Στοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά
|
|
- Φοῖνιξ Αλεξάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά
2 Νόµοι Διατήρησης στις Θεµελειώδεις Αλληλειδράσεις 14-Jan-13 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2
3 Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 3 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς => υπάρχουν μετασχηματισμοί που αφήνουν το σύστημα αναλλοίωτο Παράδειγμα: η μετατόπιση και η στροφή στο χώρο => αντιστοιχούν οι νόμοι διατήρησης της ορμής και της στροφορμής Οι μετασχηματισμοί μπορεί να είναι συνεχείς ή διακριτοί
4 Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (ΙΙ) 4 Αν ένας τελεστής αντιμετατίθεται με την χαμιλτονιανή του συστήματος η αναμενόμενη τιμή του είναι διατηρήσιμος κβαντικός αριθμός Ιδιότητες των τελεστών: Μοναδιαίος τελεστής: Συζυγής: Αυτοσυζυγής ή Ερμιτιανός: U 1 U =1= U U 1 A = A + A = A + A A + =1= A + A Αντίστροφος: A 1 = A + = A unitary A A 1 =1= A 1 A
5 Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (ΙΙΙ) 5 Αν ένας τελεστής αντιμετατίθεται με την χαμιλτονιανή του συστήματος η αναμενόμενη τιμή του είναι διατηρήσιμος κβαντικός αριθμός Στην Αναπαράσταση Schroedinger: i t Ψ s(t) = HΨ s (t) Ψ s (t) = T(t,t 0 )Ψs(t 0 ) T(t,t0) = e i(t t 0 )H / T T 1 =1 T 1 = T * = e i(t t 0 )H / Ψ s * (t) = (T Ψ s (t 0 ))* = Ψs(t 0 ) * T(t,t 0 ) * Στην αναπαράσταση Heisenberg η χρονική εξάρτηση δίνεται στον τελεστή και όχι στην κυματοσυνάρτηση: κάθε τελεστής Q είναι χρονοεξαρτώμενος Q = Ψ * (t) Q Ψ (t)dv = Ψ * (t ) Q Ψ (t )dv = Q 0 s 0 s s 0 s 0
6 Οι Τελεστές στην Αναπαράσταση Heisenberg 6 Αν ο τελεστής Q δεν εξαρτάται απ ευθείας από τον χρόνο: Q t = 0 Q = Ψ * (t) Q Ψ (t)dv = Ψ * (t ) Q Ψ (t )dv = Q 0 s 0 s s 0 s 0 T 1 Q T = Q dq 0 dt = T 1 t Q 0 T + T 1 Q 0 T t dq dt = i H T 1 Q 0 T i T 1 Q 0 T H = i dq dt = i Q,H [ ] + Q t (H Q Q H) Αν dq/dt = 0 => Q αναλλοίωτο μέγεθος => ΔΙΑΤΗΡΕΙΤΑΙ => [ Q,H]=0 => ANTIMETATIΘΕΤΑΙ με την Χαμιλτονιανή
7 Ο Τελεστής της Μετατόπισης 7 Η μετατόπιση είναι ένας συνεχής μετασχηματισμός Ψ' = Ψ(r + δr) = Ψ(r) + δr Ψ(r) r D = 1 + δr r D είναι ο τελεστής της απειροστής χωρικής μετατόπισης Ο τελεστής της ορμής είναι: +... = 1 + δr Ψ(r) = DΨ(r) r p = i r Mία πεπερασμένη μετατόπιση Δr είναι μία ακολουθία απειροστών μετατοπίσεων (Δr = nδr) i pδr n Επομένως : D = lim 1 + = exp 1 + i n άρα D μοναδιαίος: D + D=D -1 pδr D=1 => Ο τελεστής της ορμής είναι ο γενήτορας του μετασχηματισμού των μετατοπίσεων και ΑΝ αντιμετατίθεται με την Χαμιλτονιανή [D,H]=0 => [p,h]=0 => Οτελεστής της ορμής αντιμετατίθεται με Η => p είναι ΔΙΑΤΗΡΗΣΙΜΟ μέγεθος
8 Ο Τελεστής της Στροφής 8 Η στροφή είναι επίσης ένας συνεχής μετασχηματισμός: Ψ' = Ψ(φ + δφ) = Ψ(φ) + δφ Ψ(φ) +... = 1 + δφ Ψ(φ) = RΨ(φ) φ φ R = 1 + δφ φ Ο τελεστής της στροφής περί τον άξονα z: R z =1 + Δφ = nδφ i J zδφ R z = ( r p ) z J z = i (x y y x ) R = lim z 1 + n i J zδφ n = exp 1 + i J zδφ Διατήρηση της στροφορμής περί ένα άξονα z προκύπτει με την σχέση αντιμετάθεσης του τελεστή J z με την Η: [J z,h]=0
