General Models & Inapproximability Overview. Influence Maximization σε Social Networks
|
|
- Μαρία Παπανδρέου
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2
3 Συνοπτικά: Αν θέλω να πετύχω υιοθέτηση μιας άποψης/προϊόντος από πολλούς, πως διαλέγω το αρχικό target group (free samples)
4 Συνοπτικά: Αν θέλω να πετύχω υιοθέτηση μιας άποψης/προϊόντος από πολλούς, πως διαλέγω το αρχικό target group (free samples) Πρόβλημα Βελτιστοποίησης: Βρες την k-άδα ανθρώπων με μεγάλη επιρροή (;)
5 Συνοπτικά: Αν θέλω να πετύχω υιοθέτηση μιας άποψης/προϊόντος από πολλούς, πως διαλέγω το αρχικό target group (free samples) Πρόβλημα Βελτιστοποίησης: Βρες την k-άδα ανθρώπων με μεγάλη επιρροή (;) Επειδή το πρόβλημα βελτιστοποίησης είναι NP-hard σε όλα τα ενδιαφέροντα μοντέλα διάδοσης πληροφορίας θα δούμε έναν Greedy αλγόριθμο με εγγύηση προσέγγισης 63%( 1 1/e) που προκύπτει από ένα βασικό θεώρημα στις submodular functions (;)
6 Influnce Maximization Ορίζω ως influence ενός συνόλου Α το σ(α) = expected number of active nodes at the end of the process
7 Influnce Maximization Ορίζω ως influence ενός συνόλου Α το σ(α) = expected number of active nodes at the end of the process Ορίζω ως influence maximization problem σε ένα γράφο, δοσμένου του k, να βρω k-άδα κόμβων με maximum influence
8 Influnce Maximization Ορίζω ως influence ενός συνόλου Α το σ(α) = expected number of active nodes at the end of the process Ορίζω ως influence maximization problem σε ένα γράφο, δοσμένου του k, να βρω k-άδα κόμβων με maximum influence Στα ενδιαφέροντα μοντέλα LTM, ICM είναι NP-hard (greedy 63% approx)
9 Submodular Functions natural diminishing returns property: το οριακό κέρδος του να προσθέσω ένα στοιχείο στο S είναι τουλάχιστον τόσο όσο το οριακό κέρδος του να προσθέσω το ίδιο στοιχείο σε ένα υπερσύνολο του S - σας θυμίζει κάτι αυτό από Algo ; (- άλλο 5 άλλο 1000)
10 Submodular Functions natural diminishing returns property: το οριακό κέρδος του να προσθέσω ένα στοιχείο στο S είναι τουλάχιστον τόσο όσο το οριακό κέρδος του να προσθέσω το ίδιο στοιχείο σε ένα υπερσύνολο του S - σας θυμίζει κάτι αυτό από Algo ; (- άλλο 5 άλλο 1000) Με δεδομένη μία μονότονη, submodular μη αρνητική συνάρτηση, είναι NP-hard το να τη μεγιστοποιήσω σε σύνολα με σταθερό πληθάριθμο
11 Greedy Algorithm - Εμπόδιο Ο,τι πιο φυσικό. Διάλεγε το κόμβο που σου μεγιστοποιεί το οριακό κέρδος. Πώς αφού έχω πιθανοτικά μοντέλα;
12 Greedy Algorithm - Εμπόδιο Ο,τι πιο φυσικό. Διάλεγε το κόμβο που σου μεγιστοποιεί το οριακό κέρδος. Πώς αφού έχω πιθανοτικά μοντέλα; Πάμε με simulations/sampling γιατί υπάρχει θεώρημα που εγγυάται ότι οδηγούμαστε σε αυθαίρετα καλές προσεγγίσεις του σ(α) with high probability
13 Greedy Algorithm - Εμπόδιο Ο,τι πιο φυσικό. Διάλεγε το κόμβο που σου μεγιστοποιεί το οριακό κέρδος. Πώς αφού έχω πιθανοτικά μοντέλα; Πάμε με simulations/sampling γιατί υπάρχει θεώρημα που εγγυάται ότι οδηγούμαστε σε αυθαίρετα καλές προσεγγίσεις του σ(α) with high probability ɛ > 0, γ > 0 so that (1 + γ) stepwise approximations (1 1/e ɛ) approximation of the final value
14 Linear Threshold Model Βασίζεται στη λογική ότι ένας κόμβος/άνθρωπος τείνει όλο και περισσότερο να ενεργοποιηθεί/πειστεί/μολυνθεί όσο περισσότεροι φίλοι του είναι active/informed/infected
