματα κατά την υλοποίηση του αλγόριθμου. ΣΩΣΤΟ ΛΑΘΟΣ 2. Συντακτικά λάθη ονομάζονται αυτά που οφείλονται σε αναγραμματισμούς
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εξετάσεις Προσομοίωσης 06/04/2015 Θέμα Α Α1. Να γράψετε στο τετράδιο σας τον αριθμό κάθε πρότασης και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή και ΛΑΘΟΣ αν
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
Άθροισμα τριών ποσοτήτων (1/2)
Πίνακες Άθροισμα τριών ποσοτήτων (1/2) Πρόβλημα Πώς γενικεύεται για πχ 300 ποσότητες; Άθροισμα τριών ποσοτήτων (2/2) Να το τροποποιήσω ώστε να χρησιμοποιήσω εντολή ; Άθροισμα τριών ποσοτήτων (2/2) Να το
(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. ii) Πόσες φορές θα εκτελεστεί η εντολή ΔΙΑΒΑΣΕ Α[μ,λ] στον αλγόριθμο της προηγούμενης ερώτησης; α) 35 β) 12 γ) 20
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Προγραμματισμός Η/Υ. 6 η ενότητα: Συναρτήσεις. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων. Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Προγραμματισμός Η/Υ 6 η ενότητα: Συναρτήσεις Τμήμα Τεχνολόγων Περιβάλλοντος ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. ii) Πόσες φορές θα εκτελεστεί η εντολή ΔΙΑΒΑΣΕ Α[μ,λ] στον αλγόριθμο της προηγούμενης ερώτησης; α) 35 β) 12 γ) 20
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ - ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ
ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 10 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ - ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ 1 ΤΗΛ.6947345322, 6987070028 email: xristoforos_karachristos@hotmail.com https://sites.google.com/site/aeppkx
Παρουσίαση συλλογών υποπρογραμμάτων για γραμμική άλγεβρα: blas lapack
Παρουσίαση συλλογών υποπρογραμμάτων για γραμμική άλγεβρα: blas lapack Σταμάτης Σταματιάδης Τμήμα Επιστήμης και Τεχνολογίας Υλικών, Πανεπιστήμιο Κρήτης blas Basic Linear Algebra Subprograms Υποπρογράμματα
ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Διαδικασίες και συναρτήσεις. 22 Νοε 2008 Ανάπτυξη εφαρμογών/ Υποπρογράμματα 1
ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Διαδικασίες και συναρτήσεις 22 Νοε 2008 Ανάπτυξη εφαρμογών/ Υποπρογράμματα 1 Βασικές έννοιες Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα
TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ
Μάθημα 7 - Υποπρογράμματα Εργαστήριο 11 Ο TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ Βασικές Έννοιες: Υποπρόγραμμα, Ανάλυση προβλήματος, top down σχεδίαση, Συνάρτηση, Διαδικασία, Παράμετρος, Κλήση συνάρτησης, Μετάβαση
Ανάπτυξη και Σχεδίαση Λογισμικού
Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Συναρτήσεις (Functions) Οι βασικές λειτουργικές ενότητες ενός προγράμματος C Καλούνται με ορίσματα που αντιστοιχούνται σε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια
ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Κάθε υποπρόγραμμα έχει μόνο μία είσοδο και μία έξοδο. Κάθε υποπρόγραμμα πρέπει να είναι ανεξάρτητο από τα άλλα.
ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης και ανάπτυξης των προγραμμάτων ως ένα σύνολο από απλούστερα τμήματα προγραμμάτων. Όταν ένα τμήμα προγράμματος επιτελεί ένα αυτόνομο
ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Εισαγωγή Οι γεννήτριες συναρτήσεις είναι ένα από τα ισχυρά εργαλεία για μια ενοποιημένη αντιμετώπιση πολλών κατηγοριών προβλημάτων απαρίθμησης Ο Lplce έθεσε πρώτος τις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 4: Συναρτήσεις Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι Σημειώσεις MATLAB Ενότητα 4 ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο
ΠΕΡΙΕΧΟΜΕΝΑ Τμηματικός προγραμματισμός Χαρακτηριστικά των υποπρογραμμάτων Πλεονεκτήματα του τμηματικού προγραμματισμού Παράμετροι Διαδικασίες και
ΠΕΡΙΕΧΟΜΕΝΑ Τμηματικός προγραμματισμός Χαρακτηριστικά των υποπρογραμμάτων Πλεονεκτήματα του τμηματικού προγραμματισμού Παράμετροι Διαδικασίες και συναρτήσεις Εμβέλεια μεταβλητών - σταθερών Αναδρομή Εισαγωγή
Αριθµητική Ολοκλήρωση
Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Τι είναι τα υποπρογράμματα Αυτόνομες μονάδες κώδικα Γραμμένα από τον χρήστη Η δομή
FORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα;
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Τι πρέπει να ικανοποιεί ένα κομμάτι κώδικα ώστε να χαρακτηριστεί ως υποπρόγραμμα; Τα υποπρογράμματα πρέπει
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ. Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. ΑΡΧΗ Εντολές ΤΕΛΟΣ_ΔΙΑΔΙΚΑΣΙΑΣ
Πως γίνεται ο ορισμός μιας διαδικασίας; Να δοθούν σχετικά παραδείγματα. Οι διαδικασίες μπορούν να εκτελέσουν οποιαδήποτε λειτουργία και δεν επιστρέφουν μια τιμή όπως οι συναρτήσεις. Κάθε διαδικασία έχει
Τυχαίοι αριθμοί struct Αρχεία Διαμορφώσεις Συναρτήσεις Χειρισμός σφαλμάτων ΠΕΜΠΤΗ ΔΙΑΛΕΞΗ
ΠΕΜΠΤΗ ΔΙΑΛΕΞΗ Γεννήτρια τυχαίων αριθμών Η C++ παρέχει στο συναρτήσεις και κλάσεις και κλάσεων για την παραγωγή τυχαίων αριθμών. Υπάρχουν Μηχανισμοί παραγωγής σειράς τυχαίων bits. Κάθε bit έχει ίδια πιθανότητα
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων
ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΑΣΜΑ 21/4/2013
Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ Α [40 μόρια] α) Να επιλέξτε το γράμμα Σ, αν μια πρόταση είναι σωστή και
ΚΣΕ ΣΟΥΦΛΙΟΥ. Συνεδρία 7
Εισαγωγική Επιµόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιµόρφωση Β1 Επιπέδου) ΚΣΕ ΣΟΥΦΛΙΟΥ Συνεδρία 7 Παράδειγµα Μικροσεναρίου: Έννοια Συνάρτηση στον Προγραµµατισµό ΕΠΙΜΕΛΕΙΑ: Κουτσονίκος Μιχαήλ Πληροφορικός
ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΡΟΟΔΟΣ
ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΜΑΡΤΙΟΣ 2017 ΘΕΜΑΤΑ ΘΕΜΑ 1 Ο Α. Να απαντήσετε στις παρακάτω προτάσεις χαρακτηρίζοντάς τες με το γράμμα Σ
ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ
ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Λύσεις Θεμάτων Εξετάσεων Ενιαίου Λυκείου 2004
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Λύσεις Θεμάτων Εξετάσεων Ενιαίου Λυκείου 2004 Θέμα 1 ο Α. Β. Γ. Δ. 1. Σωστό 2. Σωστό 3. Λάθος 4. Σωστό 5. Λάθος 1: β, δ 2: α, γ 1. Αληθής 2. Αληθής 3.
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάσεις Προσομοίωσης 10/04/2018
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εξετάσεις Προσομοίωσης 10/04/2018 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ, αν
Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο. Τι θα τυπωθεί στον παρακάτω κώδικα;
Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο Τι θα τυπωθεί στον παρακάτω κώδικα; Ρητή μετατροπή αριθμητικής τιμής σε άλλο τύπο Τι θα τυπωθεί στον παρακάτω κώδικα; Χωρίς να αλλάξουμε τον τύπο των a,b,
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τι είναι ; Συναρτήσεις. Παράδειγμα #1. double convert ( double cm ) { double inch;
ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ Τι είναι ; Συναρτήσεις Αυτόνομα τμήματα κώδικα (υποπρογράμματα) που πραγματοποιούν μια καθορισμένη εργασία. Χρήσιμες για περιπτώσεις που ο ίδιος υπολογισμός επαναλαμβάνεται πολλές φορές
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΦΡΟΝΤΙΣΤΗΡΙΑ «ΘΕΣΜΟΣ» ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις
Fast Fourier Transform
Fast Fourier Transform Παναγιώτης Πατσιλινάκος ΕΜΕ 19 Οκτωβρίου 2017 Παναγιώτης Πατσιλινάκος (ΕΜΕ) Fast Fourier Transform 19 Οκτωβρίου 2017 1 / 20 1 Εισαγωγή Στόχος Προαπαιτούμενα 2 Η ιδέα Αντιστροφή -
Αναδρομή (Recursion) Πώς να λύσουμε ένα πρόβλημα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί με τον ίδιο τρόπο.
