Физика Астрономија. Прави избор за свакоī ūрофесора! КАТАЛОГ УЏБЕНИКА 2016/17.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Физика Астрономија. Прави избор за свакоī ūрофесора! КАТАЛОГ УЏБЕНИКА 2016/17."

Transcript

1 Физика Астрономија Прави избор за свакоī ūрофесора! КАТАЛОГ УЏБЕНИКА 2016/17.

2 Предности уџбеника Физика 1-4 и Астрономија: 1. ФИЗИКА Уџбеник за први раз савремен дизајн, систематичност и прегледност, актуелни садржаји, комуникативни приступ. Уџбеници за физику и астрономију у потпуности прате наставне планове и програме. Уџбеници имају чврсту структуру и подељени су на веће целине, и у оквиру њих, на мање целине и наставне јединице. Поред основног текста уџбеници садрже занимљиве информације и богат илустративни материјал. ЗА УЧЕНИКЕ 1. ЗА НАСТАВНИКЕ Аутор: Љубо Ристовски 12 3 Физика 1 уџбеник Физика 1 приручник стране слика и графикона 47 7 питања поглавља Физика 2 уџбеник Физика 3 уџбеник Физика 4 уџбеник Астрономија уџбеник Физика 2 приручник Физика 3 приручник Физика 4 приручник Астрономија приручник Уџбеник представља значајан помак у односу на постојеће уџбенике, како по стилу писања, тако и по графичкој опремљености. Градиво се састоји из седам тематских целина. Садржаји уџбеника су праћени одговарајућим примерима, решеним задацима, питалицама, питањима и додацима за радознале где се подстиче радозналост код ученика за новим научним сазнањима, како из физике тако и из других наука. Уџбеник помаже ученицима да развију самосталност у учењу и критичко мишљење и подстиче их да практично користе усвојена знања у свакодневном животу.

3 ред гимназије Резиме у коме се налазе најважније gефиниције и основни закони. Нове нас шавне јеgинице јасно су ис шакну ше. Пореg основноī шекс ша, īрафикони ūреgс шављају значајан извор ūоgа шака. Неūозна ши ūојмови су изgвојени и објашњени. Пи шалице ūоgс шичу ученике на размишљање и ūовезивање īраgива.

4 2. ФИЗИКА Уџбеник за други разред гимназије природно-математичког смера Аутор: Марина Радојевић 12 3 На оgīоварајућим мес шима gа ши су ūоgсе шници раније излаīаноī īраgива из физике, ūо шребних за лакше усвајање нових сазнања страна слика и графикона 165 питања са задацима 6 поглавља Зараg веће ūреīлеgнос ши и бољеī сналажења, у уџбенику су јасно изgвојени важни физички закони, gефиниције и формуле. Уџбеник систематски помаже ученицима да развијају стратегије учења и самосталност у раду. Градиво је сврстано у 6 тематских целина. Садржаји су диференцирани што додатно олакшава усвајање нових наставних тема и истовремено подстиче развој сазнања код даровитих ученика. Примери, задаци, огледи, као и остале активности поспешују усвајање знања и подстичу ученике на размишљање, унапређују вештину коришћења уџбеника, као и практичну примену стечених знања. Уџбеник је обогаћен разноврсним садржајима који подстичу интересовања ученика и мотивацију за стицање знања, како из физике тако и из других природних наука.

5 Примери заgа шака са gе шаљно објашњеним ūос шуūком њиховоī решавања, као и резиме изложеноī īраgива служе бољем разумевању и усвајању саgржаја физике. На крају сваке нас шавне јеgинице gа ша су ūи шања која ученику ūружају моīућнос ш gа самос шално ūра ши свој наūреgак у с шицању и ūримени знања из физике. Доgа шни саgржаји изложени у Сазнај више су занимљиви, ак шуелни, ūоgс шичу раgозналос ш и ин шересовање ученика за обрађено īраgиво. У ūосебним ūољима налазе се оīлеgи којима се, ūореg gемонс шрације физичких ūојава и закона, ūоказује важнос ш ексūеримен ша за физику као науку.

6 3. ФИЗИКА Уџбеник за трећи разред гимназија природно-математичког и општег смера Аутори: Драгољуб Белић, Марина Радојевић На крају сваке облас ши налазе се ūи шања и заgаци са решењима за у шврђивање īраgива стране задатака са решењима 181 питање 232 илустрације Уџбеник је усклађен са наставним планом и програмом и у потпуности омогућава остваривање циљева и задатака наставе. Градиво је изложено у 11 тематских целина са диференцираном организацијом садржаја која омогућава ученику да самостално и квалитетно користи уџбеник и провери своје знање. Резиме у коме су ūосебно изgвојени најважнији физички закони и gефиниције ūојмова и ūринциūа из оgређене облас ши. Уџбеник је богат фотографијама, илустрацијама, графиконима, хистограмима, табелама који додатно појашњавају основни текст. Предвиђени програм физике осавремењен је низом садржаја и примера који се односе на модерна достигнућа науке и технике, као и на неке актуелне проблеме за које тек треба наћи одговоре и решења.

