Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035).
|
|
- Παναγιώτης Παπακώστας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Βασικές Δοµές Δεδοµένων Σύντοµη επανάληψη (ΕΠΛ 035).
2 Περίληψη Γραµµικές Δοµές Δεδοµένων Πίνακες Λίστες Στοίβες Ουρές Γράφοι Δέντρα
3 Γραµµικές Δοµές Πίνακας (array) A[0] A[1] A[2] A[ ] A[n-1] Προκαθορισµένη χωρητικότητα (n) Ο χρόνος πρόσβασης (access time) σε οποιοδήποτε στοιχείο του πίνακα είναι σταθερός, ανεξάρτητα από τη θέση του Συνδεδεµένη Λίστα (Linked List) Item 0 Item 1 Item n Μη προκαθορισµένη χωρητικότητα Ο χρόνος πρόσβασης σε οποιοδήποτε στοιχείο του πίνακα πιθανόν να εξαρτάτε από τη θέση του Πώς προσθέτουµε και διαγράφουµε στοιχεία στις πιο πάνω δοµές;
4 Στοίβα Βασικές Λειτουργίες Push Pop Υλοποίηση µε πίνακα A[0] A[1] A[2] A[ ] A[k] A[ ] A[n-1] A[], top. A[], top. push(item) pop() 1. top= top+1; 1. top= top-1; 2. A[top]= item; 2. Return A[top+1]; Έλεγχος για να µην ξεπεραστούν τα όρια του πίνακα.
5 Στοίβα Υλοποίηση µε συνδεδεµένη λίστα top Item n-1 Item n-2 Item 0 top. top. push(item) pop() 1. item.next=top; 1. item= top; 2. top= item; 2. top= item.next; 3. item.next=null; 4. Return item; Έλεγχος για µη ορισµένους (null) δείκτες.
6 Ουρά (FIFO Queue) Βασικές Λειτουργίες enqueue dequeue Υλοποίηση µε πίνακα Q[0] Q[1] Q[2] Q[ ] Q[k] Q[k+1] Q[ ] Q[n-1] Q[], head, tail. enqueue(item) 1. tail= (top+1)mod n; 2. Q[tail]= item; Απαραίτητοι έλεγχοι; Q[], head, tail dequeue() 1. item= Q[head]; 2. head= (head+1)mod n 3. Return item;
7 Ουρά (FIFO Queue) Υλοποίηση µε συνδεδεµένη λίστα head tail Item n+1 Item n+2 Item k Item k+1 head, tail. head, tail. enqueue(item) dequeue() 1. tail.next=item; 1. item= head; 2. tail= item; 2. head= head.next; 3. item.next=null; 4. Return item; Απαραίτητοι έλεγχοι;
8 Πρόβληµα Υποθέστε πώς χρειάζεται να αποθηκεύσετε περίπου 300 στοιχεία σε µία λίστα χρειάζεται να έχετε άµεση πρόσβαση στα δεδοµένα Το «κλειδί» κάθε στοιχείου µπορεί να πάρει τιµές στο διάστηµα από 1 µέχρι 2 32 Ποιά δοµή θα χρησιµοποιούσατε για την αποθήκευση των δεδοµένων; Πίνακας (array) Ο χρόνος πρόσβασης (access time) σε οποιοδήποτε στοιχείο του πίνακα είναι µικρό και σταθερός, ανεξάρτητα από τη θέση του Χρειάζεται πίνακας µεγέθους της τάξης του 2 32 Συνδεδεµένη λίστα (linked list) Ο χρόνος πρόσβασης (access time) εξαρτάτε από τη θέση του κάθε στοιχείου και µπορεί να είναι µεγάλος. Χρειάζεται µνήµη µόνο για 300 στοιχεία
9 Hash Table Χρησιµοποιούµε πίνακα µεγέθους «λίγο» µεγαλύτερου από ότι χρειάζεται (π.χ. 400) Μετατρέπουµε το κλειδί έτσι ώστε να πέρνει τιµές µόνο µεταξύ 1 και του µεγέθους του πίνακα (π.χ. 1 έως 400) Χρησιµοποιώντας ένα «καλό» Hash function Σε περίπτωση σύγκρουσης, χρησιµοποιούµε συνδεδεµένη λίστα. Hash Function Προκαθορισµένο και γνωστό Θα πρέπει να αντιστοιχεί κάθε ένα από τα αναµενόµενα κλειδιά σε «διαφορετική» θέση (µε µεγάλη πιθανότητα).