Αναδρομή (Recursion) Πώς να λύσουμε ένα πρόβλημα κάνοντας λίγη δουλειά και ανάγοντας το υπόλοιπο να λυθεί με τον ίδιο τρόπο. Πού χρειάζεται; Πολλές μαθηματικές συναρτήσεις ορίζονται αναδρομικά. Δεν είναι
Β. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α, που αντιστοιχούν σωστά με το γράμμα της Στήλης Β. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 4 ΙΟΥΛΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΣΧΧ.. ΕΕΤΤΟΟΣΣ 22001100-22001111 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα Α Α1. Δίνονται οι παρακάτω
ΘΕΜΑ 1ο. Μονάδες 10. Β. ίνεται το παρακάτω τμήμα αλγορίθμου: Όσο Ι < 10 επανάλαβε Εμφάνισε Ι Ι Ι + 3 Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ
ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΛΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή
ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή Στο εργαστήριο αυτό θα μάθουμε για τη χρήση συναρτήσεων με σκοπό την κατασκευή αυτόνομων τμημάτων προγραμμάτων που υλοποιούν μία συγκεκριμένη διαδικασία, τα οποία
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005 ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα να ικανοποιεί ένας αλγόριθµος. Μονάδες 5 2. Ποιο κριτήριο
Κεφάλαιο 10ο. ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ ιαδικασίες - Συναρτήσεις
Κεφάλαιο 10ο ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ ιαδικασίες - Συναρτήσεις Μάριος Αραποστάθης καθηγητής πληροφορικής Βαρβακείου Λυκείου http://users.sch.gr/mariosarapostathi s Τμηματικός Προγραματισμός Ο καλύτερος τρόπος για
<<ΔΗΜΗΤΡΗΣ ΜΑΝΩΛΗΣ ΦΥΣΙΚΟΣ ΜCs>> 1
ΚΕΦΑΛΑΙΟ 7 ο ΠΡΟΓΡΑΜΜΑ : Το πρόγραμμα αποτελείται από μια σειρά οδηγιών, που ονομάζονται εντολές, για την εκτέλεση τέτοιου είδους πράξεων, καθώς επίσης και από ένα σύνολο πρόσθετων οδηγιών ελέγχου, που
Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο: ,
Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο:210-61.24.000, http://www.akadimos.gr ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ 2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιμέλεια θεμάτων
Αναδρομικοί Αλγόριθμοι
Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012. Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ 23/04/2012 ΘΕΜΑ Α Α. Να απαντήσετε με Σ ή Λ στις παρακάτω προτάσεις: 1. Κάθε βρόγχος που υλοποιείται με την εντολή Για μπορεί να
ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Συναρτήσεις I Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον. τελική επανάληψη /4/2015 1
Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον τελική επανάληψη 2015 7/4/2015 1 Α -Β θέμα 40Μ+20Μ Ορθά συντακτικώς γραμμένες προτάσεις, λέξεις κλειδιά, ολοκληρωμένες φράσεις Χρήση κριτικής σκέψης σε
Θέματα Προγραμματισμού Η/Υ
Πρόγραμμα Μεταπτυχιακών Σπουδών Πληροφορική και Υπολογιστική Βιοϊατρική Θέματα Προγραμματισμού Η/Υ Ενότητα 1: Εισαγωγή Θεματική Ενότητα: Εισαγωγή στον Προγραμματισμό ΘΕΜΑΤΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ Θεματική
Κεφάλαιο 10. Υποπρογράμματα
Κεφάλαιο 10 Υποπρογράμματα 10.1 Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου είναι να καταστούν ικανοί οι μαθητές να χρησιμοποιούν υποπρογράμματα για τη δημιουργία συνθέτων προγραμμάτων. 194
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΘΕΜΑ Α Α1. Να χαρακτηρίσετε καθεμιά από τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας, δίπλα από τον αριθμό κάθε πρότασης, το γράμμα Σ, αν αυτή
Θέματα ΑΕΠΠ Πανελλήνιες Εξετάσεις 2007
Θέματα ΑΕΠΠ Πανελλήνιες Εξετάσεις 2007 ΣΤΑΤΙΣΤΙΚΑ Αποτελέσματα γραπτής εξέτασης στο μάθημα ΑΕΠΠ (Ιούλιος 2007) 18-20 15-17,9 12-14,9 10-11,9 5-9,9 0-4,9 13,96% 13,90% 12,36% 10,19% 28,34% 21,22% ΘΕΜΑ 1