7 Учење и усвајање нових сазнања ослања се на облас ши физике о којима је било речи у ūре шхоgним разреgима. Уūућивање на шо ūреgзнање налази се у јасно означеним ūоgсе шницима. У ūосебним ūољима налазе се оīлеgи уз ūомоћ којих ће ученик лакше савлаgа ши и боље разуме ши īраgиво. У свакој облас ши налазе се занимљиви шекс шови који gоūуњују основни шекс ш у уџбенику и имају за циљ gа ūоgс шакну раgозналос ш и gоgа шно ūрошире знање ученика. У основном шекс шу уџбеника ūосебно су ис шакну ши физички закони, кључне gефиниције и објашњења најважнијих ūојмова.

8 4. ФИЗИКА Уџбеник за четврти разред гимназије природно-математичког смера 332 Аутор: Иван Аничин 45 стране задатака са решењима питањa слике Свака шема ūроūраћена је ūи шањима за ūонављање īраgива и рачунским заgацима, а решења заgа шака налазе се на крају уџбеника. Уџбеник покрива теме из савремене или модерне физике која проучава структуру материје у њеним најдубљим нивоима, који су потпуно недоступни чулима већ искључиво инструментима специјално развијаним за те потребе. Уџбеник поседује елементе који омогућавају ученику да прати сопствени напредак у савладавању садржаја и развоју знања и подстиче унутрашњу мотивацију за учење и интересовање за наставни предмет за који је намењен. Уџбеник указује на везу садржаја са његовом применом и подстиче ученике да користе научено у свакодневном животу.

9 Најважније формуле јасно су ис шакну ше и изgвојене оg ос ша шка шекс ша. Доgа шни саgржаји који ūра ше основни шекс ш су разноврсни и у функцији су бољеī разумевања īраgива. Пи шања на ūоче шку свакоī ūоīлавља ūоgс шичу ученике gа се заин шересују за ūроучавање и чи шање оноīа ш шо слеgи.

10 4. АСТРОНОМИЈА Уџбеник за четврти разред гимназије природно-математичког смера 182 Аутор: Олга Атанацковић 42 стране задатка са решењима питањa илустрацијa Уџбеник Астрономија има за циљ упознавање ученика са основним астрономским појмовима, објектима и појавама и повезује садржаје астрономије са сродним предметима (физика, математика, географија и др). Уџбеник је обогаћен новим сазнањима и информацијама, истакнути су резултати до којих се дошло најсавременијим астрономским истраживањима, а поменути су и многи још увек нерешени проблеми. Рубрика Сазнај више саgржи gе шаљније објашњење некоī ūојма или ūојаве и чес шо је gоūуна основне лекције за ученике који желе gа ūрошире своје знање, а ūонекаg и уūу шс шво и ūоgс шицај за самос шално ис шраживање и ūрак шичан раg. Доgа шна ūојашњења, као и занимљивос ши, gа ши су у фусно шама. Каg īоg је било моīуће ау шорка је ис шицала gоūринос наших научника развоју ас шрономије, ш шо има ūосебан сазнајни и васūи шни значај. Новина у овом уџбенику је што се настојало да се помоћу описа развоја идеја и начина на који су астрономи дошли до научних чињеница допринесе бољем разумевању градива.

11 5 6 Маглине Галаксије Збијена (лоптаста) јата κ ζ λ ο ζ μ ι 10 ПУМПА -20 o -40 o ЕКЛИПТИКА ЛАВ 80 o 60 o 40 o 20 o 0 o ВЕЛИКИ МЕДВЕД ПЕГАЗ ζ ζ ζ ι ЗМАЈ M92 M13 ζ ЗМИЈОНОША λ θ 17 Приручници за наставнике ЗВЕЗДАНА КАРТА ЗА ГЕОГРАФСКЕ ШИРИНЕ ИЗНАД На самом крају уџбеника gа ша је и кар ша неба намењена уūознавању ученика са звезgама и сазвежђима, сналажењу на небу и оријен шацији у ūрос шору. 7 ГОЛУБ 8 ВЕЛИКИ ПАС ЗЕЦ ЕРИДАН КРМА M42 ЈЕДНОРОГ ОРИОН 9 КОМПАС МАЛИ ПАС БИК БЛИЗАНЦИ M45 ХИДРА РАК КОЧИЈАШ ПЕРСЕЈ РИС ТРОУГАО МАЛИ ЛАВ M103 ЖИРАФА КАСИОПЕЈА МАЛИ МЕДВЕД ПЕХАР ЦЕФЕЈ ГАВРАН БЕРЕНИКИНА КОСА ЛОВАЧКИ ПСИ ЛАБУД ДЕВИЦА ВОЛАР СЕВЕРНА КРУНА ХИДРА M57 ЛИРА ХЕРКУЛ ГЛАВА ЗМИЈЕ КЕНТАУР 14 ВАГА ЗМИЈА ВУК 15 ШКОРПИЈА ШТИТ МАГЛИЧАСТИ ОБЈЕКТИ МЕСИЈЕОВОГ КАТАЛОГА ПЕЋ ОВАН РИБЕ M33 АНДРОМЕДА M31 ГУШТЕР ЛИСИЦА ЖДРЕБЕ ДЕЛФИН СТРЕЛИЦА ОРАО СТРЕЛАЦ 19 Планетарне маглине КИТ 20 Отворена (развејана) јата СЈАЈ ЗВЕЗДА - РАСПОНИ ЗВЕЗДАНИХ ВЕЛИЧИНА ВОДОЛИЈА ЈАРАЦ МИКРОСКОП ВАЈАР 21 ЈУЖНА РИБА Бранко Симоновић ЗВЕЗДАР Саgржаји уџбеника су ūраћени оgīоварајућим ūримерима и заgацима са решењима, као и ūи шањима која служе за ūроверу знања, али и ūоgс шичу ученике на размишљање. Ак шивнос ши, ūримери и заgаци су gиференцирани и ūосūешују развој сазнања gарови ших ученика, а ос шалима ūрема моīућнос шима и афини ше шима, ш шо јача мо шивацију и gоūриноси лакшем и бољем усвајању нових нас шавних саgржаја. Приручници за наставнике надовезују се на уџбенике и представљају збирку предлога који олакшавају организовање наставе и рад са ученицима. Приручници служе да помогну наставнику да на једном месту пронађе све што је потребно у реализацији наставе физике и астрономије. У том циљу предочени су примери из методичке литературе, као и примери из дугогодишње наставничке праксе.