10 Hash Table Πιθανά κλειδιά από 1 έως 2 32 x y z Πίνακας µε n θέσεις
11 Γράφοι (Graphs) G=(V, E) V: σύνολο κόµβων (κορυφών vertices/nodes) E: σύνολο των ακµών (τόξων edges/arcs) Κατευθυνόµενες και µη κατευθυνόµενες ακµές (directed and undirected edges) Παράδειγµα V={a,b,c,d} E={(a,b), (a,c), (b,c), (b,d)} a b a b c d c d Μη Κατευθυνόµενες ακµές Κατευθυνόµενες ακµές
12 Γράφοι (Graphs) Γειτονικοί κόµβοι (neighboring/adjacent): Κόµβοι συνδεδεµένοι µε µια ακµή Μονοπάτι (path) µεταξύ 2 κόµβων: Ακολουθία από γειτονικούς κόµβους που ξεκινά από τον ένα και καταλήγει στον άλλο. Απλό (simple) µονοπάτι: Μονοπάτι στο οποίο όλοι οι κόµβοι εµφανίζονται µόνο µια φορά µε πιθανή εξαίρεση τον πρώτο και τελευταίο κόµβο. Κυκλική διαδροµή (cycle): Απλό µονοπάτι στο οποίο ο πρώτος και τελευταίος κόµβος είναι ο ίδιος Απόσταση (distance) µεταξύ κόµβων: Το µήκος του ελάχιστου µονοπατιού µεταξύ των κόµβων
13 Γράφοι (Graphs) Συνδεδεµένος (connected) γράφος: Γράφος στον οποίο υπάρχει µονοπάτι µεταξύ οποιωνδήποτε δύο κόµβων. Άκυκλος (acyclic) γράφος: Γράφοι στους οποίους δεν υπάρχουν µονοπάτια που να επιστρέφουν στον κόµβο από όπου ξεκίνησαν. Γράφος µε βάρη (weighted graph): Γράφος στον οποίο κάθε ακµή συσχετίζεται µε κάποιο βάρος (ή κόστος). Αραιός (sparse) γράφος: γράφος µε σχετικά λίγες ακµές Πυκνός (dense) γράφος: µη αραιός γράφος Μέγιστος αριθµός ακµών (δεν επιτρέπονται self-loops) Μη Κατευθυνόµενος Κατευθυνόµενος
14 Απεικόνιση Γράφων (Graph Representation) Πίνακας Γειτνίασης (Adjacency Matrix) A: Πίνακας V x V A[i,j]= 1 Εάν υπάρχει ακµή µεταξύ του κόµβου i και j A[i,j]= 0 Εάν δεν υπάρχει ακµή µεταξύ του κόµβου i και j Εάν πρόκειται για γράφο µε βάρη A[i,j]= w ij όπου w ij είναι το βάρος της ακµής µεταξύ του κόµβου i και j A[i,j]= Εάν δεν υπάρχει ακµή µεταξύ του κόµβου i και j Πόσος ο ελάχιστος χώρος που χρειάζεται ο πίνακας (δεν επιτρέπονται self-loops); Μη Κατευθυνόµενος Κατευθυνόµενος
15 Απεικόνιση Γράφων (Graph Representation) Λίστα Γειτνίασης (Adjacency List) Ένα διάνυσµα (µονοδιάστατος πίνακας) µεγέθους V. Από το στοιχείο i του πίνακα ξεκινά µια συνδεδεµένη λίστα Εάν πρόκειται για γράφο µε βάρη Σε κάθε στοιχείο της λίστας υπάρχει επίσης και το βάρος της ακµής που συνδέει τους κόµβους Χώρος που χρειάζεται στη µνήµη: Στη χειρότερη περίπτωση: V x( V -1) Στην περίπτωση αραιών γράφων: V + Ε
16 Παράδειγµα a b c d A = a b c d a b c
17 Παράδειγµα µε βάρη a 2 b c d a b,2 c,3 null b c d a,2 c,4 d,7 a,3 b,4 b,7
18 Δέντρα (Trees) Συνδεδεµένος Άκυκλος Γράφος Σε ένα συνδεδεµένο δέντρο ισχύει πάντα: Υπάρχει ένα και µόνο µονοπάτι µεταξύ δύο κόµβων Ριζωµένα (rooted) δέντρα: δέντρα στα οποία αυθαίρετα επιλέγεται ένας κόµβος σαν ρίζα (root) Ρίζα a b e b c d a c d e Ελεύθερο δέντρο Ριζωµένο δέντρο