15 Linear Threshold Model Βασίζεται στη λογική ότι ένας κόμβος/άνθρωπος τείνει όλο και περισσότερο να ενεργοποιηθεί/πειστεί/μολυνθεί όσο περισσότεροι φίλοι του είναι active/informed/infected Progressive γιατί κάθε κόμβος από inactive περνά σε active
16 Linear Threshold Model Βασίζεται στη λογική ότι ένας κόμβος/άνθρωπος τείνει όλο και περισσότερο να ενεργοποιηθεί/πειστεί/μολυνθεί όσο περισσότεροι φίλοι του είναι active/informed/infected Progressive γιατί κάθε κόμβος από inactive περνά σε active Κάθε κόμβος v διαλέγει ομοιόμορφα και τυχαία ένα κατώφλι θ v [0, 1]
17 Linear Threshold Model Βασίζεται στη λογική ότι ένας κόμβος/άνθρωπος τείνει όλο και περισσότερο να ενεργοποιηθεί/πειστεί/μολυνθεί όσο περισσότεροι φίλοι του είναι active/informed/infected Progressive γιατί κάθε κόμβος από inactive περνά σε active Κάθε κόμβος v διαλέγει ομοιόμορφα και τυχαία ένα κατώφλι θ v [0, 1] Πείθεται αν w N(v) b v,w θ v, given w N(v) b v,w 1, v V
18 Independent Cascade Model Βασίζεται στη λογική ότι ένας active κόμβος/άνθρωπος μπορεί να ενεργοποιήσει/πείσει/μολύνει κάποιους από τους φίλους του
19 Independent Cascade Model Βασίζεται στη λογική ότι ένας active κόμβος/άνθρωπος μπορεί να ενεργοποιήσει/πείσει/μολύνει κάποιους από τους φίλους του Progressive γιατί κάθε κόμβος από inactive περνά σε active
20 Independent Cascade Model Βασίζεται στη λογική ότι ένας active κόμβος/άνθρωπος μπορεί να ενεργοποιήσει/πείσει/μολύνει κάποιους από τους φίλους του Progressive γιατί κάθε κόμβος από inactive περνά σε active Κάθε κόμβος v προσπαθεί άπαξ να πείσει τους γείτονές του και πετυχαίνει (ανεξάρτητα) με πιθανότητα p v,w όπου w γείτονας του v
21 Independent Cascade Model Βασίζεται στη λογική ότι ένας active κόμβος/άνθρωπος μπορεί να ενεργοποιήσει/πείσει/μολύνει κάποιους από τους φίλους του Progressive γιατί κάθε κόμβος από inactive περνά σε active Κάθε κόμβος v προσπαθεί άπαξ να πείσει τους γείτονές του και πετυχαίνει (ανεξάρτητα) με πιθανότητα p v,w όπου w γείτονας του v Αν τύχει και ενεργοποιηθούν ταυτόχρονα πολλοί γείτονες του v τότε οι προσπάθειες με αυθαίρετη (; - κέρματα reachability) σειρά
22 Reachability, κέρματα και ICM submodularity Ισοδύναμα στο ICM εξαρχής ρίχνω κέρματα για κάθε ακμή με επιτυχία ανάλογη της πιθανότητάς της
23 Reachability, κέρματα και ICM submodularity Ισοδύναμα στο ICM εξαρχής ρίχνω κέρματα για κάθε ακμή με επιτυχία ανάλογη της πιθανότητάς της Δημιουργώ τον γράφο με ζωντανές ακμές μόνον και κάνω BFS από το Α
24 Reachability, κέρματα και ICM submodularity Ισοδύναμα στο ICM εξαρχής ρίχνω κέρματα για κάθε ακμή με επιτυχία ανάλογη της πιθανότητάς της Δημιουργώ τον γράφο με ζωντανές ακμές μόνον και κάνω BFS από το Α Εχοντας fixάρει την κατανομή των κερμάτων ποια είναι η σ(α) ; Είναι submodular ;
25 ICM Αναγωγή - Σχόλια για LTM Το Influence Maximization - ICM είναι NP-Hard
26 ICM Αναγωγή - Σχόλια για LTM Το Influence Maximization - ICM είναι NP-Hard Αναγωγή σε Κάλυμμα Συνόλου
27 ICM Αναγωγή - Σχόλια για LTM Το Influence Maximization - ICM είναι NP-Hard Αναγωγή σε Κάλυμμα Συνόλου Και για το LTM ισχύουν τα ίδια συμπεράσματα.