12 Сарађујте са нама. Учествујте у евалуацији наших уџбеника. 011/ Издавачка кућа Klett д.o.o. Маршала Бирјузова 3 5, Београд, телефон: 011/ , факс: 011/ , имејл: saradnja@klett.rs,

Математика. Прави избор за свакоī ūрофесора! КАТАЛОГ УЏБЕНИКА 2016/17.

Математика. Прави избор за свакоī ūрофесора! КАТАЛОГ УЏБЕНИКА 2016/17. Математика Прави избор за свакоī ūрофесора! КАТАЛОГ УЏБЕНИКА 2016/17. Поштованe професорке и професори, Уџбеници математике Издавачке куће Klett присутни су већ годинама у основним школама, а од пре три

Διαβάστε περισσότερα

Уџбенички комплети од 6. до 8. разреда Физика Прави избор за свакоī нас шавника! Каталог уџбеника 2016/17.

Уџбенички комплети од 6. до 8. разреда Физика Прави избор за свакоī нас шавника! Каталог уџбеника 2016/17. www.klett.rs Уџбенички комплети од 6. до 8. разреда Физика Прави избор за свакоī нас шавника! Каталог уџбеника 016/17. Уводна реч 49% 49% ученика основних школа у Србији користи уџбенике Издавачке куће

Διαβάστε περισσότερα

ТЕХНИЧАР ЗА ДИГИТАЛНУ ГРАФИКУ И ИНТЕРЕНЕТ ОБЛИКОВАЊЕ

ТЕХНИЧАР ЗА ДИГИТАЛНУ ГРАФИКУ И ИНТЕРЕНЕТ ОБЛИКОВАЊЕ План наставе и учења: ТЕХНИЧАР ЗА ДИГИТАЛНУ ГРАФИКУ И ИНТЕРЕНЕТ ОБЛИКОВАЊЕ I РАЗРЕД I УКУПНО недељно годишње недељно годишње недељно годишње недељно годишње годишње Т В Т В Б Т В Т В Б Т В Т В Б Т В Т

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

I Наставни план - ЗЛАТАР

I Наставни план - ЗЛАТАР I Наставни план - ЗЛААР I РАЗРЕД II РАЗРЕД III РАЗРЕД УКУО недељно годишње недељно годишње недељно годишње годишње Σ А1: ОАЕЗНИ ОПШЕОРАЗОНИ ПРЕДМЕИ 2 5 25 5 2 1. Српски језик и књижевност 2 2 4 2 2 1.1

Διαβάστε περισσότερα

(од 4. до 155. стране) (од 4. до 73. стране) ДРУГИ, ТРЕЋИ И ЧЕТВРТИ РАЗРЕД - Европа и свет у другој половини 19. и почетком 20.

(од 4. до 155. стране) (од 4. до 73. стране) ДРУГИ, ТРЕЋИ И ЧЕТВРТИ РАЗРЕД - Европа и свет у другој половини 19. и почетком 20. Драгољуб М. Кочић, Историја за први разред средњих стручних школа, Завод за уџбенике Београд, 2007. година * Напомена: Ученици треба да се припремају за из уџбеника обајвљених од 2007 (треће, прерађено

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

НАСТАВНИ ПЛАН И ПРОГРАМ

НАСТАВНИ ПЛАН И ПРОГРАМ НАСТАВНИ ПЛАН И ПРОГРАМ I НАСТАВНИ ПЛАН за образовни профил Техничар мехатронике I РАЗРЕД II РАЗРЕД III РАЗРЕД IV РАЗРЕД УКУПНО недељно годишње недељно годишње недељно годишње недељно годишње годишње Т