19 Δέντρα αδέλφια (siblings) b a Ρίζα (root) d e f Βαθµός (degree) ενός κόµβου: αριθµός των παιδιών του. Βαθµός του δέντρου: µέγιστος βαθµός από τους κόµβους του δέντρου. Βάθος (depth) ενός κόµβου είναι η απόσταση του κόµβου από τη ρίζα Ύψος του δέντρου είναι η απόσταση της ρίζας από το πιο αποµακρυσµένο φύλλο. c γονέας (parent) του f φύλλο (leaf) Παιδί (child) του b
20 Απεικόνιση Δέντρων Δυσδιάστατους Πίνακες (όπως οι γράφοι) Όχι πολύ αποδοτική λύση αφού ένα δέντρο είναι ένας αραιός γράφος! Μονοδιάστατος Πίνακας Τα παιδιά κάθε κόµβου εµφανίζονται σε συγκεκριµένες θέσεις του πίνακα Για αποδοτικότερη διαχείριση των δεδοµένων, στον πίνακα εµφανίζονται δείκτες προς τα δεδοµένα και όχι τα δεδοµένα τα ίδια. Παράδειγµα δυαδικού δέντρου Τα παιδιά του κόµβου i είναι στις θέσεις 2i, και 2i+1. Ο γονέας του κόµβου j βρίσκεται στη θέση i 2i 2i+1 n
21 Απεικόνιση Δέντρων Μη γραµµικές λίστες Κάθε κόµβος µπορεί να έχει ένα ή περισσότερα παιδιά Παράδειγµα δυαδικού δέντρου Αριστερό παιδί lc Item 0 rc δεξί παιδί lc Item 1 rc lc Item 2 rc lc Item 3 rc lc Item 4 rc lc Item 5 rc Η ακόλουθη σχέση ισχύει για δυαδικά δέντρα µε n κόµβους τους οποίους το ύψος είναι h
22 Ταξινοµηµένα Δέντρα Δυαδικά ταξινοµηµένα δέντρα Το κλειδί του αριστερού παιδιού είναι µικρότερο από αυτό του γονιού Το κλειδί του δεξιού παιδιού είναι µεγαλύτερο ή ίσο µε αυτό του γονιού 45
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Εισαγωγή στους Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι - ορισμοί και υλοποίηση Διάσχιση Γράφων Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες
ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Διάσχιση Γράφων Τοπολογική Ταξινόµηση ΕΠΛ 23 Δοµές Δεδοµένων και Αλγόριθµοι - Γράφοι Η πιο γενική µορφή δοµής
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Τοπολογική Ταξινόµηση ιάσχιση Γράφων ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 - Γράφοι Ηπιο
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 9 Απριλίου 2009 1 / 0 Παραδείγµατα γράφων
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομές Δεδομένων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές
ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.
ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» ΤΟΜΟΣ Α ΤΟΜΟΣ Β ΑΓΓΛΙΚΗ Γράφημα, Γράφος, Ένα γράφημα αποτελείται από ένα σύνολο 94 11 κορυφών και ένα σύνολο ακμών.
Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 20: Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ολοκλήρωση Αλγορίθμων Διάσχισης Γράφων (Από Διάλεξη 19) Τοπολογική Ταξινόμηση Εφαρμογές, Παραδείγματα, Αλγόριθμοι
Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή
Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας
Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 9: Γράφοι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Διδάσκων: Παναγιώτης νδρέου ΕΠΛ035 Δομές Δεδομένων και λγόριθμοι για Ηλ. Μηχ.