28 GTM, GCM Αφήνουμε τη συνάρτηση κατωφλίου να εξαρτάται από τα σύνολα γειτόνων.
29 GTM, GCM Αφήνουμε τη συνάρτηση κατωφλίου να εξαρτάται από τα σύνολα γειτόνων. Επιτρέπουμε η πιθανότητα επιτυχίας να εξαρτάται από τους γείτονες που προσπάθησαν και απέτυχαν ήδη.
30 GTM, GCM Αφήνουμε τη συνάρτηση κατωφλίου να εξαρτάται από τα σύνολα γειτόνων. Επιτρέπουμε η πιθανότητα επιτυχίας να εξαρτάται από τους γείτονες που προσπάθησαν και απέτυχαν ήδη. Τα παραπάνω αποδεικνύονται ισοδύναμα.
31 GTM, GCM Αφήνουμε τη συνάρτηση κατωφλίου να εξαρτάται από τα σύνολα γειτόνων. Επιτρέπουμε η πιθανότητα επιτυχίας να εξαρτάται από τους γείτονες που προσπάθησαν και απέτυχαν ήδη. Τα παραπάνω αποδεικνύονται ισοδύναμα. Στα γενικά αυτά μοντέλα η προσέγγιση σε παράγοντα n 1 ɛ του Influence Maximization - ICM είναι NP-Hard (;)
32 Triggering Models & Conjecture Κάθε κορυφή διαλέγει ανεξάρτητα με βάση κάποια κατανομή πιθανότητας στα υποσύνολα των γειτόνων της ένα τυχαίο Triggering Set T v και περνά από incative to active αν έχει γείτονα στο Triggering Set T v που ήταν active στο προηγούμενο βήμα
33 Triggering Models & Conjecture Κάθε κορυφή διαλέγει ανεξάρτητα με βάση κάποια κατανομή πιθανότητας στα υποσύνολα των γειτόνων της ένα τυχαίο Triggering Set T v και περνά από incative to active αν έχει γείτονα στο Triggering Set T v που ήταν active στο προηγούμενο βήμα Σε αυτό το λίγο πιο ειδικό μοντέλο πάλι έχω submodularity & greedy
34 Triggering Models & Conjecture Κάθε κορυφή διαλέγει ανεξάρτητα με βάση κάποια κατανομή πιθανότητας στα υποσύνολα των γειτόνων της ένα τυχαίο Triggering Set T v και περνά από incative to active αν έχει γείτονα στο Triggering Set T v που ήταν active στο προηγούμενο βήμα Σε αυτό το λίγο πιο ειδικό μοντέλο πάλι έχω submodularity & greedy Whenever the threshold functions f v at every node are monotone and submodular, the resulting influence function is monotone and submodular as well
35 Τι είδαμε και τι θα δούμε Διάφορα Μοντέλα διάδοσης πληροφορίας και σχέση με submodularity
36 Τι είδαμε και τι θα δούμε Διάφορα Μοντέλα διάδοσης πληροφορίας και σχέση με submodularity Αν έχω πολλαπλά δίκτυα τί γίνεται ;
37 Τι είδαμε και τι θα δούμε Διάφορα Μοντέλα διάδοσης πληροφορίας και σχέση με submodularity Αν έχω πολλαπλά δίκτυα τί γίνεται ; Σύνδεση με Game Theory/Opinion Dynamics και εταιρεἰες.