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

ДИДАКТИЧКО-МЕТОДИЧКЕ ДЕТЕРМИНАНТЕ УЏБЕНИКА ПРИРОДE И ДРУШТВA

ДИДАКТИЧКО-МЕТОДИЧКЕ ДЕТЕРМИНАНТЕ УЏБЕНИКА ПРИРОДE И ДРУШТВA УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ УЧИТЕЉСКИ ФАКУЛТЕТ У УЖИЦУ ДИДАКТИЧКО-МЕТОДИЧКЕ ДЕТЕРМИНАНТЕ УЏБЕНИКА ПРИРОДE И ДРУШТВA Докторска теза Ужице, 2014. године ИДЕНТИФИКАЦИОНА СТРАНИЦА ДОКТОРСКЕ ТЕЗЕ І Аутор Име и

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

ПОТРЕБЕ УЧЕНИКА ЗА ИСТОРИЈСКИМ ПОДАЦИМА У НАСТАВИ ФИЗИКЕ - мастер рад -

ПОТРЕБЕ УЧЕНИКА ЗА ИСТОРИЈСКИМ ПОДАЦИМА У НАСТАВИ ФИЗИКЕ - мастер рад - Универзитет у Новом Саду Природно математички факултетт Департман за физику ПОТРЕБЕ УЧЕНИКА ЗА ИСТОРИЈСКИМ ПОДАЦИМА У НАСТАВИ ФИЗИКЕ - мастер рад - Ментор: Др Маја Стојановић Кандидат: Бојана Беатовић

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

ЗНАЧАЈ САМОСТАЛНОГ УЧЕЊА

ЗНАЧАЈ САМОСТАЛНОГ УЧЕЊА САВРЕМЕНЕ ПАРАДИГМЕ У НАУЦИ И НАУЧНОЈ ФАНТАСТИЦИ Драгана Љубисављевић OШ,,Вук Караџић, Књажевац УДК 371.212:159.953.5 ЗНАЧАЈ САМОСТАЛНОГ УЧЕЊА Сажетак: Учење је сложен процес мењања индивидуе који се одвија

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

др Милена Марјановић, професор

др Милена Марјановић, професор РЕПУБЛИКА СРБИЈА Висока пословна школа струковних студија 03.03.2008.год. Лесковац, Дурмиторска 19 Тел. 016/254 961, факс: 016/242 536 e mail: mail@vspm.edu.yu website: www.vspm.edu.yu Настaвном већу Високе

Διαβάστε περισσότερα

ДИДАКТИЧКА ТРАНСФОРМАЦИЈА ГЕОГРАФСКИХ САДРЖАЈА ОД I ДО IV РАЗРЕДА ОСНОВНЕ ШКОЛЕ

ДИДАКТИЧКА ТРАНСФОРМАЦИЈА ГЕОГРАФСКИХ САДРЖАЈА ОД I ДО IV РАЗРЕДА ОСНОВНЕ ШКОЛЕ УНИВЕРЗИТЕТ У БЕОГРАДУ ГЕОГРАФСКИ ФАКУЛТЕТ Миланка Г. Џиновић ДИДАКТИЧКА ТРАНСФОРМАЦИЈА ГЕОГРАФСКИХ САДРЖАЈА ОД I ДО IV РАЗРЕДА ОСНОВНЕ ШКОЛЕ докторска дисертација Београд, 2015 UNIVERSITY IN BELGRADE

Διαβάστε περισσότερα

Ефекти примене мултимедије у настави физике у првом разреду средње стручне школе

Ефекти примене мултимедије у настави физике у првом разреду средње стручне школе УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА ФИЗИКУ Данијела Радловић-Чубрило Ефекти примене мултимедије у настави физике у првом разреду средње стручне школе - докторска дисертација

Διαβάστε περισσότερα

ПРОБЛЕМСКО УЧЕЊЕ И ГРУПНИ РАД У НАСТАВИ МАТЕМАТИКЕ

ПРОБЛЕМСКО УЧЕЊЕ И ГРУПНИ РАД У НАСТАВИ МАТЕМАТИКЕ УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Maja Aдамов ПРОБЛЕМСКО УЧЕЊЕ И ГРУПНИ РАД У НАСТАВИ МАТЕМАТИКЕ мастер рад Нови Сад, 2014. Садржај Предговор

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ Прва година ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА Г1: ИНФОРМАТИЧКЕ МЕТОДЕ У БИОМЕДИЦИНСКИМ ИСТРАЖИВАЊИМА 10 ЕСПБ бодова. Недељно има 20 часова

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

ИЗВЕШТАЈ О AНКЕТИ (одржаној на крају зимског семестра 2008_09 године)

ИЗВЕШТАЈ О AНКЕТИ (одржаној на крају зимског семестра 2008_09 године) РЕПУБЛИКА СРБИЈА Висока пословна школа струковних студија Бр. 31.03.2009. год. Лесковац, Дурмиторска 19 Тел. 016/254 961, факс: 016/242 536 e mail: mail@vpsle.edu.rs website: www.vpsle.edu.rs Настaвном

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У БЕОГРАДУ ФИЛОЗОФСКИ ФАКУЛТЕТ ДС/СС 05/4-02 бр. 822/1-ХI/ године ВЕЋЕ НАУЧНИХ ОБЛАСТИ ДРУШТВЕНО-ХУМАНИСТИЧКИХ НАУКА

