Θέμα 1: Robbie και Αναζήτηση
|
|
- Αργυρός Καρράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Θέμα : Robbie και Αναζήτηση Ο Robbie, το ρομπότ του παρακάτω σχήματος-χάρτη, κατά τη διάρκεια των εργασιών που κάνει διαπιστώνει ότι πρέπει να γυρίσει όσο το δυνατόν πιο γρήγορα, από την τρέχουσα θέση, στην κινητή βάση ανεφοδιασμού, στη θέση, προκειμένου να φορτίσει τις μπαταρίες του. Ο Robbie μπορεί να πλοηγηθεί σύμφωνα με τα βέλη του χάρτη. Πάνω σε κάθε βέλος υπάρχει ένας αριθμός που αντιπροσωπεύει την απόσταση μεταξύ των συνδεόμενων κόμβων. Κάθε κόμβος χαρακτηρίζεται από ένα γράμμα. Δίπλα στο γράμμα κάθε κόμβου βρίσκεται ένας αριθμός που αντιπροσωπεύει την ευθεία απόσταση του κόμβου από τον κόμβο. Αγνοείστε προς το παρόν το διακεκομμένο βέλος.,8,,,,9,5,0,8,, O Robbie διαθέτει μνήμη στην οποία έχουν καταχωρηθεί τα στοιχεία του χάρτη. Ο Robbie αποφασίζει να βρει την καλύτερη διαδρομή χρησιμοποιώντας διάφορους αλγορίθμους, όπως παρακάτω. Κατά την
2 εκτέλεση των αλγορίθμων χρησιμοποιούμε τις εξής συμβάσεις σε περιπτώσεις ισότιμων κόμβων (εκτός αν αναφέρεται διαφορετικά): Όταν ισότιμοι κόμβοι βρίσκονται στο ίδιο βάθος (επίπεδο) επιλέγεται ο ευρισκόμενος αριστερότερα. Όταν ισότιμοι κόμβοι βρίσκονται σε διαφορετικό βάθος (επίπεδο) επιλέγεται ο ευρισκόμενος σε μικρότερο βάθος (υψηλότερα στο δέντρο). α. Κατά βάθος αναζήτηση. Α. αλγορίθμου της κατά βάθος αναζήτησης (depth-first search), αν ο Robbie αποφασίσει να κινείται όλο αριστερά. Καταγράψτε το μονοπάτι της λύσης και υπολογίστε το κόστος του. Καταγράψτε την σειρά επέκτασης των κόμβων και υπολογίστε πόσα βήματα έκανε ο αλγόριθμος. Β. Να κάνετε το ίδιο, αν ο Robbie αποφασίσει να κινείται όλο δεξιά. Σχολιάστε τις δύο περιπτώσεις. β. Κατά πλάτος αναζήτηση. αλγορίθμου της κατά πλάτος αναζήτησης (breadth-first search). Καταγράψτε το μονοπάτι της λύσης και υπολογίστε το κόστος του. Καταγράψτε την σειρά επέκτασης των κόμβων και υπολογίστε πόσα βήματα έκανε ο αλγόριθμος. γ. Άπληστη Αναζήτηση. αλγορίθμου της άπληστης αναζήτησης (greedy search), η οποία αναπτύσσει κάθε φορά τον κόμβο που απέχει λιγότερο από τη θέση ανεφοδιασμού. Καταγράψτε το μονοπάτι της λύσης και υπολογίστε το κόστος του. Καταγράψτε την σειρά επέκτασης των κόμβων και υπολογίστε πόσα βήματα έκανε ο αλγόριθμος. δ. Αναζήτηση με βάση το κόστος διαδρομής. αλγορίθμου της αναζήτησης με βάση το κόστος της διαδρομής (branch and bound search), η οποία αναπτύσσει κάθε φορά τον κόμβο που το κόστος της διαδρομής από την αρχική θέση μέχρι αυτόν είναι το μικρότερο. Καταγράψτε το μονοπάτι της λύσης και υπολογίστε το κόστος του. Καταγράψτε την σειρά επέκτασης των κόμβων και υπολογίστε πόσα βήματα έκανε ο αλγόριθμος. ε. Αναζήτηση με τον Α*. αλγορίθμου Α*. Καταγράψτε το μονοπάτι της λύσης και υπολογίστε το κόστος του. Καταγράψτε την σειρά επέκτασης των κόμβων και υπολογίστε πόσα βήματα έκανε ο αλγόριθμος. στ. Σύγκριση αλγορίθμων. Συγκρίνετε και συζητείστε τα αποτελέσματα των παραπάνω αλγορίθμων. Ποιοι από αυτούς βρίσκουν την καλύτερη (μικρότερη) διαδρομή; Συζητείστε αν αυτό είναι τυχαίο ή αποτελεί εγγυημένο αποτέλεσμα για κάθε αλγόριθμο από αυτούς. Υποστηρίξτε τους ισχυρισμούς σας με παραδείγματα (όπου είναι αναγκαίο). Αν υπήρχε και η σύνδεση που δείχνει το διακεκομμένο βέλος, ποιοι από τους αλγορίθμους θα είχαν διαφορετικό μονοπάτι λύσης; Είναι το καλύτερο; Δώστε σύντομες απαντήσεις.