ιαφάνειες παρουσίασης #11
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων. Γραφήματα. Αναπαράσταση Γραφημάτων 3. Διερεύνηση σε Πρώτα σε Πλάτος (BFS) Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γράφημα Ορισμός: Ένα γράφημα G είναι το διατεταγμένο ζεύγος
Γράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V
Γράφοι Ορολογία γράφος ή γράφηµα (graph) Ορισµός: G = (V, E) όπου V:ένα σύνολο E:µια διµελής σχέση στο V Ορολογία (συνέχεια) κάθε v V ονοµάζεται κορυφή (vertex) ή κόµβος (node) κάθε (v 1, v 2 ) Ε ονοµάζεται
Συλλογές, Στοίβες και Ουρές
Συλλογές, Στοίβες και Ουρές Σε πολλές εφαρμογές μας αρκεί η αναπαράσταση ενός δυναμικού συνόλου με μια δομή δεδομένων η οποία δεν υποστηρίζει την αναζήτηση οποιουδήποτε στοιχείου. Συλλογή (bag) : Επιστρέφει
8.6 Κλάσεις και αντικείμενα 8.7 Δείκτες σε γλώσσα μηχανής
ΚΕΦΑΛΑΙΟ 8: Αφαιρετικές έννοιες δεδομένων 8.1 Βασικές έννοιες δομών δεδομένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δομών δεδομένων 8.4 Μια σύντομη μελέτη περίπτωσης 8.4 Προσαρμοσμένοι τύποι δεδομένων 8.6
Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων
Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών
Στοιχεία Θεωρίας Γράφων (Graph Theory)
Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το
Διάλεξη 18: Γράφοι I Εισαγωγή
Διάλεξη 18: Γράφοι I Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι ορισμοί και υλοποίηση Διάσχιση Γράφων ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Εισαγωγή στους Γράφους Η πιο
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2017 - I. ΜΗΛΗΣ AΛΓΟΡΙΘΜΟΙ ΓΡΑΦΩΝ Ι ΕΞΕΡΕΥΝΗΣΗ 1 Graphs Ανά ζεύγη (pairwise) σχέσεις μεταξύ των στοιχείων ενός συνόλου 2 Graphs Εφαρμογές Χάρτες,
Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Εισαγωγή σε δενδρικές δομές δεδομένων, -
ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (path) o Πρόγονος απόγονος (ancestor, descendant)
ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ
Ενότητα 5 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Οι λίστες, χάνοντας τα πλεονεκτήματα των πινάκων, λύνουν προβλήματα που παρουσιάζουν οι πίνακες
Δομές δεδομένων Πίνακες Οι πίνακες είναι το πιο απλό «μέσο» αποθήκευσης ομοειδούς πληροφορίας. Χρησιμοποιούν ακριβώς όση μνήμη χρειάζεται για την αποθήκευση της πληροφορίας Επιτρέπουν την προσπέλαση άμεσα
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: ΓράφοιII -ΤοπολογικήΤαξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές
Βασικές Έννοιες Δοµών Δεδοµένων
Δοµές Δεδοµένων Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος Βασικές Έννοιες
ένδρα (tail, head) Γονέας Παιδί (ancestor, descendant) Φύλλο Εσωτερικός Κόµβος (leaf, non-leaf) που αποτελεί το γονέα του v.
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΗΥ240 - Παναγιώτα Φατούρου 1 ένδρα Κόµβοι (nodes) Ακµές (edges) Ουρά και κεφαλή ακµής (tail, head) Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) Μονοπάτι (path) Πρόγονος απόγονος
Τύποι Δεδομένων και Απλές Δομές Δεδομένων. Παύλος Εφραιμίδης V1.0 ( )
Τύποι Δεδομένων και Απλές Δομές Δεδομένων Παύλος Εφραιμίδης V1.0 (2014-01-13) Απλές Δομές Δεδομένων Στην ενότητα αυτή θα γνωρίσουμε ορισμένες απλές Δομές Δεδομένων και θα τις χρησιμοποιήσουμε για την αποδοτική
Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.
Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,
Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
Διάλεξη 18: Γράφοι I - Εισαγωγή
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 18: Γράφοι I - Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Εισαγωγή στους Γράφους
Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αλγόριθμοι και πολυπλοκότητα Στάθης Ζάχος, Δημήτρης Φωτάκης Γράφοι Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διάλεξη 20: Γράφοι I - Εισαγωγή
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 20: Γράφοι I - Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Εισαγωγή στους Γράφους
Βασικές δοµές δεδοµένων. Ορολογία λιστών. 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας
ΚΕΦΑΛΑΙΟ 8: Αφηρηµένοι τύποι δεδοµένων 8.1 οµές δεδοµένων (data structures) 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας Αδόµητα δεδοµένα οδός Ζέας
Initialize each person to be free. while (some man is free and hasn't proposed to every woman) { Choose such a man m w = 1 st woman on m's list to
Κεφάλαιο 2 Δοµές Δεδοµένων Ι Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Δοµές Δεδοµένων Ι Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε
Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 7: Αφαίρεση δεδόμενων Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
Αλγόριθµοι Γραφηµάτων
Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση
2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ
2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ Προκειμένου να επιτευχθεί η «ακριβής περιγραφή» ενός αλγορίθμου, χρησιμοποιείται κάποια γλώσσα που μπορεί να περιγράφει σειρές ενεργειών με τρόπο αυστηρό,
ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων
ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
ΓΛΩΣΣΑΡΙ Ακολουθία Fibonacci Άκυκλο γράφημα Αλγόριθμος Αλγόριθμος Dijkstra Αλγόριθμος Kruskal Αλγόριθμος Prim Αλγόριθμος Strassen Αλγόριθμος
ΓΛΩΣΣΑΡΙ Ακολουθία Fibonacci (Fibonacci sequence): Μία ακολουθία από ακεραίους αριθμούς όπου ο κάθε ακέραιος είναι το άθροισμα των δύο προηγούμενων. Οι δύο πρώτοι όροι της ακολουθίας είναι το 0 και το
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΕΡΟΣ 2 ο : ΣΤΟΙΒΑ & ΟΥΡΑ ΙΣΤΟΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ: http://eclass.sch.gr/courses/el594100/ ΣΤΟΙΒΑ 2 Μια στοίβα
Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων
Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά ΕΠΛ231 Δομές Δεδομένων
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ. ΗΥ240 - Παναγιώτα Φατούρου 1
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΗΥ240 - Παναγιώτα Φατούρου 1 ένδρα Κόµβοι (nodes) Ακµές (edges) Ουρά και κεφαλή ακµής (tail, head) Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) Μονοπάτι (path) Πρόγονος απόγονος
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήµατα Μοντελοποίηση πολλών σηµαντικών προβληµάτων (π.χ. δίκτυα
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2 Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα
Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές)
Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 10: Δομές Δεδομένων Ι (Στοίβες & Ουρές) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 10-1 Περιεχόμενο Διάλεξης
Αλγόριθµοι Τύπου Μείωσης Προβλήµατος
Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο
Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών
Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από
Αλγόριθµοι + οµές εδοµένων = Προγράµµατα
2 ΟΜΕΣ Ε ΟΜΕΝΩΝ 2.1 ΕΙΣΑΓΩΓΗ Εκτός από τους αλγορίθµους, σηµαντική έννοια για την Πληροφορική είναι και η έννοια των δεδοµένων. Τα δεδοµένα αποθηκεύονται στον υπολογιστή µε τη βοήθεια των λεγόµενων δοµών
Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες
Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Απλές Λίστες CS100, 2015-2016 1 / 10 Δομές δεδομένων Ορισμός:
Απλές Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες απλές Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλή
Απλές Δοµές Δεδοµένων Απλές Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες απλές Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος
Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research
ΑΛΓΟΡΙΘΜΟΙ ΜΕ C ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής CMOR Lab Computational Methodologies and Operations Research Quiz-[9] Συν (+) και Πλην (-) Έστω n συνεχόμενοι θετικοί ακέραιοι από το 1 μέχρι το n.