УНИВЕРЗИТЕТ У БЕОГРАДУ ФИЛОЗОФСКИ ФАКУЛТЕТ ДС/СС 05/4-02 бр. 822/1-ХI/ године ВЕЋЕ НАУЧНИХ ОБЛАСТИ ДРУШТВЕНО-ХУМАНИСТИЧКИХ НАУКА УНИВЕРЗИТЕТ У БЕОГРАДУ ФИЛОЗОФСКИ ФАКУЛТЕТ ДС/СС 05/4-02 бр. 822/1-ХI/4 14.04.2016. године ВЕЋЕ НАУЧНИХ ОБЛАСТИ ДРУШТВЕНО-ХУМАНИСТИЧКИХ НАУКА Наставно-научно веће Филозофског факултета у Београду је на

Διαβάστε περισσότερα

Методички приступ неједначинама у уџбеницима за трећи разред основне школе

Методички приступ неједначинама у уџбеницима за трећи разред основне школе UDC 371.3:512.13 Иновације у настави, XXVI, 2013/3, стр. 24 35 Рад примљен: 17. 10. 2013. Рад прихваћен: 13. 11. 2013. Оригинални научни рад др Маријана Зељић 1 Учитељски факултет, Београд Методички приступ

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

Површине неких равних фигура

Површине неких равних фигура Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.rs/mii Математика и информатика 3() (5), -6 Површине неких равних фигура Жарко Ђурић Париске комуне 4-/8, Врање zarkocr@gmail.com

Διαβάστε περισσότερα

Република Србија ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Фабрисова 10, Београд И З В Е Ш Т А Ј

Република Србија ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Фабрисова 10, Београд И З В Е Ш Т А Ј Република Србија ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Фабрисова 10, Београд И З В Е Ш Т А Ј О ВРЕДНОВАЊУ ПРОГРАМА ОГЛЕДА ЗА ГИМНАЗИЈУ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ФИЗИКУ Београд,

Διαβάστε περισσότερα

МОГУЋНОСТИ ОСПОСОБЉАВАЊА УЧЕНИКА ЗА САМОСТАЛНИ ИСТРАЖИВАЧКИ РАД У НАСТАВИ ПРИРОДЕ И ДРУШТВА

МОГУЋНОСТИ ОСПОСОБЉАВАЊА УЧЕНИКА ЗА САМОСТАЛНИ ИСТРАЖИВАЧКИ РАД У НАСТАВИ ПРИРОДЕ И ДРУШТВА УНИВЕРЗИТЕТ У НОВОМ САДУ ФИЛОЗОФСКИ ФАКУЛТЕТ МЕТОДИКА НАСТАВЕ МОГУЋНОСТИ ОСПОСОБЉАВАЊА УЧЕНИКА ЗА САМОСТАЛНИ ИСТРАЖИВАЧКИ РАД У НАСТАВИ ПРИРОДЕ И ДРУШТВА ДОКТОРСКА ДИСЕРТАЦИЈА Ментор: Проф. др Споменка

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

МЕТОДИЧКИ АСПЕКТИ НАСТАВЕ МАТЕМАТИКЕ

МЕТОДИЧКИ АСПЕКТИ НАСТАВЕ МАТЕМАТИКЕ УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ ПЕДАГОШКИ ФАКУЛТЕТ У ЈАГОДИНИ Посебна издања Научни скупови, књ. 5 МЕТОДИЧКИ АСПЕКТИ НАСТАВЕ МАТЕМАТИКЕ ПЕДАГОШКИ ФАКУЛТЕТ У ЈАГОДИНИ Јагодина, 2008. 1 МЕТОДИЧКИ АСПЕКТИ НАСТАВЕ

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Решавање задатака у настави физике при обради наставне јединице Густина тела

Решавање задатака у настави физике при обради наставне јединице Густина тела УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА ФИЗИКУ Решавање задатака у настави физике при обради наставне јединице Густина тела - Мастер рад - Ментор: Студент: др Маја Стојановић

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

INOVACIJE unastavi. ~asopis za savremenu nastavu. YU ISSN UDC Vol. 22

INOVACIJE unastavi. ~asopis za savremenu nastavu. YU ISSN UDC Vol. 22 , 2 9 INOVACIJE unastavi ~asopis za savremenu nastavu YU ISSN 0352-2334 UDC 370.8 Vol. 22 U»ITEySKI FAKULTET UNIVERZITET U BEOGRADU Adresa redakcije: U~iteqski fakultet, Beograd, Kraqice Natalije 43 www.uf.bg.ac.rs

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3 МАТЕМАТИЧКИ ЛИСТ 07/8. бр. LII- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ . III разред. Обим правоугаоника је 6cm + 4cm = cm + 8cm = 0cm. Обим троугла је 7cm + 5cm + cm =

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

БИБЛИД ; 35 (2003) с

БИБЛИД ; 35 (2003) с Снежана МИРКОВ УДК 371.212.72 Институт за педагошка истраживања Оригинални научни чланак Београд БИБЛИД 0579-6431; 35 (2003) с.151-165 УЗРОЦИ ПРОБЛЕМА У УЧЕЊУ КОД УЧЕНИКА ОСНОВНЕ ШКОЛЕ Резиме. Испитивани

Διαβάστε περισσότερα

РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ

РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ Универзитет у Новом Саду Природно математички факултет Департман за физику РЕШАВАЊЕ РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ СИЛА И КРЕТАЊЕ МАСТЕР РАД ментор: кандитат: Др Маја Стојановић Адријана Сарић

Διαβάστε περισσότερα

ГИМНАЗИЈА РАШКА ПРАВИЛНИК. о наставном плану и програму за гимназију за ученике са посебним способностима за рачунарство и информатику. Члан 1.