3 Απαντήσεις α. Κατά βάθος αναζήτηση. Α. Δέντρο Αναζήτησης (κίνηση αριστερά) Β. Δέντρο Αναζήτησης (κίνηση δεξιά) Εφ όσον κινείται όλο αριστερά, φτάνει στο στόχο χωρίς να χρειαστεί οπισθοδρόμηση. Κινούμενο όλο δεξιά καταλήγει στο, απ όπου οπισθοδρομεί στο για να συνεχίσει μέσω του Ε, που είναι η δεξιά επιλογή όπως φθάνει στο. 5 Μονοπάτι λύσης: Κόστος λύσης: = Σειρά ανάπτυξης κόμβων: ίδια με το μονοπάτι Βήματα: 7 Μονοπάτι λύσης: Κόστος λύσης: ++++ = Σειρά ανάπτυξης κόμβων: Βήματα: Παρατηρούμε ότι στη δεύτερη περίπτωση η λύση βρίσκεται πιο γρήγορα. β. Κατά πλάτος αναζήτηση. Μονοπάτι λύσης: Κόστος λύσης: ++++ = Σειρά ανάπτυξης κόμβων: Βήματα: 0 Εδώ θεωρούμε ότι πρώτα εξετάζουμε την κίνηση προς τα αριστερά και μετά προς τα δεξιά, πράγμα που κανονίζει την σειρά παραγωγής και ανάπτυξης των κόμβων.
4 γ. Άπληστη Αναζήτηση. h=9 h=8 h=8 h= Μονοπάτι λύσης: Κόστος λύσης: = h=5 Σειρά ανάπτυξης κόμβων: h= h= h=0 h= h= h= Βήματα: 8 Κατ αρχήν αναπτύσσεται ο και παράγονται οι Α και Η. Στη συνέχεια αναπτύσσεται ο Α διότι είναι αριστερότερα του Η, αν και έχουν το ίδιο h, οπότε παράγεται ο Β. Μεταξύ των ανοικτών κόμβων Β και Η αναπτύσσεται ο Β διότι έχει μικρότερο h ( < 8) κ.ο.κ μέχρι την ανάπτυξη του κόμβου. Τότε παράγονται οι και, οπότε μεταξύ των ανοικτών κόμβων, και επιλέγεται και αναπτύσσεται ο, διότι έχει μικρότερο h (=). Ο παραγόμενος κόμβος έχει h μεγαλύτερο από αυτό του Ε, οπότε αναπτύσσεται ο Ε κ.ο.κ μέχρι τον. δ. Αναζήτηση με βάση το κόστος διαδρομής. g=0 Μονοπάτι λύσης: g= g= Κόστος λύσης: ++++ = g= g= g=7 5 g=8 9 7 g=0 8 0 g=5 g=7 g=9 Σειρά ανάπτυξης κόμβων: Βήματα: Κατ αρχήν, αναπτύσσεται ο και παράγονται οι Α και Η. Στη συνέχεια αναπτύσσεται ο Α διότι είναι αριστερότερα του Η, αν και έχουν το ίδιο g, οπότε παράγεται ο με g=+=. Μεταξύ των ανοικτών κόμβων Β και Η αναπτύσσεται ο διότι έχει μικρότερο g ( < ), οπότε παράγεται ο με g= +=5. Στη συνέχεια αναπτύσσεται ο (<5) και παράγεται ο με g=+=. Έτσι, στη συνέχεια αναπτύσσεται ο και παράγονται οι και με g=5+=8 και g=5+=7 αντίστοιχα. Τώρα, από τους ανοικτούς, και επιλέγεται ο (<8, <7) και παράγεται ο με g=+=7. Κατόπιν από τους ανοικτούς, και, αναπτύσσεται ο, διότι έχει μικρότερο g από τον και ενώ έχει το ίδιο g με τον βρίσκεται ψηλότερα στην ιεραρχία. Οπότε παράγεται ο (στο δεξί κλαδί) κ.ο.κ. μέχρι να φθάσουμε στον.
5 ε. Αναζήτηση με τον Α*. f=8 Μονοπάτι λύσης: Κόστος λύσης: ++++ = f=0 f=0 Σειρά ανάπτυξης κόμβων: f=0 f= f=9 Βήματα: f= f= f= f=0 7 8 f= f=8 f= Κατ αρχήν, αναπτύσσεται ο και παράγονται οι Α και Η. Στη συνέχεια αναπτύσσεται ο Α, διότι είναι αριστερότερα του Η, αν και έχουν το ίδιο f, οπότε παράγεται ο με f=+=0. Μεταξύ των ανοικτών κόμβων Β και Η αναπτύσσεται ο διότι βρίσκεται ψηλότερα στην ιεραρχία, αν και έχει ίδιο f με τον Β, οπότε παράγεται ο με f=5+=9. Στη συνέχεια από τους ανοικτούς και αναπτύσσεται ο (διότι 9<0) και παράγονται οι και με f=8+= και f=7+=8 αντίστοιχα. Έτσι, στη συνέχεια αναπτύσσεται ο, διότι έχει μικρότερο f από όλους τους ανοικτούς, και παράγεται ο με f=9+=. Τώρα, από τους ανοικτούς Β, και επιλέγεται ο Β (0<, 0<) και παράγεται ο με f=+5=. Κατόπιν από τους ανοικτούς, και, αναπτύσσεται ο, διότι έχει μικρότερο f από τον και, ενώ έχει το ίδιο f με τον, βρίσκεται αριστερότερα. Οπότε παράγεται ο (στο αριστερό κλαδί) κ.ο.κ. μέχρι να φθάσουμε στον. στ. Σύγκριση αλγορίθμων. Γρηγορότερα βρίσκει τη λύση ο κατά βάθος. Αυτό δεν συμβαίνει πάντα. Βέλτιστη διαδρομή (μικρότερου κόστους) βρίσκουν οι κατά πλάτος, η αναζήτηση με βάση το κόστος και ο Α*. Από αυτούς μόνο οι δύο τελευταίοι το εγγυώνται (ο Α* με την προϋπόθεση ότι το ευρετικό είναι αποδεκτό-εδώ είναι: ευθεία απόσταση από τον στόχο). Συντομότερη διαδρομή (λιγότερες μεταβάσεις) βρίσκει ο κατά πλάτος, η αναζήτηση με βάση το κόστος και ο Α*. Μόνο ο κατά πλάτος το εγγυάται. Αν ενεργοποιηθεί το διακεκομμένο βέλος, τότε θα βρουν άλλη λύση ο κατά πλάτος (και μάλιστα βέλτιστη), η αναζήτηση με βάση το κόστος (επίσης βέλτιστη), ο Α* (επίσης βέλτιστη) και η άπληστη αναζήτηση.
ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ
ηµήτρης Ψούνης ΠΛΗ31, Απαντήσεις Ερωτήσεων Quiz - ΑΝΑΖΗΤΗΣΗ 1 ΕΡΩΤΗΜΑΤΑ σε ΑΝΑΖΗΤΗΣΗ ΕΡΩΤΗΜΑ 1 Έστω h µία παραδεκτή ευρετική συνάρτηση. Είναι η συνάρτηση h ½ παραδεκτή; a. Ναι, πάντα. b. Όχι, ποτέ. c.
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αλγόριθμοι Τυφλής Αναζήτησης Οι αλγόριθμοι τυφλής αναζήτησης εφαρμόζονται σε
Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει την αξιολόγηση των καταστάσεων του χώρου αναζήτησης.
Ανάλογα με το αν ένας αλγόριθμος αναζήτησης χρησιμοποιεί πληροφορία σχετική με το πρόβλημα για να επιλέξει την επόμενη κατάσταση στην οποία θα μεταβεί, οι αλγόριθμοι αναζήτησης χωρίζονται σε μεγάλες κατηγορίες,
Άσκηση 2: Λαβύρινθοι και ρομπότ Α. (Σχεδιασμός χώρου καταστάσεων) Ενδεικτική επίλυση
Άσκηση 2: Λαβύρινθοι και ρομπότ Η εταιρία «Ρομπότ» παρουσιάζει το νέο της μοντέλο, τον πλοηγό πάρκων Ρ-310. Το Ρ-310 είναι δημοφιλές γιατί όπου και αν είσαι μέσα στο πάρκο σου λέει πώς πρέπει να κινηθείς
Ασκήσεις μελέτης της 4 ης διάλεξης. ), για οποιοδήποτε μονοπάτι n 1
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 4 ης διάλεξης 4.1. (α) Αποδείξτε ότι αν η h είναι συνεπής, τότε h(n
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΜΣ «ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΤΩΝ ΑΠΟΦΑΣΕΩΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 2006-2007 2η Σειρά Ασκήσεων ΑΠΑΝΤΗΣΕΙΣ 1. ίνεται το γνωστό πρόβληµα των δύο δοχείων: «Υπάρχουν δύο δοχεία
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59
PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ"
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ "ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ" ΜΕΡΟΣ ΔΕΥΤΕΡΟ Υπεύθυνος Καθηγητής Λυκοθανάσης Σπυρίδων Ακαδημαικό Έτος:
Επίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Περιεχόμενα Μέθοδοι (πράκτορες) επίλυσης προβλημάτων Προβλήματα και Λύσεις Προβλήματα παιχνίδια Προβλήματα του πραγματικού κόσμου Αναζήτηση λύσεων Δέντρο αναζήτησης Στρατηγικές
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2010-2011 Πρώτη Σειρά Ασκήσεων (20% του συνολικού βαθμού στο μάθημα, Άριστα = 390 μονάδες) Ημερομηνία Ανακοίνωσης: 6/10/2010 Ημερομηνία Παράδοσης: 15/11/2010 σύμφωνα
Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e
Άσκηση 1 Θεωρήστε ένα puzzle (παιχνίδι σπαζοκεφαλιάς) με την ακόλουθη αρχική διαμόρφωση : b b b w w w e Υπάρχουν τρία μαύρα τετραγωνάκια (b), τρία άσπρα (w) και ένα κενό (e). Η σπαζοκεφαλιά έχει τις ακόλουθες
Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων
Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται
4 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
4 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 4 4 η Άσκηση... 5 5 η Άσκηση... 6 6 η Άσκηση... 7 Χρηματοδότηση... 8 Σημείωμα Αναφοράς... 9 Σημείωμα
Τεχνητή Νοημοσύνη. 4η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 4η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται κυρίως στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β.
ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ
ΤΥΦΛΗ ΑΝΑΖΗΤΗΣΗ (1) ΣΤΡΑΤΗΓΙΚΗ Ή ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗΣ Μια αυστηρά καθορισµένη ακολουθία ενεργειών µε σκοπό τη λύση ενός προβλήµατος. Χαρακτηριστικά οθέν πρόβληµα: P= Επιλυθέν πρόβληµα: P s
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή
Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αναζήτηση Δοθέντος ενός προβλήματος με περιγραφή είτε στον χώρο καταστάσεων
Επίλυση Προβλημάτων. Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης.
Επίλυση Προβλημάτων Αποτελεί ένα από τα βασικά χαρακτηριστικά γνωρίσματα της νοημοσύνης. Τεχνητή Νοημοσύνη = Αναπαράσταση Γνώσης + Αλγόριθμοι Αναζήτησης Κατηγορίες Προβλημάτων Aναζήτησης Πραγματικά και
4. ΔΙΚΤΥΑ
. ΔΙΚΤΥΑ Τελευταία μορφή επιχειρησιακής έρευνας αποτελεί η δικτυωτή ανάλυση (δίκτυα). Τα δίκτυα είναι ένα διάγραμμα από ς οι οποίοι συνδέονται όλοι μεταξύ τους άμεσα ή έμμεσα μέσω ακμών. Πρόκειται δηλαδή
PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΕΥΤΕΡΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 4: Επίλυση προβλημάτων με αναζήτηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Τεχνητή Νοημοσύνη. 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος. http://www.aueb.gr/users/ion/
Τεχνητή Νοημοσύνη 2η διάλεξη (2015-16) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία: Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Τεχνητή Νοημοσύνη. 3η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 3η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007
Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό
1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;
ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική
max 17x x 2 υπό 10x 1 + 7x 2 40 x 1 + x 2 5 x 1, x 2 0.
Υπολογιστικές Μέθοδοι στη Θεωρία Αποφάσεων Ενότητα 11 Επίλυση στον Ακέραιο Προγραμματισμό Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Προπτυχιακό πρόγραμμα σπουδών 6 Μαΐου 2016 Η μέθοδος κλάδος-φράγμα
Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.
Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind
Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα
Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,
Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο
Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 19: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρείς θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνων μέγεθος, σε μια από τις τρείς
Δημιουργία Δυαδικών Δέντρων Αναζήτησης
Δημιουργία Δυαδικών Δέντρων Αναζήτησης Τα Δυαδικά δέντρα αναζήτησης είναι διατεταγμένα δυαδικά δέντρα όπου έχει σημασία η διάταξη των παιδιών κάθε κόμβου. Συγκεκριμένα για τα Δυαδικά δέντρα αναζήτησης,
(elementary graph algorithms)
(elementary graph algorithms) Παύλος Εφραιμίδης περιεχόμενα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή από καταλόγους γειτνίασης
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ
Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29
Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem
Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά
Αλγόριθμοι Τυφλής Αναζήτησης
Τεχνητή Νοημοσύνη 04 Αλγόριθμοι Τυφλής Αναζήτησης Αλγόριθμοι Τυφλής Αναζήτησης (Blind Search Algorithms) Εφαρμόζονται σε προβλήματα στα οποία δεν υπάρχει πληροφορία που να επιτρέπει αξιολόγηση των καταστάσεων.
Ασκήσεις μελέτης της 6 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,
Τεχνητή Νοημοσύνη Ι. Εργαστηριακή Άσκηση 4-6. Σγάρμπας Κυριάκος. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων
Τεχνητή Νοημοσύνη Ι Εργαστηριακή Άσκηση 4-6 Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστων ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ
Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια
Graph Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βάλια Περιεχόμενα Μεταβατικό Κλείσιμο Συνεκτικές συνιστώσες Συντομότερα μονοπάτια Breadth First Spanning
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 2 η ενότητα: Στοιχειώδη προβλήματα διαδρομής Τμήμα Μαθηματικών, ΠΘ καδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα γγελική Μεταδιδακτορική ερευνήτρια, ΠΘ & Πανεπιστήμιο Μακεδονίας
ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα
PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης
Αλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
ροµολόγηση πακέτων σε δίκτυα υπολογιστών
ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΚΑΙ ΕΥΦΥΗ ΣΥΣΤΗΜΑΤΑ Τελικές εξετάσεις 24 Ιουνίου 2004 ιάρκεια: 3 ώρες ΘΕΜΑ 1 ο (2.5 µονάδες)
Τεχνητή Νοημοσύνη. 6η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 6η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας
1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;
ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε
Επίλυση προβλημάτων με αναζήτηση
Επίλυση προβλημάτων με αναζήτηση Αναζήτηση σημαίνει την εύρεση μιας λύσης (τελικής κατάστασης) ενός προβλήματος διά της συνεχούς δημιουργίας (νέων) καταστάσεων με την εφαρμογή των διαθέσιμων ενεργειών
ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα :
Πρότυπο Πρότυπα ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Η Φυσική για να ερμηνεύσει τα φαινόμενα, δημιουργεί τα πρότυπα ή μοντέλα. Τα πρότυπα αποτελούνται από ένα πλέγμα
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 3 η ενότητα: Στοχαστικά προβλήματα διαδρομής Μεθοδολογία (1) Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 018-019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;
ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική
Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ
Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.
Δομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 6: Αλγόριθμοι Τοπικής Αναζήτησης Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)
Επίλυση Προβλημάτων 1
Επίλυση Προβλημάτων 1 Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 8: Πεπερασμένα Αυτόματα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Μη γράφετε στο πίσω μέρος της σελίδας
Εισαγωγή στο Σχεδιασμό & την Ανάλυση Αλγορίθμων Εξέταση Φεβρουαρίου 2016 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής
ΕΠΛ132 Άσκηση 4 - Αρχές Προγραμματισμού ΙΙ Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου Ι. Στόχοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ 132 Αρχές Προγραμματισμού ΙΙ Άσκηση 4 Αυτόματη Επίλυση του Παιχνιδιού
για NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o
Στις ασκήσεις Κινητικής υπάρχουν αρκετοί τρόποι για να δουλέψουμε. Ένας από αυτούς είναι με τη σωστή χρήση των εξισώσεων θέσης (κίνησης) και ταχύτητας των σωμάτων που περιγράφονται. Τα βήματα που ακολουθούμε
Επίλυση προβληµάτων. Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης
Επίλυση προβληµάτων Περιγραφή προβληµάτων Αλγόριθµοι αναζήτησης! Αλγόριθµοι τυφλής αναζήτησης Αλγόριθµοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων Προβλήµατα ικανοποίησης περιορισµών Αλγόριθµοι τυφλής
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΚΤΥΩΝ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1.1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΓΡΑΦΗΜΑΤΩΝ... 2 1.1.1 Ορισμός και ιδιότητες γραφημάτων... 2 1.1.2 Δέντρα... 7 1.2 ΑΠΟΘΗΚΕΥΣΗ ΓΡΑΦΩΝ ΚΑΙ ΔΙΚΤΥΩΝ... 11 1.2.1 Μήτρα πρόσπτωσης κόμβων τόξων...
Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc
4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό
5. Δείξτε με λεκτικούς ισχυρισμούς ότι ο χρόνος κίνησης από τη θέση x = + A στην θέση
Στα μεγέθη και στις περιγραφές των κινήσεων που ακολουθούν δεν γίνεται λεπτομερής ορισμός. Θεωρούνται καλώς ορισμένα (για τους σχετικούς φυσικά). Γενικά οι περιγραφές είναι σχετικά «χαλαρές» και επί της
Επίλυση Προβλημάτων. Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης. Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων
Επίλυση Προβλημάτων Περιγραφή Προβλημάτων Αλγόριθμοι αναζήτησης Αλγόριθμοι τυφλής αναζήτησης Αναζήτηση πρώτα σε βάθος Αναζήτηση πρώτα σε πλάτος (ΒFS) Αλγόριθμοι ευρετικής αναζήτησης Παιχνίδια δύο αντιπάλων
Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή
Επίλυση Προβλημάτων και Τεχνικές Αναζήτησης Εισαγωγή επίλυση προβλημάτων μέσω αναζήτησης κάθε πρόβλημα το οποίο μπορεί να διατυπωθεί αυστηρά λύνεται μέσω αναζήτησης. Για τα περισσότερα ενδιαφέροντα προβλήματα
6η Διάλεξη Διάσχιση Γράφων και Δέντρων
ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή
Σενάριο 14: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Φύλλο Εργασίας Τίτλος: Προγραμματίζοντας ένα Ρομπότ ανιχνευτή Γνωστικό Αντικείμενο: Πληροφορική Διδακτική Ενότητα: Ελέγχω-Προγραμματίζω τον Υπολογιστή
6 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
6 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 4 4 η Άσκηση... 4 5 η Άσκηση... 5 6 η Άσκηση... 5 7 η Άσκηση... 5 8 η Άσκηση... 6 Χρηματοδότηση... 7
ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;
ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά
Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Ταξινόμηση με Εισαγωγή. Ταξινόμηση με Επιλογή Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση Η ταξινόμηση sortg τοποθετεί ένα σύνολο κόμβων ή εγγραφών σε μία συγκεκριμένη διάταξη
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Επίλυση προβλημάτων με αναζήτηση Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος http://ai.uom.gr/aima/ 2
Αλγόριθμοι Δρομολόγησης. Γ. Κορμέντζας
Αλγόριθμοι Δρομολόγησης Γ. Κορμέντζας Δρομολόγηση Περιεχόμενα Διαδικασίες δρομολόγησης Ροές Δικτύων - Αλγόριθμος Ford-Fulkerson Βασικοί Αλγόριθμοι Γράφων Σχεδιασμός γραμμών πολλαπλών σημείων Ελάχιστα δέντρα
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις
Μεταπτυχιακό Πρόγραμμα : Τεχνο-οικονομικά Συστήματα. 13. Μελέτη Περίπτωσης Το πρόβλημα του χρονοπρογραμματισμού βιομηχανικών εργασιών
Διοίκηση Παραγωγής & Συστημάτων Υπηρεσιών 1 13. Μελέτη Περίπτωσης Το πρόβλημα του χρονοπρογραμματισμού βιομηχανικών εργασιών Εισηγητής : Επικ. Καθ. Δ. Ασκούνης Η εφαρμογή 2 Τα χαρακτηριστικά του προβλήματος
Σειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Πιο κάτω υπάρχει ένα σχεδιάγραμμα που τοποθετεί τις κλάσεις των κανονικών, ασυμφραστικών, διαγνώσιμων και αναγνωρίσιμων γλωσσών μέσα στο σύνολο όλων των γλωσσών. Ακολουθούν
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Πέμπτη 27 Ιουνίου 2013 10:003:00 Έστω το πάζλ των οκτώ πλακιδίων (8-puzzle)
66 Κάρτες. 1 εξάπλευρο ζάρι 1 εγχειρίδιο κανόνων. φύλλα κίνησης μαθητευόμενων. το ταμπλό. 16 δείκτες θορύβου / εξαφάνισης. δείκτες σύλληψης & γύρου
...και να είστε βέβαιοι, πως η αμαρτία σας θα σας βρει. ΠΔ Αριθμοί 32:23 Οι μαθητευόμενες έχουν ξεφύγει! Οι προκλήσεις τις έχουν τραβήξει έξω από τα κελιά τους, και ελπίζουν να μην τις πιάσουν οι ηγουμένες.
Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων
Τεχνητή Νοημοσύνη 06 Αλγόριθμοι Αναζήτησης σε Παίγνια Δύο Αντιπάλων Εισαγωγικά (1/3) Τα προβλήματα όπου η εξέλιξη των καταστάσεων εξαρτάται από δύο διαφορετικά σύνολα τελεστών μετάβασης που εφαρμόζονται
Δυναμικές Δομές Δεδομένων Λίστες Δένδρα - Γράφοι
Δυναμικές Δομές Δεδομένων Λίστες Δένδρα - Γράφοι Κ Ο Τ Ι Ν Η Ι Σ Α Β Ε Λ Λ Α Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Σ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Π Ε 8 6 Ν Ε Ι Ρ Ο Σ Α Ν Τ Ω ΝΙ Ο Σ Ε Κ Π Α Ι Δ Ε Υ Τ Ι Κ Ο Σ Π Λ Η Ρ Ο Φ Ο
ΒΑΣΙΚΑ ΜΑΘΗΜΑΤΑ ΝΤΟΥΛΑΚΗΣ - ΜΕΝΙΟΥΔΑΚΗΣ ΕΠΑ.Λ ΕΛ. ΒΕΝΙΖΕΛΟΥ
ΒΑΣΙΚΑ ΜΑΘΗΜΑΤΑ ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ... 2 ΠΡΟΛΟΓΟΣ... 3 ΕΙΣΑΓΩΓΗ... 4 Η ΑΝΑΠΤΥΞΗ ΤΗΣ ΟΘΟΝΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ... 4 Ο ΕΚΠΑΙΔΕΥΤΗΣ ΡΟΜΠΟΤ... 5 ΤΟ ΠΑΡΑΘΥΡΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ... 5 ΤΑ ΚΟΥΜΠΙΑ ΚΑΙ ΤΑ ΜΠΛΟΚ...