38 Ευχαριστώ για την προσοχή σας! Απορίες
39
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ Λ03Β ΑΛΓΟΡΙΘΜΟΙ ΔΙΚΤΥΩΝ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΦΛΕΒΑΡΗΣ 2004
ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ Λ03Β ΑΛΓΟΡΙΘΜΟΙ ΔΙΚΤΥΩΝ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΦΛΕΒΑΡΗΣ 2004 Παρουσίαση του paper: Increasing the Weight of Minimum Spanning Trees Greg N. Frederickson and Roberto Solis- Oba Journal of Algorithms
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα αναζήτησης είναι ένα πρόβλημα στο
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιµότητα. Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιµότητα Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβληµα αναζήτησης (search problem) Ένα πρόβληµα αναζήτησης είναι ένα πρόβληµα στο
Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,
Κεφάλαιο 8 NP και Υπολογιστική Δυσεπιλυσιμότητα Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 πρόβλημα αναζήτησης (search problem) Ένα πρόβλημα
Κλάσεις Πολυπλοκότητας
Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν
Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 1 Πέντε Αντιπροσωπευτικά Προβλήματα Έκδοση 1.4, 30/10/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 1.2 Πέντε Αντιπροσωπευτικά Προβλήματα 1. Χρονοπρογραμματισμός Διαστημάτων
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Λήψη Α οφάσεων υ ό Αβεβαιότητα Decision Making under Uncertainty Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Εντο
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα
Γραμμικός Προγραμματισμός
Μια εταιρεία παράγει κέικ δύο κατηγοριών, απλά και πολυτελείας: Ένα απλό κέικ αποδίδει κέρδος 1 ευρώ. Ένα κέικ πολυτελείας αποδίδει κέρδος 6 ευρώ. Η καθημερινή ζήτηση του απλού κέικ είναι 200. Η καθημερινή
καθ. Βασίλης Μάγκλαρης
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Ενισχυτική Μάθηση - Δυναμικός Προγραμματισμός: 1. Markov Decision Processes 2. Bellman s Optimality Criterion 3. Αλγόριθμος
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
NP-πληρότητα. Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων
NP-πληρότητα Λεωνίδας Παληός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Πολυωνυμικός μετασχηματισμός Ένας πολυωνυμικός μετασχηματισμός από την L 1 Σ 1 * στην L 2 Σ 2 * είναι μια συνάρτηση
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ o ΔΙΑΛΕΞΕΙΣ ΜΑΘΗΜΑΤΟΣ ΔΕΥΤΕΡΑ 16.00-19.00 (Εργ. Υπ. Μαθ. Τμ. ΜΠΔ) oτρόπος
ΕΦΑΡΜΟΓΗ Q-LEARNING ΣΕ GRID WORLD ΚΑΙ ΕΞΥΠΝΟΣ ΧΕΙΡΙΣΜΟΣ ΤΟΥ LEARNING RATE ΛΑΘΙΩΤΑΚΗΣ ΑΡΗΣ ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ 2011-12
ΕΦΑΡΜΟΓΗ Q-LEARNING ΣΕ GRID WORLD ΚΑΙ ΕΞΥΠΝΟΣ ΧΕΙΡΙΣΜΟΣ ΤΟΥ LEARNING RATE ΛΑΘΙΩΤΑΚΗΣ ΑΡΗΣ ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ 2011-12 ΣΚΟΠΟΣ ΕΡΓΑΣΙΑΣ Στα πλαίσια του μαθήματος Αυτόνομοι Πράκτορες μας ζητήθηκε να αναπτύξουμε
Multicut and Integer Multicomodity Flow in Trees (chap. 18) Αγγελής Γιώργος
Multicut and Integer Multicomodity Flow in Trees (chap. 18) Αγγελής Γιώργος Εισαγωγή Εύρεση αλγορίθμου με approx ratio 2 και ½ για τα προβλήματα minimum multicut και integer multicommodity flow αντίστοιχα
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ
ΔΥΣΚΟΛΙΑ ΣΤΗΝ ΠΡΟΣΕΓΓΙΣΙΜΟΤΗΤΑ Επιμέλεια : Γεωργίου Κωστής Παρουσίαση στα πλαίσια του μαθήματος: Δίκτυα και πολυπλοκότητα Φεβρουάριος 004 μπλ Κίνητρα για τη μελέτη της μη προσεγγισιμότητας Ο πληρέστερος
NP-complete problems. IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH. NP-complete problems 1 / 30
NP-complete problems IS, 4-Degree IS,CLIQUE, NODE COVER, MAX CUT, MAX BISECTION, BISECTION WIDTH Καλογερόπουλος Παναγιώτης (ΜΠΛΑ) NP-complete problems 1 / 30 Independent Set is NP-complete Ορισμός. Εστω
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Σύνθετα Δίκτυα. com+plex: with+ -fold (having parts) Διδάζκων Δημήηριος Καηζαρός
Σύνθετα Δίκτυα com+plex: with+ -fold (having parts) Διδάζκων Δημήηριος Καηζαρός Διάλεξη 14η: 03/05/2017 1 Influence maximization Μεγιζηοποίηζη επιρροής 2 Κνηλσληθά δίθηπα θαη δηάδνζε επηξξνήο Σα θνηλσληθά
Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα
Κουτσιούμπας Αχιλλέας U. Adamy, C. Ambuehl, R. Anand, T. Erlebach
Κουτσιούμπας Αχιλλέας ΕΛΕΓΧΟΣ ΚΛΗΣΕΩΝ ΣΕ ΑΚΤΥΛΙΟ U. Adamy, C. Ambuehl, R. Anand, T. Erlebach ΜΠΛΑ 1 Δομή παρουσίασης Γενικά Ορισμός προβλήματος Σχετιζόμενη δουλειά Εισαγωγικά Αλγόριθμος Παράδειγμα εκτέλεσης
Κλάση NP, NP-Complete Προβλήματα
Κλάση NP, NP-Complete Προβλήματα Βαγγέλης ούρος douros@aueb.gr 1 11/6/2012 Αλγόριθμοι, Εαρινό Εξάμηνο 2012, Φροντιστήριο #14 Προβλήματα Απόφασης & Βελτιστοποίησης 2 Πρόβλημα Απόφασης: Κάθε πρόβλημα που
Μία αξιωματική προσέγγιση για τη διαφοροποίηση των αποτελεσμάτων
Μία αξιωματική προσέγγιση για τη διαφοροποίηση των αποτελεσμάτων ΜΑΘΗΜΑ Ανάκτηση Πληροφορίας Παππάς Χρήστος Ιωάννινα, Ιανουάριος 2010 Διάρθρωση Εισαγωγή Πρόβλημα Σημαντικότητα Ενδιαφέροντα θέματα Τεχνικό
Maximal Independent Set
Maximal Indpndnt St Quick Rviw Μας δίνεται γράφος. Στους κόμβους του βρίσκονται ακίνητοι επεξεργαστές οι οποίοι επικοινωνούν σύγχρονα μέσω των ακμών. Οι επεξεργαστές προσπαθούν να λύσουν ένα πρόβλημα ανταλλάζοντας
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ
ΑΛΓΟΡΙΘΜΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΚΟΥΛΙΝΑΣ ΓΕΩΡΓΙΟΣ Δρ. Μηχανικός Παραγωγής & Διοίκησης ΔΠΘ ΠΛΕΟΝΕΚΤΙΚΟΙ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ GREEDY CONSTRUCTIVE HEURISTICS Βασικό μειονέκτημα: οι αποφάσεις που
Ορατότητα σε απλά πολύγωνα
Ορατότητα σε απλά πολύγωνα Πολύγωνο, απλό πολύγωνο, πολύγωνο με τρύπες: Το σημείο a βλέπει τα σημεία b και c, όχι όμως το d: d c R d b R1 R2 a R3 a b R c Το πρόβλημα φύλαξης της αίθουσας τέχνης Victor
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΕΙΚΟΝΙΚΗΣ ΠΛΑΤΦΟΡΜΑΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΗΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΑΝΘΡΩΠΙΝΟΥ ΗΠΑΤΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΑΠΤΙΚΟΥ ΜΕΣΟΥ Δηµήτρης Δούνας
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
Ακέραιος Γραµµικός Προγραµµατισµός
Μέγιστο Ανεξάρτητο Σύνολο Μέγιστο Ανεξάρτητο Σύνολο Εφαρµογές : Παράλληλη εκτέλεση εργασιών Χρονοπρογραµµατισµός (scheduling) Ανάθεση πόρων (resource allocation) Πρόβληµα k-ϐασιλισσών Τηλεπικοινωνίες Μέγιστο
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Γραµµικός Προγραµµατισµός (ΓΠ)
Γραµµικός Προγραµµατισµός (ΓΠ) Περίληψη Επίλυση δυσδιάστατων προβληµάτων Η µέθοδος simplex Τυπική µορφή Ακέραιος Προγραµµατισµός Προγραµµατισµός Παραγωγής Προϊόν Προϊόν 2 Παραγωγική Δυνατότητα Μηχ. 4 Μηχ.
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο
ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ Μ. Παπαδημητράκης. 1 ΤΡΙΑΚΟΣΤΟ ΠΕΜΠΤΟ ΜΑΘΗΜΑ Ας θυμηθούμε από την περασμένη φορά ότι ένα σύνολο M σε έναν μετρικό χώρο (X, d είναι συμπαγές όταν: αν έχουμε οποιαδήποτε ανοικτά σύνολα που καλύπτουν
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία
Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim. Αικατερίνη Κούκιου
Network Algorithms and Complexity Παραλληλοποίηση του αλγορίθμου του Prim Αικατερίνη Κούκιου Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Προσεγγιστικοί Αλγόριθμοι
Κεφάλαιο 12 Προσεγγιστικοί Αλγόριθμοι 12.1 Προβλήματα Βελτιστοποίησης Σε ένα πρόβλημα βελτιστοποίησης σε κάθε στιγμιότυπο του προβλήματος αντιστοιχούν κάποιες εφικτές (feasible) -δηλαδή επιτρεπτές- λύσεις,
4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων. Δρ Μ.Σπηλιώτης
4.γ. μερική επανάληψη, εισαγωγή στη βελτιστοποίηση υδατικών συστημάτων Δρ Μ.Σπηλιώτης Ολοκληρωμένη διαχείριση υδατικών πόρων (integrated water resources management), έμφαση στην εξέταση όλων των πτυχών
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών
ΚΕΦΑΛΑΙΟ 12: Θεωρία υπολογισµών 1 Συναρτήσεις και ο υπολογισµός τους 2 Μηχανές Turing 3 Καθολικές γλώσσες προγραµµατισµού 4 Μια µη υπολογίσιµη συνάρτηση 5 Πολυπλοκότητα προβληµάτων 1 Συναρτήσεις Μία συνάρτηση
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2
HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)
Minimum Spanning Tree: Prim's Algorithm
Minimum Spanning Tree: Prim's Algorithm 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph. 2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Δυναμικός Προγραμματισμός με Μεθόδους Monte Carlo: 1. Μάθηση Χρονικών Διαφορών (Temporal-Difference Learning) 2. Στοχαστικός
ΑΝΑΛΥΣΗ 1 ΔΕΚΑΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.
ΑΝΑΛΥΣΗ ΔΕΚΑΤΟ ΕΝΑΤΟ ΜΑΘΗΜΑ, 9--3 Μ. Παπαδημητράκης. Σήμερα θα δούμε κάποια πράγματα για μια σημαντική ειδική κατηγορία σειρών, εκείνες που έχουν όλους τους προσθετέους τους μη-αρνητικούς. Και θα αρχίσουμε
Μη γράφετε στο πίσω μέρος της σελίδας
Εισαγωγή στο Σχεδιασμό & την Ανάλυση Αλγορίθμων Εξέταση Φεβρουαρίου 2016 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
1 Εισαγωγή στις Συνδυαστικές Δημοπρασίες - Combinatorial Auctions
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεωρία Παιγνίων και Αποφάσεων Διδάσκων: Ε. Μαρκάκης, Εαρινό εξάμηνο 2015 Συμπληρωματικές σημειώσεις για τον μηχανισμό VCG 1 Εισαγωγή στις Συνδυαστικές
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4 5.9 Η Στοχαστική Ανέλιξη Gauss (οι διαφάνειες ακολουθούν διαφορετική
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
P = (J, B) T = (I, A) P = (J, B) G = (V, E) i 1 i i + 1
Θεωρία Γραφημάτων Διάλεξη 19: 14.12.2016 και 15.12.2016 Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Αγγελική Χαντζηθάνου & Σ. Κ. 19.1 Σχέση πλάτους μονοπατιού και δενδροπλάτους Πρόταση 19.1 Το πλέγμα Γ n n
Προηγμένα Θέματα Αλγορίθμων (ΣΗΜΜΥ ΕΜΠ) Αλγόριθμοι Δικτύων και Πολυπλοκότητα (ΕΜΠ - ΑΛΜΑ) Προσεγγιστικοί Αλγόριθμοι.
Προηγμένα Θέματα Αλγορίθμων (ΣΗΜΜΥ ΕΜΠ) Αλγόριθμοι Δικτύων και Πολυπλοκότητα (ΕΜΠ - ΑΛΜΑ) Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άνοιξη 2018 Προσεγγιστικοί Αλγόριθμοι Αφορούν κυρίως σε προβλήματα βελτιστοποίησης:
ιαµέριση - Partitioning
ιαµέριση - Partitioning ιαµέριση ιαµέριση είναι η διαµοίραση αντικειµένων σε οµάδες µε στόχο την βελτιστοποίηση κάποιας συνάρτησης. Στην σύνθεση η διαµέριση χρησιµοποιείται ως εξής: Οµαδοποίηση µεταβλητών
Γράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Προσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Διαχείριση Ταμιευτήρα
Διαχείριση Ταμιευτήρα Μονοκριτηριακή βελτιστοποίηση Διαχείριση υδατικών πόρων Ανάγκη σύνθεσης επιστημών Σημερινό μάθημα: έμφαση στη χρήση εννοιών και μεθόδων από την επιχειρησιακή έρευνα Κουτσογιάννης,
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ
ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 13: Πολυωνυμική αναγωγή Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Επισκόπηση Συµπίεσης 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε απο τον Claude
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ. ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης. ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΕΝΟΤΗΤΑ: Γραμμικές Συναρτήσεις Διάκρισης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΟΝΤΕΣ: Βλάμος Π. Αυλωνίτης Μ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 01/04/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016
HY118-Διακριτά Μαθηματικά
HY118-Διακριτά Μαθηματικά Παρασκευή, 16/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 17-Mar-18
ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΣΤΟΥΚΑ ΝΙΚΟΛΑΟΣ ΛΑΜΠΡΟΥ. μπλ 2014
ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΣΤΟΥΚΑ ΝΙΚΟΛΑΟΣ ΛΑΜΠΡΟΥ μπλ 2014 Έχουμε G = (V,E) μη κατευθυνόμενο γράφο με μη αρνητικές χωρητικότητες c e για κάθε e E. {(s 1, t 1 ),..., (s k, t k )} διακριτά διατεταγμένη ζεύγη
Ενότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ
ΠΝΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΣ ΔΔΟΜΝΩΝ ΚΙ ΛΓΟΡΙΘΜΟΙ ΗΜΡΟΜΗΝΙ: 14/11/2018 ΔΙΓΝΩΣΤΙΚΟ ΠΝΩ Σ ΔΝΔΡΙΚΣ ΔΟΜΣ ΚΙ ΓΡΦΟΥΣ Διάρκεια: 45 λεπτά Ονοματεπώνυμο:. ρ. Ταυτότητας:. ΒΘΜΟΛΟΓΙ ΣΚΗΣΗ ΒΘΜΟΣ
John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ορισµένα αποτελέσµατα του τα σηµεία ισορροπίας Nash (NE Nash Equilibrium) ύπαρξη σηµείου
HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2
Πρόταση. f(x) ομοιόμορφα συνεχής στο I. δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ. ɛ > 0, δ > 0 : ΜΗ ομοιόμορφα συνεχής.
f(x) ομοιόμορφα συνεχής στο I ɛ > 0, δ (ɛ) > 0 : x, ξ I, x ξ < δ (ɛ, ξ) f(x) f(ξ) < ɛ f(x) ΜΗ ομοιόμορφα συνεχής ɛ > 0, δ > 0 : x, ξ I, x ξ < δ f(x) f(ξ) ɛ f(x) συνεχής στο [a, b] f(x) ομοιόμορφα συνεχής
Scheduling on Unrelated Parallel Machines
Scheduling on Unrelated Parallel Machines Problem Formulation Given a set J of jobs, a set M of machines, and for each j J and i M, pij Z+, is the time taken to process job j on machine i, the problem
Εθνικό Μετσόβιο Πολυτεχνείο. Προβλήματα Βελτιστοποίησης Επιρροής και Εσόδων σε Κοινωνικά Δίκτυα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Προβλήματα Βελτιστοποίησης Επιρροής και Εσόδων σε Κοινωνικά Δίκτυα ΔΙΠΛΩΜΑΤΙΚΗ
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα
Chapter 9: NP-Complete Problems
Θεωρητική Πληροφορική Ι: Αλγόριθμοι και Πολυπλοκότητα Chapter 9: NP-Complete Problems 9.3 Graph-Theoretic Problems (Συνέχεια) 9.4 Sets and Numbers Γιώργος Αλεξανδρίδης gealexan@mail.ntua.gr Κεφάλαιο 9:
Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.
Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,
Αναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1
Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή
Άσκηση 1. Ψευδοκώδικας Kruskal. Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα.
Άσκηση 1 Ψευδοκώδικας Kruskal Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα. Αντιστοιχίζω τους κόμβους με αριθμούς από το 0 έως το 4. 2Η ΕΡΓΑΣΙΑ ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ - MAY 2018
Αξιολόγηση Ευριστικών Αλγορίθµων
Προσεγγιστικοί Αλγόριθµοι Πολλές ϕορές η εύρεση της ϐέλτιστων λύσεων προβληµάτων ακέραιου γραµµικού προγραµµατισµού είναι µια χρονοβόρα διαδικασία (εκθετική πολυπλοκότητα) Προσεγγιστικοί Αλγόριθµοι Πολλές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 7 ΧΡΩΜΑΤΙΣΜΟΣ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Χρωματισμός κορυφών-ακμών-περιοχών. Χρωματική τάξη (color class):
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο. Δίκτυα Ροής Ελάχιστου Κόστους (Minimum Cost Flow Networks)
Προβλήματα Ελάχιστου Κόστους Ροής σε Δίκτυο Ορισμοί Παραδείγματα Δικτυακή Simplex (προβλήματα με και χωρίς φραγμούς). Δίκτυα Ροής Ελάχιστου Κόστους (Minimum ost Flow Networks) Ένα δίκτυο μεταφόρτωσης αποτελείται
Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis
Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Θεώρημα για σφαίρες Θα δείξουμε ότι το γράφημα G(n, 2 ln n n 1 ) έχει μικρή διάμετρο Θα ξεκινήσουμε με ένα θεώρημα για το μέγεθος μιας σφαίρας
Network Science. Θεωρεία Γραφηµάτων (2)
Network Science Θεωρεία Γραφηµάτων () Section.8 PATHOLOGY Διαδρομές Μια διαδρομή είναι μια σειρά κόμβων όπου κάθε κόμβος είναι δίπλα στην επόμενη P i0,in μήκους n μεταξύ των κόμβων i 0 και i n είναι μια
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 11-12 Γραμμική παλινδρόμηση συνέχεια Γραμμική παλινδρόμηση συνέχεια Γραμμικές διαχωριστικές συναρτήσεις Γραμμική παλινδρόμηση (Linear regression) y = w + wx + + w
ροµολόγηση πακέτων σε δίκτυα υπολογιστών
ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου
Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης
Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης Προσπάθεια υλοποίησης Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι
Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων
Κ Σ Ι Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Παναγιώτα Παναγοπούλου Άσκηση 1. Υποθέστε ότι οι διεργασίες ενός σύγχρονου κατανεμημένου συστήματος έχουν μοναδικές ταυτότητες (UIDs), γνωρίζουν ότι είναι συνδεδεμένες
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ Εύρεση ελάχιστων μονοπατιών Αλγόριθμος του ijkstra Θέματα μελέτης Πρόβλημα εύρεσης ελάχιστων μονοπατιών σε γραφήματα (shortest path problem) Αλγόριθμος
Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός
Ανάκληση Πληροφορίας Διδάσκων Δημήτριος Κατσαρός Διάλεξη 15η: 12/05/2014 1 Το πρόβλημα PageRank ως γραμμικό σύστημα 2 PageRank ως γραμμικό σύστημα Το πρόβλημα του PageRank μπορεί να γραφεί είτε ως Πρόβλημα
Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;
Άπληστοι Αλγόριθμοι ΙΙI Αλγόριθμοι γραφημάτων Ελάχιστο Γεννητικό Δένδρο Παράδειγμα Κατασκευή δικτύων Οδικά, επικοινωνίας Έχουμε ένα συνεκτικό γράφημα (V,E) και ένας βάρος we σε κάθε ακμή e. Να βρεθεί υποσύνολο
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Data Mining - Classification Data Mining Ανακάλυψη προτύπων σε μεγάλο όγκο δεδομένων. Σαν πεδίο περιλαμβάνει κλάσεις εργασιών: Anomaly Detection:
Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την
Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.
ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα 005 - Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π. Προσομοίωση Monte Carlo Αλυσίδων Markov: Αλγόριθμοι Metropolis & Metropolis-Hastings Προσομοιωμένη Ανόπτηση Simulated Annealing
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 7 Φεβρουαρίου / 38
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 7 Φεβρουαρίου 2017 1 / 38 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον
1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n
Οι ασκήσεις αυτές έχουν σκοπό να βοηθήσουν τους φοιτητές στην μελέτη τους για το μάθημα «Ανάλυση ΙΙ» του Τμήματος Μαθηματικών του Πανεπιστημίου Αιγαίου. Συνιστούμε στους φοιτητές να επεξεργαστούν αυτές