ГИМНАЗИЈА РАШКА ПРАВИЛНИК. о наставном плану и програму за гимназију за ученике са посебним способностима за рачунарство и информатику. Члан 1. На основу члана 14. став 6. Закона о основама система образовања и васпитања ( Службени гласник РС, бр. 72/09, 52/11, 55/13, 35/15 аутентично тумачење, 68/15 и 62/16 УС), Национални просветни савет доноси

Διαβάστε περισσότερα

Аксиоме припадања. Никола Томовић 152/2011

Аксиоме припадања. Никола Томовић 152/2011 Аксиоме припадања Никола Томовић 152/2011 Павле Васић 104/2011 1 Шта је тачка? Шта је права? Шта је раван? Да бисмо се бавили геометријом (и не само геометријом), морамо увести основне појмове и полазна

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА ФИЗИКУ. Наташа Миљеновић

УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА ФИЗИКУ. Наташа Миљеновић УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА ФИЗИКУ Наташа Миљеновић ОБРАДА НАСТАВНЕ ТЕМЕ КРЕТАЊЕ ТЕЛА ПОД ДЕЈСТВОМ СИЛЕ ТЕЖЕ. СИЛА ТРЕЊА ЗА СЕДМИ РАЗРЕД ОСНОВНЕ ШКОЛЕ Mастер рад

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

МОДЕЛ УЧЕЊА ПРОГРАМСКОГ ЈЕЗИКА PASCAL НА ДАЉИНУ

МОДЕЛ УЧЕЊА ПРОГРАМСКОГ ЈЕЗИКА PASCAL НА ДАЉИНУ УНИВЕРЗИТЕТ У НОВОМ САДУ ТЕХНИЧКИ ФАКУЛТЕТ "МИХАЈЛО ПУПИН" ЗРЕЊАНИН МОДЕЛ УЧЕЊА ПРОГРАМСКОГ ЈЕЗИКА PASCAL НА ДАЉИНУ ДОКТОРСКА ДИСЕРТАЦИЈА МЕНТОР Проф. др Драгица Радосав КАНДИДАТ Пардањац мр Марјана Зрењанин,

Διαβάστε περισσότερα

ОПШТИ СТАНДАРДИ ПОСТИГНУЋА ЗА ОСНОВНО ОБРАЗОВАЊЕ ОДРАСЛИХ. Приручник за наставнике ЕНГЛЕСКИ ЈЕЗИК

ОПШТИ СТАНДАРДИ ПОСТИГНУЋА ЗА ОСНОВНО ОБРАЗОВАЊЕ ОДРАСЛИХ. Приручник за наставнике ЕНГЛЕСКИ ЈЕЗИК ОПШТИ СТАНДАРДИ ПОСТИГНУЋА ЗА ОСНОВНО ОБРАЗОВАЊЕ ОДРАСЛИХ Приручник за наставнике ЕНГЛЕСКИ ЈЕЗИК ОПШТИ СТАНДАРДИ ПОСТИГНУЋА ЗА ОСНОВНО ОБРАЗОВАЊЕ ОДРАСЛИХ Приручник за наставнике ЕНГЛЕСКИ ЈЕЗИК Драгана

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

1. УВОД 1.1. ЗАШТО ИНДИВИДУАЛИЗАЦИЈА НАСТАВЕ МАТЕМАТИКЕ? ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће''

1. УВОД 1.1. ЗАШТО ИНДИВИДУАЛИЗАЦИЈА НАСТАВЕ МАТЕМАТИКЕ? ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће'' ''Настава математике није наука. Она је уметност'' Ђерђ Поја - ''Математичко откриће'' 1. УВОД Зашто су краљевићи и царевићи од античких па до наших времена имали своје приватне учитеље математике? Зашто

Διαβάστε περισσότερα

Примена научног метода у настави физике у друштвено језичком смеру гимназије

Примена научног метода у настави физике у друштвено језичком смеру гимназије УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА ФИЗИКУ мр Мирко Г. Нагл Примена научног метода у настави физике у друштвено језичком смеру гимназије докторска дисертација Нови Сад,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