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 2: Δένδρο αναζήτησης. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 2: Δένδρο αναζήτησης Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ. Εξετάζουμε ενδεικτικά ορισμένες περιπτώσεις: 1 ο 2 ο. 3 ο 4 ο
ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ Δίνεται ορθογώνιο παραλληλόγραμμο διάστασης m n όπου m,n φυσικοί αριθμοί, το οποίο είναι διαιρεμένο σε τετράγωνα που το καθένα ισούται με την μονάδα μέτρησης του εμβαδού του. Να βρεθεί
2.1. Τρέχοντα Κύματα. Ομάδα Γ.
2.1. Τρέχοντα. Ομάδα Γ. 2.1.21. και προς τις δύο κατευθύνσεις. Στη θέση x 1 =8m ενός οριζόντιου γραμμικού ελαστικού μέσου υπάρχει πηγή κύματος η οποία αρχίζει να ταλαντώνεται σε κατακόρυφη διεύθυνση με
===========================================================================
=========================================================================== Α. (50 µον.) Σας δίνεται ο ακόλουθος γράφος, το οποίο πρέπει να χρωµατίσετε χρησιµοποιώντας 4 χρώµατα (R,G,B,Υ), ώστε δύο γειτονικές
On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο
On line αλγόριθμοι δρομολόγησης για στοχαστικά δίκτυα σε πραγματικό χρόνο Υπ. Διδάκτωρ : Ευαγγελία Χρυσοχόου Επιβλέπων Καθηγητής: Αθανάσιος Ζηλιασκόπουλος Τμήμα Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες
ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 11: Μη Ασυμφραστικές Γλώσσες Τι θα κάνουμε σήμερα Εισαγωγικά (2.3) Το Λήμμα της Άντλησης για ασυμφραστικές γλώσσες (2.3.1) Παραδείγματα 1 Πότε μια
Στοχαστικές Στρατηγικές. διαδρομής (1)
Στοχαστικές Στρατηγικές η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς
Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης
ΗΥ360 Αρχεία και Βάσεις εδοµένων
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Tutorial B-Trees, B+Trees Μπαριτάκης Παύλος 2018-2019 Ιδιότητες B-trees Χρήση για μείωση των προσπελάσεων στον δίσκο Επέκταση των Binary Search Trees
Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2018-2019 1 Κατακερματισμός Πρόβλημα στατικού κατακερματισμού: Έστω Μ κάδους και r εγγραφές ανά κάδο - το πολύ Μ * r εγγραφές (αλλιώς μεγάλες αλυσίδες υπερχείλισης)
Αναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Ψευδογλώσσας και Διαγράμματα Ροής
Βασικοί κανόνες Αρχή και Τέλος Η ψευδογλώσσα ξεκινάει με την εντολή Αλγόριθμος , το διάγραμμα ροής με το οβάλ Η ψευδογλώσσα καταλήγει με την εντολή Τέλος , το διάγραμμα ροής με το οβάλ Εντολές
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6β: Ταξινόμηση με εισαγωγή και επιλογή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση
Θεωρία Λήψης Αποφάσεων
Θεωρία Λήψης Αποφάσεων Ενότητα 5: Πληροφορημένη Αναζήτηση και Εξερεύνηση Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)