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ασκήσεις στα υποπρογράμματα
Ασκήσεις στα υποπρογράμματα 1) Τι θα εμφανιστεί στην οθόνη όταν εκτελεστεί το παρακάτω κύριο πρόγραμμα (για είσοδο το -2)? ΠΡΟΓΡΑΜΜΑ ΠΑΡΑΔΕΙΓΜΑ1 ΑΚΕΡΑΙΕΣ: Χ, Υ ΓΡΑΨΕ ΔΩΣΕ ΕΝΑΝ ΑΚΕΡΑΙΟ ΔΙΑΒΑΣΕ Χ ΚΑΛΕΣΕ
ΘΕΜΑ 1ο. Μονάδες 10. Β. ίνεται το παρακάτω τμήμα αλγορίθμου: Όσο Ι < 10 επανάλαβε Εμφάνισε Ι Ι Ι + 3 Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ
ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΛΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015
ΘΕΜΑ Α Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Απρίλης 2015 Α1.Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα να σημειώσετε
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ)
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό καθεμιάς
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό,
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάσεις Προσομοίωσης 24/04/2019
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εξετάσεις Προσομοίωσης 24/04/2019 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ, αν
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡ/ΚΗΣ ΘΕΜΑ Α Α1. Να γράψετε
Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ
1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη
4.3 Ορθότητα και Πληρότητα
4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 12 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
Κεφάλαιο 10. Ερωτήσεις ανάπτυξης
Κεφάλαιο 10 Ερωτήσεις ανάπτυξης 1. Τι ονομάζουμε τμηματικό προγραμματισμό; 2. Τι ονομάζουμε υποπρόγραμμα; 3. Ποια τα χαρακτηριστικά των υποπρογραμμάτων; 4. Ποια τα πλεονεκτήματα του τμηματικού προγραμματισμού;
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Κανάρη 36, Δάφνη Τηλ. 210 9713934 & 210 9769376 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ο.Π. ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα Α A1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις
Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο: ,
ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Επιμέλεια θεμάτων : Οικονομόπουλος Σπύρος ΘΕΜΑ Α: Α1. Να γράψετε στο τετράδιο σας τον αριθµό κάθε πρότασης και δίπλα
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-6 και δίπλα τη λέξη Σωστό,
Γραμμικός Προγραμματισμός
Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α.Ε.Π.Π. ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Α.Ε.Π.Π. ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις Επιμέλεια: Ομάδα Πληροφορικής http://www.othisi.gr 1 Δευτέρα, 12 Ιουνίου 2017 ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡ/ΚΗΣ ΑΝΑΠΤΥΞΗ
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 2) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 2) Σεπτέμβριος 2015
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1. Να
Θέμα Α Α1. Γράψτε την λογική έκφραση Χ < > 0 ισοδύναμα με τη χρήση λογικών τελεστών Μονάδες 7
ΜΑΘΗΜΑ / ΣΑΞΗ : ΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΜΑΣΟ: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Θέμα Α Α1. Γράψτε την λογική έκφραση Χ < > 0 ισοδύναμα με τη χρήση λογικών τελεστών Μονάδες 7
Απλοποιεί τα γεγονότα έτσι ώστε να περιγράφει τι έχει γίνει και όχι πως έχει γίνει.
οµηµένες τεχνικές Ο στόχος των δοµηµένων τεχνικών είναι: Υψηλής ποιότητας προγράµµατα Εύκολη τροποποίηση προγραµµάτων Απλοποιηµένα προγράµµατα Μείωση κόστους και χρόνου ανάπτυξης. Οι βασικές αρχές τους
12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες