Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009
|
|
- Λευκοθέα Αξιώτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009
2 ΔΥΟ Μεγάλες, απλές κατηγοριοποιήσεις σωματίων, Ι. Φερμιόνια Μποζόνια Στατιστική Συμπεριφορά Νόμοι διατήρησης. Τα φερμιόνια δεν «καταστρέφονται» ΙΙ: Σωμάτια Αντισωμάτια Για κάθε σωμάτιο, υπάρχει το αντισωμάτιο του. Στο ορατό Σύμπαν, παρατηρείται μια κατάφωρη ασυμμετρία ανάμεσα στα σωμάτια και αντισωμάτια.
3 Φερμιόνια και Μποζόνια Εξαιρετικά σημαντική ιδιότητα των σωματίων. Προσδιορίζεται από το σπιν τους. Καθορίζει την Στατιστική τους συμπεριφορά Φερμιόνια ΣτατιστικήFermi Dirac Ημιακέραιο Spin Μποζόνια Στατιστική Bose Einstein Ακέραιο Spin 1 3 5,, , 1, 2...
4 Φερμιόνια και Μποζόνια Ηκυματοσυνάρτησηδύοταυτόσημωνσωματίων 1 και 2: Ψ(1,2) Ηπιθανότητα Ψ(1,2) 2 = Ψ(2,1) 2 ΔΕΝ μεταβάλλεται αν εναλλάξουμε τα δύο σωμάτια στο χώρο 1< >2 Για δύο ταυτόσηµα φερμιόνια 1 και 2 Αντισυμμετρική κυματοσυνάρτηση στην εναλλαγή Παρατηρούμε ότι η συνθήκη αυτή εξυπακούει την απαγορευτική αρχή του Pauli. Για δύο ταυτόσηµα µποζόνια 1 και 2 Συµµετρική κυματοσυνάρτηση στην εναλλαγή
5 Φερμιόνια και Μποζόνια Η ολική κυματοσυνάρτηση δύο ταυτόσημων σωματίων 1 και 2 είναι γινόμενο των συναρτήσεων του χώρου και του σπιν Ψ = Ψ β (σπιν) α (χώρου) * Ψ β (σπιν) ΗΨ α (χώρου) περιγράφει την τροχιακή κίνηση του (1) ωςπροςτο(2) Ψ α (χώρου) = Ψ α (r,θ,φ) = Ψ α (r) * Y m l (θ, φ) όπου Y m l (θ, φ) : σφαιρική αρμονική l είναι η σχετική στροφορμή των 1, 2 όταν 1 2 : θ π θ φ π+φ Η Y m l(θ, φ)(2,1) = Y m l(θ, φ)(π θ,π+φ) (1,2) = ( 1) l Y m l(θ, φ)(1,2) αν l = άρτιος αν l = περιττός η Y m l(θ, φ) συμμετρική η Y m l(θ, φ) αντισυμμετρική
6 Φερμιόνια και Μποζόνια Η κυματοσυνάρτηση του σπιν δύο ταυτόσημων σωματίων σπιν ομοπαράλληλα Ψ β (σπιν) Ψ β (σπιν) (1,2) = Ψ β (σπιν) (1,2) συμμετρική σπιν αντιπαράλληλα Ψ β (σπιν) (1,2) = Ψ β (σπιν) (1,2) αντισυμμετρική Η ολική κυματοσυνάρτηση ενός ή περισσότερων σωματίων Ψ = Ψ α (χώρου) * Ψ β (σπιν)
7 Φερμιόνια και Μποζόνια Εφαρμογή της ιδιότητας της συμμετρίας της κυματοσυνάρτησης δύο ταυτόσημων μποζονίων Παράδειγμα : η διάσπαση του μεσονίου ρ 0 2π 0 ρ 0 : σπιν =1, l=0 => J=1 π 0 : σπιν =0, l=0 => J=0 => ταυτόσημα μποζόνια Για τα 2π ο ρ ο 2π ο J=1 => J=1 ΗΨ β (σπιν) (1,2) συμμετρική => Ψ α (χώρου) (1,2) συμμετρική => l άρτιο => J 1=> Mη διατήρηση της ολικής στροφορμής Ηδιάσπασηρ 0 2π 0 απαγορεύεται Ενώ η διάσπαση ρ 0 π + π μη ταυτόσημα σωμάτια επιτρέπεται
8 Η απαγορευτική αρχή του Pauli Εφαρμογή της ιδιότητας της συμμετρίας της κυματοσυνάρτησης δύο ταυτόσημων φερμιονίων Δύο ταυτόσημα σωμάτια στην ίδια κβαντική κατάσταση Ψσυµµετρική Για τα φερμιόνια όμως η Ψ = αντισυµµετρική Η απαγορευτική αρχή του Pauli ισχύει για όλα τα σωματίδια με ημιακέραιο spin (Φερμιόνια) όχιόμωςγιαταμποζόνια.
9 Αντιΰλη Στη Θεωρία ανακαλύφτηκε από τον P.A.M. Dirac (1928) Η εξίσωση Dirac: Σχετικιστική Κυματική εξίσωση για το ηλεκτρόνιο που συμπεριλάμβανε και το σπιν ΔύοταπαράδοξαστηνεξίσωσηDirac Εμφάνιση εσωτερικής μαγνητικής διπολικής ροπής του ηλεκτρονίου με κατεύθυνση αντίθετη του spin Για κάθε λύση της εξίσωσης για ηλεκτρόνιο με Ε > 0 υπάρχει μια ακόμηλύσημεε< 0 Ποιάείναιηφυσικήερμηνείατωνλύσεων αρνητικής ενέργειας?
10 Αντιΰλη Η γενικευμένη λύση της εξίσωσης Dirac: μιγαδική κυματοσυνάρτηση Ψ(r,t). Παρουσία ηλεκτρομαγνητικού πεδίου, για κάθε λύση αρνητικής ενέργειας η συζυγής μιγαδική κυματοσυνάρτηση Ψ* είναι η λύση θετικής ενέργειας στην εξίσωση Dirac, για ένα ηλεκτρόνιο με θετικό φορτίο Οι υποθέσεις του Dirac : Οι μεταπτώσεις ηλεκτρονίων απο στάθμη με θετική ενέργεια σε κατειλημένη στάθμη αρνητικής ενέργειας απαγορεύεται από την αρχή του Pauli Μεταπτώσεις ηλεκτρονίων από θετική ενέργεια σε κενή αρνητική στάθμη είναι επιτρεπτές => εξαφάνιση του ηλεκτρονίου. Για να διατηρηθεί το φορτίο ένα θετικό ηλεκτρόνιο πρεπει να εξαφανιστεί => e+e εξαύλωση Μεταπτώσεις ηλεκτρονίων από αρνητική ενέργεια σε κενή θετική στάθμη είναι επιτρεπτές => εμφάνιση του ηλεκτρονίου. Για να διατηρηθεί το φορτίο ένα θετικό ηλεκτρόνιο πρεπει να εμφανιστεί=> δημιουργία ζεύγους e+e =>κενή αρνητική ενέργεια ηλεκτρονίου περιγράφει θετική ενέργεια ποζιτρονίου
11 Σωμάτια και Αντισωμάτια Οι καταστάσεις αρνητικής ενέργειας στην εξίσωση Dirac για το ηλεκτρόνιο ερμηνεύονται σαν καταστάσεις ενός αντισωματίου του ποζιτρονίου Πειραματική ανακάλυψη του ποζιτρονίου (e+) απότονanderson (1932) σε πείραμα θαλάμου φυσαλίδων με κοσμικές ακτίνες.
12 Πρώτη πειραματική παρατήρηση Ποζιτρονίου- Αντιϋλης 1932
13 Σωμάτια και Αντισωμάτια Γενικευμένη Ιδιότητα φερμιονίων & μποζονίων: Σε κάθε σωμάτιο αντιστοιχεί ένα αντισωμάτιο, το οποίο έχει ίδια μάζα με το σωμάτιο, αντίθετο φορτίο και αντίθετη μαγνητική ροπή. Φερμιόνια και αντιφερμιόνια δημιουργούνται και καταστρέφονται σε ζεύγη Ο Φερμιονικός Αριθμός διατηρείται! γ e + + e 0 ( 1) + (+1) Για τα μποζόνια δεν υπάρχει αντίστοιχος νόμος διατήρησης.
14 Φερμιόνια: Κουάρκ & Λεπτόνια Πειραµατική µαρτυρία ύπαρξης δύο ειδών θεµελιωδών φερµιονίων, χωρίς δοµή καιµε διάστασηµικρότερη του m: Κουάρκ και Λεπτόνια Κουάρκ Κλασµατικά ηλεκτρικά φορτία { +2/3 e, -1/3 e } Ποικιλία από 6 συνολικά γεύσεις {u, d, s, c, b, t} Υπόκεινται σε ισχυρές αλληλεπιδράσεις Σε κάθε κουάρκ αντιστοιχεί ένα αντικουάρκ µε αντίθετο φορτίο Λεπτόνια Τρία ζεύγη λεπτονίων {e, νe} {µ, νµ} {τ, ντ} µε φορτία{0, ± e } Τα ουδέτερα λεπτόνια ονοµάζονται νετρίνα Συµµετέχουν σε ηλεκτροµαγνητικές & ασθενείς αλληλεπιδράσεις Σε κάθε λεπτόνιο αντιστοιχεί ένα αντιλεπτόνιο µε αντίθετο φορτίο
15 Οιτρειςγενιέςτων Θεμελιωδών συστατικών και οι διαδότες των Θεµελειωδών δυνάμεων
16 Φερμιόνια: Κουάρκ & Λεπτόνια
17 Αλληλεπιδράσεις
18 Κβαντικοί Αριθμοί Κάθε γεύση αντιστοιχεί σε ένα κβαντικό αριθμό Παραξενιά (strangeness) S = 1 Χάρη (charm) C = +1 Ομορφιά (beauty) B = 1 Αλήθεια (truth) T = +1 Κουάρκ
19 Αδρόνια: Μεσόνια και Βαρυόνια Δύο τύποι σχηματισμών των κουάρκ Βαρυόνια συνδυασμός 3 κουάρκ q q q Μεσόνια συνδυασμός κουάρκ αντικουάρκ q q πρωτόνιο p = (u u d) νετρόνιο n= (u d d) Λάμδα Λ = (u d s) πιόνιο π+ = ( u d ) Κ 0 καόνιο =( s d ) Ψ μεσόνιο =( c c )
20 Βαρυόνια
21 Μεσόνια
22 Βαρυόνια Βαρυονικός Αριθμός: Β Δηλώνει το πλήθος των βαρυονίων σε μία αλληλεπίδραση Οποιοδήποτε βαρυόνιο έχει Β = +1 Οποιοδήποτε αντι βαρυόνιο έχει Β = 1 Κανόνας Διατήρησης: Ο Βαρυονικός Αριθμός διατηρείται σε ΟΛΕΣ τις αλληλεπιδράσεις Παράδειγμα: π + p K 0 + Λ Anti ud uud anti sd usd Β = διατηρείται
23 Χρώμα qqq (colorless objects) qq confinement 8 Gluons, each with a color and an anti-color charge.
24 Βαρυόνια Παράδειγμα παραγωγής ζεύγους παράξενων σωματίων Διατήρηση Παραξενιάς!
25 Μεσόνια Ασταθή => δεν υπάρχουν στην κανονική ύλη Στην ανακάλυψή τους οφείλεται η γένεση της Σωματιδιακής Φυσικής π μεσόνιο και το καόνιο παρατηρήθηκαν στην κοσμική ακτινοβολία το 1947! Παράδειγμα της ανακάλυψης του φορτισμένου πιονίου: π + μ + e +
26 Μεσόνια 1947: Ανακάλυψη του π μεσονίου (το πραγματικό σωματίδιο Yukawa) Παρατήρηση της αλυσιδωτής διάσπασης του : π + μ + e + σε γαλακτώματα εκτεθιμένα στην κοσμική ακτινοβολία
27 Παράδοξα/Παράξενα σωματίδια π (Α)+ p K 0 (Β)+Λ(C) K 0 π + π + Λ p + π A C B Παράγονται σε ζεύγη : s anti s Παράδειγμα : π + p K 0 + Λ anti u d uud anti s d usd
28 Κουάρκ Κβαντικοί Αριθμοί των κουάρκ και των αντικουάρκ
29 Κουάρκ Παράδειγμα παραγωγής ζεύγους παράξενων σωματίων
30 Λεπτόνια Δεν έχουν Ισχυρές Αλληλεπιδράσεις Spin1/2 Παρατηρούνται ως ελεύθερα σωματίδια Είναι σημειακά (r < cm)
31 Τα ουδέτερα λεπτόνια νετρίνο Δεν έχουν φορτίο => Δεν έχουν ηλεκτρομαγνητικές αλληλεπιδράσεις Τα νετρίνα είναι αριστερόστροφα => Το σπίν έχει διέυθυνση αντίθετη από το διάνυσμα της ορμής Τα αντι νετρίνα είναι δεξιόστροφα => το σπιν έχει διεύθυνση ομόρροπη με το διάνυσμα της ορμής ορµή νετρίνο σπίν ορµή αντι-νετρίνο σπίν
32 ν e (Pauli 1930) Στην προσπάθεια να εξηγηθεί η β διάσπαση (Z,A) (Z+1, A) + e + ν e (Z,A ) (Z 1, A ) + e + + ν e Είναι η διάσπαση δέσμιων στον πυρήνα p και n n p + e + ν e p n + e + + ν e Μόνο το ελεύθερο n μπορεί να διασπαστεί m n >(m p +m e )
33 β διάσπαση Αν δεν υπάρχει νετρίνο Ee=ΔΜ = Μ(Ζ,Α) Μ(Ζ+1, Α)
34 β διάσπαση Αν υπάρχει νετρίνο m e E e ΔΜ m νe
35 Πείραμα Reines Cowan νετρίνα και αντινετρίνα µπορούν να ανιχνευτούν µέσω των αντίστροφων β-διασπάσεων Πείραμα Reines Cowan ν e +n p + e - ν e +p n + e +
36 Πείραμα Reines Cowan
37 Λεπτόνια Λεπτονικός Αριθμός Κάθε οικογένεια λεπτονίων ΔΙΑΤΗΡΕΙ τον αντίστοιχο Λεπτονικό Αριθμό Ο Λεπτονικός αριθμός ΔΙΑΤΗΡΕΙΤΑΙ ΠΑΝΤΑ
38 Λεπτόνια Διατήρηση ΛεπτονικούΑριθμού
39 Διάσπαση των λεπτονίων Χρόνοι ζωής μ (2.2 x 10 6 s) τ(2.9x10 13 s) + + µ e + ν + ν µ e + ν + ν τ e + ν + ν τ µ + ν + ν e e e τ µ µ µ τ Για το τ υπάρχουνκαιπολλέςδιασπάσειςμεαδρόνια στις τελικές καταστάσεις.
40 Διάσπαση των λεπτονίων τ µ + ν + ν e µ τ + ν + ν e µ Ξεκινάμε με ένα ταυ λεπτόνιο Καταλήγουμε σε ένα ταυ νετρίνο, 2 μ νετρίνο (νετρίνο αντινετρίνο) και 1 ηλεκτρόνιο κι ενα αντι e νετρίνο Τίποτα ΔΕΝ παραβιάζεται!
41 Κουάρκ Διατήρηση του συνολικού αριθμού των κουάρκ Ο συνολικός αριθμός των κουάρκ ΔΙΑΤΗΡΕΙΤΑΙ σε όλες τις αλληλεπιδράσεις : Ισχυρές, ηλεκτρομαγνητικές, ασθενείς Ο αριθμός των κουάρκ συγκεκριμένης γεύσης διατηρείται ΜΟΝΟ στις ισχυρές και στις ηλεκτρομαγνητικές αλληλεπιδράσεις Στις ασθενείς αλληλεπιδράσεις η γεύση των κουάρκ μπορεί να μεταβάλλεται ΔS=1, ΔC=1,
42 Κουάρκ και Λεπτόνια Σύνοψη Ισχυρές αλληλεπιδράσεις έχουν μόνο τα κουάρκ Τα φορτισμένα λεπτόνια συμμετέχουν στις ηλεκτρομαγνητικές λογω του φορτίου τους και στις ασθενείς αλληλεπιδράσεις Τα ουδέτερα λεπτόνια νετρίνο αλληλεπιδρούν ΜΟΝΟ με ασθενείς αλληλεπιδράσεις Τα κουάρκ συμμετέχουν στις ισχυρές, στις ηλεκτρομαγνητικές και στις ασθενείς αλληλεπιδράσεις (δηλ. σε όλες)
43 Οι κβαντικοί αριθμοί των κουάρκ Παραγωγήπαράδοξωνσωματιδίων(ισχυρές) p p p Λ K uud uud uud uds su S = 0 S = Παραγωγή charm (E&M) e D + e + dc + C = 0 D + cd C = 1+ ( 1)
44 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική
45 Κλασική & κβαντική εικόνα πεδίου Κλασική εικόνα αλληλεπίδρασης αλληλεπίδρασης: Το δυναμικό ή το πεδίο ενός σώματος που επιδρά στο άλλο σώμα. Κβαντική θεώρηση θεώρηση: Ηαλληλεπίδραση περιγράφεται µε την ανταλλαγή κβάντων (µποζονίων) συγκεκριµένων για κάθε τύπο αλληλεπίδρασης. Η διαδικασία πραγματοποιείται σε χρονικό διάστημα που καθορίζεται από την Αρχή της Αβεβαιότητας Ε t ~ ħ
46 Μποζόνια : μεταδότες δυνάμεων
47 Ηεικόναστην Κλασσική Φυσική Η αλληλεπίδραση μεταξύ δύο φορτισμένων σωμάτων σε απόσταση εκφράζεται περιγράφεται με το πεδίο ή το δυναμικό του ενός σώματος το οποίο επιδρά πάνω στο άλλο σώμα F (r) = Q2 E (r) Q1 Q2 r E (r) Q1 ˆ r r 2 r F (r) Q1 Q2 ˆ r 2
48 Η εικόνα στην Κβαντική Φυσική Η αλληλεπίδραση μεταξύ δύο σωμάτων σε απόσταση εκφράζεται περιγράφεται την ανταλλαγή κβάντων των μποζονίων που διαφέρουν ανάλογα με το είδος της αλληλεπίδρασης. Μεταξύ των δύο προηγούμενων φορτίων ανταλλάσεται ενα δυνητικό φωτόνιο με ορμή p δx δp ύναμη r δp δp /r r c = δt δt = r /c δp/δt = c r 2 δp δt = c r 2
49 Η εικόνα στην Κβαντική Φυσική Ηδύναμη μεταξύ των δύο φορτίων είναι ανάλογη της μεταβολής της ορμής των φωτονίων που εκπέμπουν τα φορτία Ο αριθμός των φωτονίων που εκπέμπονταιανταλλάσονται είναι ανάλογος των φορτίων Q1*Q2 που αλληλεπιδρούν Το μποζόνιο κβάντουμ μεταφέρει ενέργεια και ορμή => οι νόμοι διατήρησης Ε, p ισχύουνμονοανηανταλλαγή του μποζονίου πραγματοποιείται σε χρόνο που τον ορίζει η Αρχή της Απροσδιοριστίας Αυτά τα πρόσκαιρα κβάντα μποζόνια λέγονται ΔΥΝΗΤΙΚΑ (virtual)
50 Η εικόνα στην Κβαντική Φυσική Μετά την εκπομπή του φωτονίου και πρίν την επανααπορρόφησή του η ενέργεια ΔΕΝ διατηρείται Η Aρχή της Απροσδιοριστίας του Heisenberg επιτρέπει: δe δt Ο χρόνος που απαιτείται για να παρατηρηθεί ενέργεια με αβεβαιότητα δε : δt /δe Παραβίαση της ενέργειας κατά δε μπορεί να συμβεί σε χρόνο μικρότερο από δt: δt /δe
51 Αλληλεπιδράσεις και πεδία Σύνοψη Αλληλεπίδραση : ανταλλαγή ενέργειας και ορμής μεταξύ σωματιδίων Ηλεκτρομαγνητική αλληλεπίδραση : ανταλλαγή δυνητικών φωτονίων μεταξύ φορτισμένων σωματιδίων Σκέδαση Rutherford δυνάμεις Coulomb Πραγματικό σωματίδιο : όταν ισχύει: Ε 2 =p 2 c 2 + m 2 c 4 ( το m αντιστοιχεί στη μάζα ηρεμίας του) Δυνητικό σωματίδιο: όταν ΔΕΝ ισχύει: Ε 2 =p 2 c 2 + m 2 c 4 ( m ΔΕΝ αντιστοιχεί στη μάζα ηρεμίας του σωματιδίου) Το δυνητικό σωματίδιο μπορεί να υπάρξει ΜΟΝΟ για χρόνο που του επιτρέπεται από την αρχή της απροσδιοριστίας
52 Κλασική και Κβαντομηχανική θεώρηση Η κβαντομηχανική θεώρηση της εκπομπής και απορρόφησης δυνητικών φωτονίων ΔΕΝ ειναι λιγότερο πλασματική απο την κλασική θεώρηση του πεδίου που περιβάλει το φορτίο Ούτε το πεδίο ούτε τα δυνητικά κβάντα είναι άμεσα παρατηρήσιματο μετρήσιμο μέγεθος είναι η δύναμη ΑΛΛΑ η διάδοση των πεδίων γίνεται με ελεύθερα φωτόνια => η περιγραφή των ηλεκτρομαγνητικών αλληλεπιδράσεων με την ανταλλαγή δυνητικών φωτονίων είναι κατάλληλη και σήμερα έχουμε αποδείξεις οτι είναι η πλέον κατάλληλη κατ επέκταση η περιγραφή και των άλλων αλληλεπιδράσεων στον μικρόκοσμο βασίστηκε στην ανταλλαγή δυνητικών μποζονίων
53 Ηπυρηνικήδύναμηείναιαπόρρεια ανταλλαγής μποζονίων (Yukawa) 1937: ο Η.Yukawa προτείνει το π-μεσόνιο σαν φορέα των πυρηνικών δυνάμεων Η σχέση ανάμεσα στην εμβέλεια των πυρηνικών δυνάμεων και της μάζας του μεσονίου ανταλλαγής Ηεµβέλεια των πυρηνικών δυνάμεων είναι 1-2fm Το μεσόνιο του Yukawa ανακαλύφθηκε το 1947 στην κοσμική ακτινοβολία
54 Μποζόνια : Οι Φορείς των Δυνάμεων Απο την εξίσωση ελεύθερου σωματίου προκύπτει η διαφορική εξίσωση του σωματιδίου κι απο την λύση της η κυματοσυνάρτηση του ελεύθερου σωματίου: E 2 = p 2 c 2 + m 2 c 4 E ˆ = i t P ˆ = i mc 1 c ψ t ψ ψ = αν m=0 => ηλύσητηςεξίσωσηςείναιτοπλάτοςκύματος του ελεύθερου (άμαζου) φωτονίου ή δηλώνει το δυναμικό ενός σημείου στο χώρο
55 Μποζόνια : Οι Φορείς των Δυνάμεων Η εξίσωση που δίνει το στατικό δυναμικό του πεδίου που προκύπτει από σωματίδιο μάζας m U( r): το δυναµικό Yukawa όπου g δίνει την ισχύ της σημειακής πηγής. 2 U(r) = m 2 U(r) U(r) = g 4πr e r / R R = c /mc 2 είναι το μήκος κύματος Compton του σωματίου
56 Θεωρία Yukawa
57 Μποζόνια : Οι Φορείς των Δυνάμεων Στον ηλεκτρομαγνητισμό: 2 U(r) = 0 U(r) = q/4πr => ησταθεράg στο δυναμικό Yukawa ισοδυναμεί με το φορτίο στον ηλεκτρομαγνητισμό Το πλάτος σκέδασης σωματίου από δυναμικό U (που προκύπτει από πηγή με ισχύ g): f (q) = g U(r)e iq r dv (q η μεταφορά της ορμής) f (q) = g g q 2 + m 2 Περιγράφει την αλληλεπίδραση δύο σωµατιδίων µέσω ανταλλαγής µποζονίου
58 Διαγράμματα Feynman Διαγράμματα Feynman είναι διαγράμματα για την αναπαράσταση της αλληλεπίδρασης στοιχειωδών σωματιδίων Οχρόνοςεξελίσσεταιοριζόντια, ο χώρος κατακόρυφα. Τα βέλη δείχνουν τη φορά κίνησης των σωματίων που πλησιάζουν ή απομακρύνονται από τις κορυφές. Εισερχόμενα σωμάτια ισοδυναμούν με εξερχόμενα αντισωμάτια.
59 Διαγράμματα Feynman Βασικοί κανόνες σε κάθε κόμβο: Ε, p διατηρείται Q διατηρείται Σπιν διατηρείται Βαρυονικός Αριθμός Λεπτονικός Αριθμός φερμιόνια (θετικό t) anti φερμιόνια (αρνητικό t) Μποζόνια Το σημείο σύζευξης (κόμβος) δηλώνει την ισχύ της σύζευξης
60 Διαγράμματα Feynman
61 Διαγράμματα Feynman
62 Διαγράμματα Feynman
63 Διαγράμματα Feynman
64 Διαγράμματα Feynman
65 Διαγράμματα Feynman
66 Διαγράμματα Feynman
67 Διαγράμματα Feynman
68 Διαγράμματα Feynman
69 Διαγράμματα Feynman
Στοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 2η Πετρίδου Χαρά Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 10-Jan-11 Πετρίδου Χαρά Στοιχειώδη Σωµάτια
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 10η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Σωμάτια & Αντισωμάτια Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2011 Πετρίδου Χαρά Στοιχειώδη Σωμάτια
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (14-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα Τ3: Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 21η Πετρίδου Χαρά Τμήμα Τ3: Χ. Πετρίδου Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 14/12/2017 Πετρίδου Χαρά Στοιχειώδη Σωμάτια 2 Τα Θεμελιώδη Φερμιόνια απο τα
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 21η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2016 Πετρίδου Χαρά Στοιχειώδη Σωμάτια 2 Τα Θεμελιώδη Φερμιόνια
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 23η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (19-12- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Τα Θεμελιώδη Φερμιόνια απο τα οποία αποτελείται η Ύλη:
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 20η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 15 Δεκ
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 3η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 3η Πετρίδου Χαρά Τα Λεπτόνια 2 Δεν έχουν Ισχυρές Αλληλεπιδράσεις Spin 1/2 Παρατηρούνται ως ελεύθερα σωματίδια Είναι σημειακά (r < 10-17 cm) H δομή των οικογενειών... Γιατί
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 11η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική 2 Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Κ. Βελλίδης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 018 Συντεταγμένες Κ. Βελλίδη (Στοιχειώδη Σωμάτια): Τομέας ΠΦΣΣ: β όροφος, 10-77-6946 ΙΕΣΕ: β όροφος,
Διαβάστε περισσότεραΦερμιόνια & Μποζόνια
Φερμιόνια & Μποζόνια Φερμιόνια Στατιστική Fermi-Dirac spin ημιακέραιο 1 3 5,, 2 2 2 Μποζόνια Στατιστική Bose-Einstein 0,1, 2 spin ακέραιο δύο ταυτόσημα φερμιόνια, 1 & 2 δύο ταυτόσημα μποζόνια, 1 & 2 έχουν
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (16-12- 2014) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική 2 Κλασική
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (18-12- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (21-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική 2 Κλασική
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (8-1- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική 2 Κλασική
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Κ. Βελλίδης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 018 Κλασσική-Κβαντική Εικόνα Πεδίου Εικονικά σωµάτια Διαγράµµατα Feynman Ηλεκτροµαγνητικές και Ασθενείς
Διαβάστε περισσότεραΕισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια
στην Πυρηνική Φυσική και τα Στοιχειώδη Σωµάτια Περιεχόµενα Διαγράµµατα Feynman Δυνητικά σωµάτια Οι τρείς αλληλεπιδράσεις Ηλεκτροµαγνητισµός Ισχυρή Ασθενής Περίληψη Κ. Παπανικόλας, Ε. Στυλιάρης, Π. Σφήκας
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 016 Κλασική Κβαντική Κβαντική Εικόνα Πεδίου Θεωρία Yukawa Διαγράμματα Feynman
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης 1 Stathis STILIARIS,
Διαβάστε περισσότερα1 ΣΤΟΙΧΕΙΑ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑΣ Στοιχειώδη σωµατίδια 1) Τι ονοµάζουµε στοιχειώδη σωµατίδια και τι στοιχειώδη σωµάτια; Η συνήθης ύλη, ήταν γνωστό µέχρι το 1932 ότι αποτελείται
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω
Διαβάστε περισσότεραΣύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15
Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 24η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 24η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις
Διαβάστε περισσότεραΣτοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 23-24 Στοιχειώδη Σωμάτια και κβαντικοί αριθμοί τους - Αλληλεπίδραση σωματιδίων
Διαβάστε περισσότεραYukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα
Θεωρία Yukawa Yukawa: στην προσπάθεια να εξηγήσει τις δυνάμεις μεταξύ n-p στον πυρήνα έφτασε στο συμπέρασμα ότι η εμβέλεια της δύναμης εξαρτάται από τη μάζα, m, του κβάντου. t /mc R c t /mc Η εξίσωση Klein-Gordon
Διαβάστε περισσότεραΜάθημα 7 Διαγράμματα Feynman
Στοιχειώδη Σωμάτια (M.Sc Υπολογιστικής Φυσικής) Μάθημα 7 Διαγράμματα Feynman Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη M.Sc. Υπολ. Φυσ., AΠΘ, 2 Δεκεμβρίου 2013 Κουάρκ και Λεπτόνια
Διαβάστε περισσότεραwww.cc.uoa.gr/~dfassoul/syghroni_fysiki.html
Σύγχρονη Φυσική Στοιχειώδη Σωµατίδια Σωµατίδια Επιταχυντές Ανιχνευτές Αλληλεπιδράσεις Συµµετρίες Νόµοι ιατήρησης Καθιερωµένο Πρότυπο www.cc.uoa.gr/~dfassoul/syghroni_fysiki.html Σύγχρονη Φυσική: Στοιχειώδη
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 016 Χαρακτηριστικές Κλίμακες και Μονάδες Κλασσική & Κβαντική Εικόνα Πεδίου Η
Διαβάστε περισσότεραβ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β - διάσπαση Δήμος Σαμψωνίδης (29-11- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας
Διαβάστε περισσότεραΠρότυπο Αδρονίων µε Στατικά κουάρκ Ι
Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι I,S: SU() group I : SU() group ΠΡΟΤΥΠΟ ΤΩΝ ΑΔΡΟΝΙΩΝ ΜΕ ΣΤΑΤΙΚΑ QUARKS QUARK ATOMS Πλήθος Βαρυονίων & Μεσονίων ~ 96 - αρχικά οι κανονικότητες (patterns) των αδρονικών
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική Ελευθερία
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ισχυρές Αλληλεπιδράσεις Γκλουόνια και Χρώμα Κβαντική Χρωμοδυναμική Ασυμπτωτική
Διαβάστε περισσότεραβ - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Μονάδες Energy [E] ev, kev, MeV, GeV, TeV, PeV, 10 0, 10 3, 10 6, 10 9, 10 12, 10 15 1eV = 1.6 10 19 J ev είναι πιο χρήσιμη στη φυσική
Διαβάστε περισσότερα16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια
Διαβάστε περισσότεραΠυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής
Hideki Yukawa and the Nuclear Force Πυρηνική δύναμη Μεσόνια και θεωρία Yukawa Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής πυρηνική δύναμη Η πυρηνική δύναμη (ή αλληλεπίδραση νουκλεονίουνουκλεονίου, ή NN forces,
Διαβάστε περισσότεραΤο Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο
1 Το Μποζόνιο Higgs 29/05/13 Σκοποί: I. Να απαντήσει στο ερώτημα του τι είναι ακριβώς το σωματίδιο Higgs. II. Να εισάγει τους διάφορους τρόπους παραγωγής και μετάπτωσης του Higgs. III. Να δώσει μία σύντομη
Διαβάστε περισσότεραβ διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β διάσπαση II Δήμος Σαμψωνίδης (28-11- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Spin και πάριτυ ενός πυρήνα (J και πάριτυ: J p ) Σπιν πυρήνα, J = ολικό τροχιακό σπίν
Διαβάστε περισσότεραΔιάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος
Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος Παράδοξα σωματίδια Μετά την ανακάλυψη του μεσονίου που είχε προβλέψει ο Yukawa, την ανακάλυψη των αντισωματιδίων του Dirac και την κοπιώδη αλλά αποτελεσματική
Διαβάστε περισσότεραΜάθημα 5 α) β-διάσπαση β) Ασκήσεις
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) β-διάσπαση β) Ασκήσεις Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Διαβάστε περισσότεραΦυσική Στοιχειωδών Σωματιδίων Ε: Από τί αποτελείται η ύλη σε θεμελειώδες επίπεδο;
Εκεί, κάτω στον μικρόκοσμο... Από τί αποτελείται ο κόσμος και τί τον κρατάει ενωμένο; Αθανάσιος Δέδες Τμήμα Φυσικής, Τομέας Θεωρητικής Φυσικής, Πανεπιστήμιο Ιωαννίνων 5 Οκτωβρίου 2015 Φυσική Στοιχειωδών
Διαβάστε περισσότεραΠυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 1γ Μια ματιά στα Στοιχειώδη Σωμάτια και τους κβαντικούς αριθμούς τους Κώστας
Διαβάστε περισσότεραΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ
ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ ΚΕΝΤΡΙΚΗ ΙΔΕΑ ΤΗΣ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Όλα στη φύση αποτελούνται από στοιχειώδη σωματίδια τα οποία είναι φερμιόνια
Διαβάστε περισσότεραΣύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 19/04/16
Διάλεξη 15: Νετρίνα Νετρίνα Τα νετρίνα τα συναντήσαμε αρκετές φορές μέχρι τώρα: Αρχικά στην αποδιέγερση β αλλά και αργότερα κατά την αποδιέγερση των πιονίων και των μιονίων. Τα νετρίνα αξίζει να τα δούμε
Διαβάστε περισσότεραΣύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 18/04/16
Διάλεξη 13: Στοιχειώδη σωμάτια Φυσική στοιχειωδών σωματίων Η φυσική στοιχειωδών σωματιδίων είναι ο τομέας της φυσικής ο οποίος προσπαθεί να απαντήσει στο βασικότατο ερώτημα: Ποια είναι τα στοιχειώδη δομικά
Διαβάστε περισσότεραΜάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες διασπάσεις)
Διαβάστε περισσότεραΤο Καθιερωμένο Πρότυπο. (Standard Model)
Το Καθιερωμένο Πρότυπο (Standard Model) Αρχαίοι Ίωνες φιλόσοφοι Αρχικά οι αρχαίοι Ίωνες φιλόσοφοι, θεώρησαν αρχή των πάντων το νερό, το άπειρο, τον αέρα, ή τα τέσσερα στοιχεία της φύσης, ενώ αργότερα ο
Διαβάστε περισσότεραΦυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman. Λέκτορας Κώστας Κορδάς
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 10: Διαγράμματα Feynman Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 18 Μαϊου 2010 Λίγο
Διαβάστε περισσότεραΣτοιχειώδη σωμάτια. Τα σωμάτια ύλης
Στοιχειώδη σωμάτια Γύρω στο 1930 η εικόνα που είχαν οι φυσικοί για τα στοιχειώδη σωμάτια- σωμάτια που τότε πίστευαν ότι δεν είχαν συστατικά φαίνεται στον παρακάτω πίνακα: Σωμάτια Σύμβολο Μάζα ΜeV/c 2 Τα
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο. Δ. Σαμψωνίδης Κ. Κορδάς Χ. Πετρίδου 20 Ιανουαρίου 2017
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς Χ. Πετρίδου 20 Ιανουαρίου 2017 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθµός
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά Νόµοι Διατήρησης στις Θεµελειώδεις Αλληλειδράσεις 14-Jan-13 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2 Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 3
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς
Διαβάστε περισσότεραΣύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 10/05/16
Διάλεξη 20: Διαγράμματα Feynman Ισχυρές αλληλεπιδράσεις Όπως στην περίπτωση των η/μ αλληλεπιδράσεων έτσι και στην περίπτωση των ισχυρών αλληλεπιδράσεων υπάρχει η αντίστοιχη αναπαράσταση μέσω των διαγραμμάτων
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 25η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 25η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς 21 Ιανουαρίου 2011 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος
Διαβάστε περισσότεραΣοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2018-19 Τμήμα T3: Χ. Πετρίδου Μάθημα 9 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις) Πετρίδου Χαρά
Διαβάστε περισσότεραΖΑΝΝΕΙΟ ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ Η ΕΠΙΣΚΕΨΗ ΣΤΟ CERN
ΖΑΝΝΕΙΟ ΓΥΜΝΑΣΙΟ ΠΕΙΡΑΙΑ Η ΕΠΙΣΚΕΨΗ ΣΤΟ CERN Η ΘΕΩΡΙΑ ΤΟΥ ΚΑΘΙΕΡΩΜΕΝΟΥ ΠΡΟΤΥΠΟΥ ΤΑ ΔΥΟ «ΣΥΣΤΑΤΙΚΑ» ΤΗΣ ΘΕΩΡΙΑΣ ΟΙ ΔΥΝΑΜΕΙΣ Το τρίτο «συστατικό» του καθιερωμένου προτύπου είναι οι θεμελιώδεις δυνάμεις που
Διαβάστε περισσότεραΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,
Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ PhD Τηλ: 1 69 97 985, wwwdlaggr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ: 1 69 97 985, E-mail: dlag@ottgr, wwwdlaggr Ε ΟΥΑΡ ΟΣ ΛΑΓΑΝΑΣ, PhD KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ: 1 69
Διαβάστε περισσότεραΔιάλεξη 18: Καθιερωμένο πρότυπο (1978-?)
Διάλεξη 18: Καθιερωμένο πρότυπο (1978-?) Φορείς αλληλεπίδρασεων Αλληλεπίδραση Ισχύς Εμβέλεια Φορέας Ισχυρή 1 ~fm g-γλουόνιο Η/Μ 10-2 1/r 2 γ-φωτόνιο Ασθενής 10-9 ~fm W ±,Z μποζόνια Βαρυτική 10-38 1/r 2
Διαβάστε περισσότεραΔιάλεξη 17: Το μοντέλο των κουάρκ
Διάλεξη 17: Το μοντέλο των κουάρκ Από την επιτυχία της αναπαράστασης των σωματιδίων σε οκταπλέτες ή δεκαπλέτες προκύπτει ένα πολύ εύλογο ερώτημα. Τι συμβαίνει και οι ιδιότητες των σωματιδίων που έχουν
Διαβάστε περισσότεραβ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β - διάσπαση Δήμος Σαμψωνίδης (27-11- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 β - διάσπαση Βήτα διάσπαση (εκπομπή e - ή e + ) είναι ένας μηχανισμός αποκατάστασης
Διαβάστε περισσότεραΟμοτιμία Parity Parity
Ομοτιμία Parity Ο μετασχηματισμός της Parity, αντιστρέφει κάθε χωρική συντεταγμένη. P(t,x) (t,-x), ή Pψ(r) ψ(-r) που αντιστοιχεί σε ανάκλαση και μετά στροφή 18 ο. αν επαναλάβουμε την διαδικασία προφανώς
Διαβάστε περισσότεραΛ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις
Ασθενείς Αλληλεπιδράσεις έχουμε ήδη δει διάφορες αντιδράσεις που γίνονται μέσω των ασθενών αλληλεπιδράσεων π.χ. ασθενείς διασπάσεις αδρονίων + + 0 K ππ Λ pπ n pe ν π e μ v + + μ ασθενείς διασπάσεις λεπτονίων
Διαβάστε περισσότεραΑσκήσεις στην Φυσική Στοιχειωδών Σωματιδίων
Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων 1) Ποιες από τις πιο κάτω αντιδράσεις επιτρέπονται και ποιες όχι βάσει των αρχών διατήρησης που ισχύουν για τις ασθενείς αλληλεπιδράσεις ν μ + p μ + +n ν e +
Διαβάστε περισσότεραs (spin) -s s αξονικό διάνυσμα r p
Συμμετρία αναστροφής του χρόνου Τ Με την αναστροφή του χρόνου Τ έχουμε t -t, p p, J J. Γι αυτό το λόγο ο Τ δεν έχει ιδιοτιμές δοτμές όπως οι C και P. Παρόλα αυτά σε συνδυασμό με την P, PT σημαίνει ότι
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «Μεταπτυχιακή Εξειδίκευση Καθηγητών των Φυσικών Επιστημών» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Έννοιες και Μεθοδολογίες της σωματιδιακής
Διαβάστε περισσότεραΔΟΜΗ ΤΗΣ ΥΛΗΣ ΚΕΦΑΛΑΙΟ 1
ΔΟΜΗ ΤΗΣ ΥΛΗΣ ΚΕΦΑΛΑΙΟ 1 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Διαίρεση ύλης με διατήρηση της χημικής ιδιοσύστασης της : μόρια. Τεμαχισμός μορίων καταστροφή της χημικής ιδιοσυγκρασίας : άτομα. Χημικές ενώσεις : συνδυασμός
Διαβάστε περισσότεραΠυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά
Πυρηνικές Δυνάμεις Διάλεξη 4η Πετρίδου Χαρά Η Ύλη στο βιβλίο: Cottingham & Greenwood 2 Κεφάλαιο 5: Ιδιότητες των Πυρήνων 5.5: Μαγνητική Διπολική Ροπή του Πυρήνα 5.7: Ηλεκτρική Τετραπολική του Πυρήνα 5.1:
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, Ιδιότητες των Σωματίων Ισοτοπικό Σπιν
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 206 Ιδιότητες των Σωματίων Ισοτοπικό Σπιν Stathis STILIARIS, UoA 206 Ιδιότητες
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς 21 Ιανουαρίου 2011 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος
Διαβάστε περισσότεραΠρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ
Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Λεπτονικές διασπάσεις διανυσµατικών µεσονίων Παράδειγµα ουδέτερων διανυσµατικών µεσονιων V Q Q V " l l ( : e, µ ) l ( V : #,", ) l l, 0 0 0 6# " Q &( V % l l ' ) $
Διαβάστε περισσότεραΤο Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Το Ισοτοπικό σπιν Μαθηµα 5ο 3/3/217 Ισοσπίν 3/3/217 Τι θα συζητήσουµε σήµερα Ισοσπίν 3/3/217 2 1. Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η
Διαβάστε περισσότεραΜάθημα 9o' 12/5/2014
Πρότυπο Αδρονίων µε Στατικά κουάρκ ΙΙ Μάθημα 9o' 12/5/2014! Λεπτονικές διασπάσεις διανυσµατικών µεσονίων Παράδειγµα ουδέτερων διανυσµατικών µεσονιων Τύπος VanRoyen Weisskopf για το επιµέρους πλάτος διάσπασης
Διαβάστε περισσότεραΜάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό
Διαβάστε περισσότεραΟ Πυρήνας του Ατόμου
1 Σκοποί: Ο Πυρήνας του Ατόμου 15/06/12 I. Να δώσει μία εισαγωγική περιγραφή του πυρήνα του ατόμου, και της ενέργειας που μπορεί να έχει ένα σωματίδιο για να παραμείνει δέσμιο μέσα στον πυρήνα. II. III.
Διαβάστε περισσότεραΣοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6β β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)
Διαβάστε περισσότεραΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης
ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ eclass: MED808 Π. Παπαγιάννης Επικ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών. Γραφείο 21 210-746 2442 ppapagi@phys.uoa.gr Τις προσεχείς ώρες θα συζητήσουμε τα πέντε πρώτα
Διαβάστε περισσότεραΝουκλεόνια και ισχυρή αλληλεπίδραση
Νουκλεόνια και ισχυρή αλληλεπίδραση Πρωτόνια και νετρόνια. Το πρότυπο των κουάρκ για τα νουκλεόνια. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Κουάρκ: τα δομικά στοιχεία των αδρονίων ΑΣΚΗΣΗ Διασπάσεις σωματιδίων
Διαβάστε περισσότερα1929 Dirac: Πρώτη αναφορά στην αντιύλη ως λύση της Σχετικιστικής Δ. Εξίσωση Schrödinger, ύλη με αντίθετο φορτίο από το γνωστό.
Ù ØÓ Õ Û ôò ÛÑ Ø ÛÒ Â ÛÖ Ø Û Ã Ð ÛÖ Ø ØÓ Õ ô ÛÑ Ø Ö Ø ØÓ ÑÔÐ ÐÓ ÕÖÓÒ Ù ØÓÙ Sharewayµ Δομήτουκόσμου: ΥληκαιΦώς(γ, e, u, v e ) 1929 Dirac: Πρώτη αναφορά στην αντιύλη ως λύση της Σχετικιστικής Δ. Εξίσωση
Διαβάστε περισσότεραΣωματιδιακή Φυσική: Από το Ηλεκτρόνιο μέχρι το Higgs και το Μεγάλο Αδρονικό Επιταχυντή (LHC) στο CERN
Σωματιδιακή Φυσική: Από το Ηλεκτρόνιο μέχρι το Higgs και το Μεγάλο Αδρονικό Επιταχυντή (LHC) στο CERN Κωνσταντίνος Φουντάς Καθηγητής Παν/μίου Ιωαννίνων Ευάγγελος Γαζής Καθηγητής Εθνικού Μετσοβίου Πολυτεχνείου
Διαβάστε περισσότεραΑπό τι αποτελείται το Φως (1873)
Από τι αποτελείται το Φως (1873) Ο James Maxwell έδειξε θεωρητικά ότι το ορατό φως αποτελείται από ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικό κύμα είναι η ταυτόχρονη διάδοση, μέσω της ταχύτητας του φωτός
Διαβάστε περισσότεραΚεφάλαιο 39 Κβαντική Μηχανική Ατόμων
Κεφάλαιο 39 Κβαντική Μηχανική Ατόμων Περιεχόμενα Κεφαλαίου 39 Τα άτομα από την σκοπιά της κβαντικής μηχανικής Το άτομο του Υδρογόνου: Η εξίσωση του Schrödinger και οι κβαντικοί αριθμοί ΟΙ κυματοσυναρτήσεις
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Ασκήσεις Στοιχειωδών Σωματιδίων
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Ασκήσεις Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δ. Σαμψωνίδης Κ. Κορδάς 21 Ιανουαρίου 2011 2 Κουάρκ Κουάρκ και Λεπτόνια Φορτίο (Q) Βαρυονικός Αριθμός (Β) Αντίστοιος
Διαβάστε περισσότεραΚβαντική µηχανική. Τύχη ή αναγκαιότητα. Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης
Κβαντική µηχανική Τύχη ή αναγκαιότητα Ηµερίδα σύγχρονης φυσικής Καραδηµητρίου Μιχάλης Ηφυσικήστόγύρισµα του αιώνα «Όλοι οι θεµελιώδεις νόµοι και δεδοµένα της φυσικής επιστήµης έχουν ήδη ανακαλυφθεί και
Διαβάστε περισσότεραΟ CKM Πίνακας και Παραβίαση της CP Συµµετρίας. Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1
Ο CKM Πίνακας και Παραβίαση της CP Συµµετρίας Σ. Ε. Τζαµαρίας Στοιχειώδη Σωµάτια 1 Παραβίαση της CP Συµµετρίας στο πρώιµο Σύµπαν αναµένεται ίσος αριθµός βαρυονίων και αντί-βαρυονίων σήµερα, στο παρατηρούµενο
Διαβάστε περισσότεραNobel Φυσικής για Κβαντική Ηλεκτροδυναμική
Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη
Διαβάστε περισσότεραΚαθ. Κ. Φουντάς, Εργ. Φυσικής Υψηλών Ενεργειών, Παν. Ιωαννίνων
Αναδρομή από τις αρχές του εικοστού αιώνα όταν γεννήθηκε η Σωματιδιακή Φυσική (Φυσική Υψηλών Ενεργειών)- ανακαλύψεις, τεχνικές, τεράστια πρόοδος αλλά επίσης σύγχυση και λάθη. Το καθιερωμένο Μοντέλο Τι
Διαβάστε περισσότεραΑλληλεπιδράσεις µε Ανταλλαγή Σωµατιδίων
Αλληλεπιδράσεις µε Ανταλλαγή Σωµατιδίων X! g! g! X! g! g! Σπύρος Ευστ. Τζαµαρίας 2016 1 Θα αναπτύξουµε υπολογιστικές µεθόδους για ενεργές διατοµές σκέδασης Θα αρχίσουµε µε: e + µ + e e e + e µ + µ γ e
Διαβάστε περισσότεραΚεφάλαιο 37 Αρχική Κβαντική Θεωρία και Μοντέλα για το Άτομο. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 37 Αρχική Κβαντική Θεωρία και Μοντέλα για το Άτομο Περιεχόμενα Κεφαλαίου 37 Η κβαντική υπόθεση του Planck, Ακτινοβολία του μέλανος (μαύρου) σώματος Θεωρία των φωτονίων για το φως και το Φωτοηλεκτρικό
Διαβάστε περισσότεραΑτομική Φυσική. Η Φυσική των ηλεκτρονίων και των ηλεκτρομαγνητικών δυνάμεων.
Ατομική Φυσική Η Φυσική των ηλεκτρονίων και των ηλεκτρομαγνητικών δυνάμεων. Μικρόκοσμος Κβαντική Φυσική Σωματιδιακή φύση του φωτός (γενικότερα της ακτινοβολίας) Κυματική φύση των ηλεκτρονίων (γενικότερα
Διαβάστε περισσότεραγ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
γ - διάσπαση Δήμος Σαμψωνίδης (21-11- 2017) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 γ - διάσπαση Τύποι διασπάσεων Ενεργειακά Ακτινοβολία πολυπόλων Κανόνες επιλογής Εσωτερικές
Διαβάστε περισσότεραΚαι τα τρία σωμάτια έχουν σπιν μονάδα.
Καθιερωμένο Πρότυπο W και Z μποζόνια Στη φυσική, τα W και Z μποζόνια είναι τα στοιχειώδη σωμάτια που μεταδίδουν την ασθενή αλληλεπίδραση. Η ανακάλυψή τους στο CERN το 1983 αντιμετωπίστηκε ως μια σπουδαία
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Φλοιώδης Δομή των Πυρήνων Η σύζευξη Spin Τροχιάς (L S)( Διέγερση και Αποδιέγερση
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια II Διάλεξη 11η Πετρίδου Χαρά Η εξίσωση Dirac Οι Ασθενείς Αλληλεπιδράσεις 29-5-2014 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2 Η κυματική εξίσωση ελεύθερου σωματιδίου 3 Η σχετικιστική εξίσωση
Διαβάστε περισσότεραΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. «Πυρηνική Φυσική & Φυσική Στοιχειωδών Σωματιδίων» (5ο εξάμηνο)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ «Πυρηνική Φυσική & Φυσική Στοιχειωδών Σωματιδίων» (5ο εξάμηνο) ΟΔΗΓΟΣ ΜΕΛΕΤΗΣ για τα προτεινόμενα βιβλία: Cottingham, W.N.,
Διαβάστε περισσότεραγ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
γ-διάσπαση Διάλεξη 17η Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου 1 Τι θα μάθουμε σήμερα 2 Τι είναι η γ-διάσπαση γ-αποδιέγερση ηλεκτρόνια εσωτερικών μετατροπών εσωτερική δημιουργία ζεύγους (e + e - ) Πως προκύπτει?
Διαβάστε περισσότεραΕισαγωγή στο Σχέδιο και τα Ηλεκτροτεχνικά Υλικά Κουτσοβασίλης Παναγιώτης
Εισαγωγή στο Σχέδιο και τα Ηλεκτροτεχνικά Υλικά 2015 Κουτσοβασίλης Παναγιώτης (pkoutsovasilis@inf.uth.gr) Η ύλη σε κομμάτια Στοιχείο μια βασική ουσία που μπορεί να απλουστευθεί (υδρογόνο, οξυγόνο, χρυσός,
Διαβάστε περισσότεραΜάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση
Διαβάστε περισσότεραΔιάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή
Διάλεξη 2: Πυρηνική Σταθερότητα, σπιν & μαγνητική ροπή Πυρηνική Σταθερότητα Ο πυρήνας αποτελείται από πρωτόνια και νετρόνια τα οποία βρίσκονται συγκεντρωμένα σε έναν πάρα πολύ μικρό χώρο. Εύκολα καταλαβαίνουμε
Διαβάστε περισσότεραΣτοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 25-26 Διαγράμματα Feynman, Μποζονικός διαδότης, σταθερά σύζευξης, υπολογισμός
Διαβάστε περισσότερα