250. ДРЖАВНИ СЕМИНАР ДРУШТВА МАТЕМАТИЧАРА СРБИЈЕ ПРОВЕРАВАЊЕ И ОЦЕЊИВАЊЕ У НАСТАВИ МАТЕМАТИКЕ

250. ДРЖАВНИ СЕМИНАР ДРУШТВА МАТЕМАТИЧАРА СРБИЈЕ ПРОВЕРАВАЊЕ И ОЦЕЊИВАЊЕ У НАСТАВИ МАТЕМАТИКЕ ДРУШТВО МАТЕМАТИЧА СРБИЈЕ АКРЕДИТОВАНИ СЕМИНАР: 250. ДРЖАВНИ СЕМИНАР ДРУШТВА МАТЕМАТИЧАРА СРБИЈЕ Компетенцијa: K1 Приоритети: 1 ТЕМА: ПРОВЕРАВАЊЕ И ОЦЕЊИВАЊЕ У НАСТАВИ МАТЕМАТИКЕ РЕАЛИЗАТОРИ СЕМИНАРА:

Διαβάστε περισσότερα

Модели организовања и методе кооперативног учења, њихова примена и реални домети у обради конкретних тема у настави математике

Модели организовања и методе кооперативног учења, њихова примена и реални домети у обради конкретних тема у настави математике Универзитет у Београду Математички факултет Мастер рад Модели организовања и методе кооперативног учења, њихова примена и реални домети у обради конкретних тема у настави математике Студент: Дубравка Глишовић

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање

Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Решавање рачунских задатака из наставних јединица: Равномерно и pавномерно променљиво праволинијско кретање Mентор: Др Маја Стојановић Кандидат: Невена

Διαβάστε περισσότερα

КОРЕЛАЦИЈА НАСТАВЕ МАТЕМАТИКЕ И ИНФОРМАТИКЕ У СРЕДЊИМ ШКОЛАМА

КОРЕЛАЦИЈА НАСТАВЕ МАТЕМАТИКЕ И ИНФОРМАТИКЕ У СРЕДЊИМ ШКОЛАМА УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Гордана Станковић КОРЕЛАЦИЈА НАСТАВЕ МАТЕМАТИКЕ И ИНФОРМАТИКЕ У СРЕДЊИМ ШКОЛАМА мастер рад Нови Сад, 2014. Садржај

Διαβάστε περισσότερα

Н А С Т А В Н И К КАО ИСТРАЖИВАЧ

Н А С Т А В Н И К КАО ИСТРАЖИВАЧ Н А С Т А В Н И К КАО ИСТРАЖИВАЧ ПРИМЕРИ ДОБРЕ ПРАКСЕ Дејан Станковић Јелена Радишић Невена Буђевац Смиљана Јошић Александар Бауцал БЕОГРАД, 2015. Н А С Т А В Н И К КАО ИСТРАЖИВАЧ ПРИМЕРИ ДОБРЕ ПРАКСЕ

Διαβάστε περισσότερα

Учесталост и могућности примене кооперативног учења у разредној настави

Учесталост и могућности примене кооперативног учења у разредној настави UDC 371.3::371.315.7 Иновације у настави, XXIX, 2016/2, стр. 25 37 371.3::371.311.5 Рад примљен: 4. 9. 2015. Рад прихваћен: 14. 5. 2016. Марина Ж. Илић 1 Учитељски факултет у Ужицу, Универзитет у Крагујевцу

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

ИНФОРМАТИКА У ЗДРАВСТВУ

ИНФОРМАТИКА У ЗДРАВСТВУ ИНФОРМАТИКА У ЗДРАВСТВУ ОСНОВНЕ СТРУКОВНЕ СТУДИЈЕ СТРУКОВНА МЕДИЦИНСКА СЕСТРА СТРУКОВНИ ФИЗИОТЕРАПЕУТ ДРУГА ГОДИНА СТУДИЈА школска 2017/2018. Предмет: ИНФОРМАТИКА У ЗДРАВСТВУ Предмет се вреднује са 3

Διαβάστε περισσότερα

МЕТОДИКА РЕШАВАЊА РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ РАВНОТЕЖА ТЕЛА У ОСНОВНОЈ ШКОЛИ

МЕТОДИКА РЕШАВАЊА РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ РАВНОТЕЖА ТЕЛА У ОСНОВНОЈ ШКОЛИ Универзитет у Новом Саду Природно-математички факултет Департман за физику МЕТОДИКА РЕШАВАЊА РАЧУНСКИХ ЗАДАТАКА ПРИ ОБРАДИ НАСТАВНЕ ТЕМЕ РАВНОТЕЖА ТЕЛА У ОСНОВНОЈ ШКОЛИ - Мастер рад - Ментор: Проф. Маја

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

Метод таблоа у настави математичке логике у средњој школи

Метод таблоа у настави математичке логике у средњој школи Универзитет у Београду Математички факултет Метод таблоа у настави математичке логике у средњој школи - Мастер рад - Студент: Весна Петровић Ментор: др Зоран Петровић Београд, март 2011.године САДРЖАЈ

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

ОПШТИ СТАНДАРДИ ПОСТИГНУЋА ЗА КРАЈ ОПШТЕГ СРЕДЊЕГ И СРЕДЊЕГ СТРУЧНОГ ОБРАЗОВАЊА И ВАСПИТАЊА У ДЕЛУ ОПШТЕОБРАЗОВНИХ ПРЕДМЕТА