Οι δυναμικές δομές δεδομένων στην ΑΕΠΠ
Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Οι σημειώσεις, αν και βασίζονται στο διδακτικό πακέτο, αποτελούν προσωπική θεώρηση της σχετικής ύλης και όχι επίσημο
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές
Δομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
Δυναμικές Δομές Δεδομένων Λίστες Δένδρα - Γράφοι
Δυναμικές Δομές Δεδομένων Λίστες Δένδρα - Γράφοι Κ Ο Τ Ι Ν Η Ι Σ Α Β Ε Λ Λ Α Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Σ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Π Ε 8 6 Ν Ε Ι Ρ Ο Σ Α Ν Τ Ω ΝΙ Ο Σ Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Σ Π Λ Η Ρ Ο Φ Ο
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
Κεφάλαιο 3. Γραφήματα. ver. 21/12/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήματα ver. 21/12/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων ανά
οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ 1 ένδρα εσωτερικός κόµβος u το δένδρο έχει ύψος 4 u έχει ύψος 3 w έχει βάθος 2 κόµβος ένδρο: γράφηµα χωρίς κύκλους o Ρίζα (root) o Κόµβος (node) o Ακµή (edge) o Γονέας (parent) Παιδί (child)
Γράφοι. κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές) οι οποίες
Ενότητα 11 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές) οι οποίες συνδέουν
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Γιάννης Κουτσονίκος Επίκουρος Καθηγητής Οργάνωση Δεδομένων Δομή Δεδομένων: τεχνική οργάνωσης των δεδομένων με σκοπό την
υναµικές οµές εδοµένων
υναµικές οµές εδοµένων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: υναµικές οµές εδοµένων Γενικά υναµική έσµευση Μνήµης οµή τύπου structure αυτοαναφορικές δοµές Η δήλωση typedef στη C Αναπαράσταση
(elementary graph algorithms)
(elementary graph algorithms) Παύλος Εφραιμίδης 1 περιεχόμενα γραφήματα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση 2 ΓΡΑΦΉΜΑΤΑ 3 αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή
ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΛΙΤΙΣΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ 3 ΘΕΜΑ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΡΑΦΗΜΑΤΑ Επίκουρος Καθηγητής ΠΕΡΙΕΧΟΜΕΝΟ
Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
Άσκηση 3 (ανακοινώθηκε στις 14 Μαΐου 2018, προθεσμία παράδοσης: 8 Ιουνίου 2018, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2017-2018. Άσκηση 3 (ανακοινώθηκε στις 14 Μαΐου 2018, προθεσμία παράδοσης: 8 Ιουνίου 2018, 12 τα μεσάνυχτα).
Αλγόριθμοι Γραφημάτων
11 Αλγόριθμοι Γραφημάτων Περιεχόμενα Κεφαλαίου 11.1 Βασικές Έννοιες....................... 330 11.2 Εσωτερική Παράσταση Γράφων.............. 333 11.3 Μέθοδοι Διάσχισης...................... 336 11.4 Τοπολογική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Τα δεδομένα (data) είναι η αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της. Η συλλογή των ακατέργαστων δεδομένων και ο συσχετισμός
Αναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Αναζήτηση Κατά Βάθος. Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
υναµικές οµές εδοµένων (συν.) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα:
υναµικές οµές εδοµένων (συν.) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ταξινοµηµένες Λίστες µε δυναµική δέσµευση µνήµης Αναδροµκές συναρτήσεις ΕΠΛ 12 Αρχές Προγραµµατισµού ΙΙ 1 Λίστες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
ΠΝΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΣ ΔΔΟΜΝΩΝ ΚΙ ΛΓΟΡΙΘΜΟΙ ΗΜΡΟΜΗΝΙ: 14/11/2018 ΔΙΓΝΩΣΤΙΚΟ ΠΝΩ Σ ΔΝΔΡΙΚΣ ΔΟΜΣ ΚΙ ΓΡΦΟΥΣ Διάρκεια: 45 λεπτά Ονοματεπώνυμο:. ρ. Ταυτότητας:. ΒΘΜΟΛΟΓΙ ΣΚΗΣΗ ΒΘΜΟΣ
Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής T.E.I. ΘΕΣΣΑΛΟΝΙΚΗΣ
Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Γραµµικές Δοµές Δεδοµένων (Linear Data Structures) Πίνακες (Arrays) Διανύσµατα (Vectors) http://aetos.it.teithe.gr/~demos/teaching_gr.html Δηµοσθένης Σταµάτης
ΗΥ240 - Παναγιώτα Φατούρου 1
ΕΝΟΤΗΤΑ 3 ΔΕΝΔΡΑ ΗΥ240 - Παναγιώτα Φατούρου 1 Δένδρα Ένα δένδρο Τ αποτελείται από ένα σύνολο από κόµβους µεταξύ των οποίων ορίζεται µια σχέση γονέα-παιδιού µε τις εξής ιδιότητες: q Αν το Τ δεν είναι το
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα
13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας
6η Διάλεξη Διάσχιση Γράφων και Δέντρων
ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση
Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
Βασικές Δομές Δεδομένων
Βασικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Διαδοχική και Δυναμική Χορήγηση
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 24: Ειδικές Περιπτώσεις του Προβλήματος Ροής Ελαχίστου Κόστους Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Μαΐου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Standard Template Library (STL) C++ library
Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η / Υ Κ Α Ι Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Standard Template Library (STL) C++ library Δομές Δεδομένων Μάριος Κενδέα kendea@ceid.upatras.gr Εισαγωγή Η Standard Βιβλιοθήκη προτύπων