ОПШТИ СТАНДАРДИ ПОСТИГНУЋА ЗА КРАЈ ОПШТЕГ СРЕДЊЕГ И СРЕДЊЕГ СТРУЧНОГ ОБРАЗОВАЊА И ВАСПИТАЊА У ДЕЛУ ОПШТЕОБРАЗОВНИХ ПРЕДМЕТА Република Србија ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ОПШТИ СТАНДАРДИ ПОСТИГНУЋА ЗА КРАЈ ОПШТЕГ СРЕДЊЕГ И СРЕДЊЕГ СТРУЧНОГ ОБРАЗОВАЊА И ВАСПИТАЊА У ДЕЛУ ОПШТЕОБРАЗОВНИХ ПРЕДМЕТА ЗА ПРЕДМЕТ

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

Могућности коришћења методе случаја као наставне методе у настави физике. - мастер рад -

Могућности коришћења методе случаја као наставне методе у настави физике. - мастер рад - УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА ФИЗИКУ Могућности коришћења методе случаја као наставне методе у настави физике - мастер рад - Ментор: Проф. др Маја Стојановић Студент:

Διαβάστε περισσότερα

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5 ШЕСТА ГОДИНА СТУДИЈА школска 2016/2017. Предмет: ЗАВРШНИ РАД Предмет се вреднује са 6 ЕСПБ. НАСТАВНИЦИ И САРАДНИЦИ: РБ Име и презиме Email адреса звање 1. Јасмина Кнежевић

Διαβάστε περισσότερα

ЈУН, 2014.ГОДИНЕ ШКОЛА: ОШ ''НИКОЛА ТЕСЛА'' АДРЕСА: ЈОВАНА ЈОВАНОВИЋА ЗМАЈА БР. 1, ВИНЧА ТЕЛ/ФАКС: 011/ ; ДИРЕКТОР: ДРАГОЉУБ ГАЧИЋ

ЈУН, 2014.ГОДИНЕ ШКОЛА: ОШ ''НИКОЛА ТЕСЛА'' АДРЕСА: ЈОВАНА ЈОВАНОВИЋА ЗМАЈА БР. 1, ВИНЧА ТЕЛ/ФАКС: 011/ ; ДИРЕКТОР: ДРАГОЉУБ ГАЧИЋ ЈУН, 2014.ГОДИНЕ ШКОЛА: ОШ ''НИКОЛА ТЕСЛА'' АДРЕСА: ЈОВАНА ЈОВАНОВИЋА ЗМАЈА БР. 1, ВИНЧА ТЕЛ/ФАКС: 011/ 8066 911; ДИРЕКТОР: ДРАГОЉУБ ГАЧИЋ ТЕЛ/ФАКС: 011/ 8065 899 1 САДРЖАЈ: 1. УВОД--------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Eксперимент као централни део теме огледни час

Eксперимент као централни део теме огледни час Eксперимент као централни део теме огледни час др Mирко Нагл, Никола Гледић, Јасмина Ђокић Јовановић 3, мр Горан Стојићевић 4,3 Шабачка гимназија, Шабац, Техничка школa, Шабац, 4 Регионални центар за професионални

Διαβάστε περισσότερα

ОПШТИ СТАНДАРДИ ПОСТИГНУЋА ЗА КРАЈ ОПШТЕГ СРЕДЊЕГ И СРЕДЊЕГ СТРУЧНОГ ОБРАЗОВАЊА И ВАСПИТАЊА У ДЕЛУ ОПШТЕОБРАЗОВНИХ ПРЕДМЕТА

ОПШТИ СТАНДАРДИ ПОСТИГНУЋА ЗА КРАЈ ОПШТЕГ СРЕДЊЕГ И СРЕДЊЕГ СТРУЧНОГ ОБРАЗОВАЊА И ВАСПИТАЊА У ДЕЛУ ОПШТЕОБРАЗОВНИХ ПРЕДМЕТА Република Србија ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ОПШТИ СТАНДАРДИ ПОСТИГНУЋА ЗА КРАЈ ОПШТЕГ СРЕДЊЕГ И СРЕДЊЕГ СТРУЧНОГ ОБРАЗОВАЊА И ВАСПИТАЊА У ДЕЛУ ОПШТЕОБРАЗОВНИХ ПРЕДМЕТА ЗА ПРЕДМЕТ

Διαβάστε περισσότερα

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање ОРГАНИЗАЦИЈА ПАРКИРАЛИШТА 1. вежба Место за паркирање (паркинг место) Део простора намењен, технички опремљен и уређен за паркирање једног

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα

МЕРЕЊЕ УЧЕНИЧКОГ НАПРЕТКА ПРИ КОРИШЋЕЊУ РАЧУНАРА У НАСТАВИ МАТЕМАТИКЕ

МЕРЕЊЕ УЧЕНИЧКОГ НАПРЕТКА ПРИ КОРИШЋЕЊУ РАЧУНАРА У НАСТАВИ МАТЕМАТИКЕ УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Соња Вученов МЕРЕЊЕ УЧЕНИЧКОГ НАПРЕТКА ПРИ КОРИШЋЕЊУ РАЧУНАРА У НАСТАВИ МАТЕМАТИКЕ -мастер рад- Нови Сад, 2012.

Διαβάστε περισσότερα