9 Συνεχείς μετασχηματισμοί Μετατοπίσεις & Στροφές 9 Όταν οι μετασχηματισμοί είναι συνεχείς οι κβαντικοί αριθμοί που διατηρούνται προστίθενται: οι νόμοι διατήρησης είναι προσθετικοί
10 Διακριτοί Μετασχηματισμοί 10 Πραγματοποιούνται με διακριτά βήματα π.χ. Χωρική ανάκλαση ως προς την αρχή των αξόνων: Ομοτιμία (parity) Είναι ο τελεστής P που προκαλεί την χωρική αναστροφή των συντεταγμένων ( x, y, z -x, -y, -z): PΨ( r) = Ψ(-r) => PΨ(-r) = P 2 Ψ( r)=1=> οι ιδιοτιμές του τελεστή P είναι +1, -1. Μία κυματοσυνάρτηση μπορεί να μην έχει συγκεκριμένη τιμή ομοτιμίας Η ομοτιμία διατηρείται ΜΟΝΟ στις ισχυρές και τις ηλεκτρομαγνητικές αλληλεπιδράσεις. ΟΧΙ στις ασθενείς: [P,H] 0 r r Η χωρική αναστροφή είναι ισοδύναμη με : r r,θ π θ,φ π + φ Ψ( r ) = χ( r )Y m l (θ,φ) Ψ( r ) = χ( r )Y m l (π θ,π + φ) = χ( r ) ( 1) l Y m l (θ,φ) PΨ( r ) = ( 1) l Ψ( r )
11 Διακριτοί Μετασχηματισμοί 11 Οι νόμοι διατήρησης είναι πολλαπλασιαστικοί στους διακριτούς μετασχηματισμούς Η ομοτιμία είναι πολλαπλασιαστικός κβαντικός αριθμός=> η ομοτιμία ενός σύνθετου συστήματος είναι το γινόμενο των ομοτιμιών των επιμέρους στοιχείων του : Αν ψ = φ α φ β φ γ => Pψ = Pφ α Pφ β Pφ γ Η εσωτερική ομοτιμία του πιονίου: Από την αλληλεπίδραση του πιονίου με το δευτέριο : π - + d -> n + n μπορούμε να αποδείξουμε ότι το πιόνιο έχει περιττή εσωτερική ομοτιμία π - : s π =0, d : s d =1=>S π+d =1; L π+d =0 => J π+d = 1 => J n+n =1, (J ΔΙΑΤΗΡΕΙΤΑΙ) 1. L n+n =1, S n+n =0 αλλά τότε Ψ n+n συμμετρική (Ψ s=0 είναι αντισυμμετρική) 2. L n+n =0, S n+n =1 Ψ n+n επίσης συμμετρική (Ψ s=1 είναι συμμετρική) 3. L n+n =1, S n+n =1 Ψ n+n αντι-συμμετρική (ταυτόσημα φερμιόνια) 4. L n+n =2, S n+n =1 Ψ n+n συμμετρική Αποδεκτή είναι μόνο η περίπτωση 3. => P(π,d)=(-1) l(π+d) P(π)P(d)=(-1) l(n+n) P(n)P(n), P(d) = P(n)P(p) = +1 => P(π) = -1
12 Ομοτιμία Σωματίων και Αντισωματίων 12 Η θεωρία Dirac προβλέπει αντίθετες ομοτιμίες για φερμιόνια και αντιφερμιόνια Η εσωτερική ομοτιμία ζεύγους φερμιονίου - αντιφερμιονίου επιβεβαιώθηκε και πειραματικά π.χ. Στην αντίδραση: p + p p + p + (p(bar)+p) Αντίθετα η εσωτερική ομοτιμία μποζονίου ταυτίζεται με την εσωτερική ομοτιμία του αντιμποζονίου του.
13 Αναλλοίωτο Συζυγίας Φορτίου 13 Η θεωρία Dirac προβλέπει αντίθετες ομοτιμίες για φερμιόνια και αντιφερμιόνια Η εσωτερική ομοτιμία ζεύγους φερμιονίου - αντιφερμιονίου επιβεβαιώθηκε και πειραματικά π.χ. Στην αντίδραση: p + p p + p + (p(bar)+p) Αντίθετα η εσωτερική ομοτιμία μποζονίου ταυτίζεται με την εσωτερική ομοτιμία του αντιμποζονίου του.
14 Αναλλοίωτο Συζυγίας Φορτίου 14 Ο τελεστής συζυγίας φορτίου αλλάζει το πρόσημο του φορτίου και της μαγνητικής ροπής του σωματιδίου => ανταλλαγή του σωματίου με το αντισωμάτιό του. Συμβολίζεται με τον τελεστή C Πειραματικά έχει επιβεβαιωθεί το αναλλοίωτο των ισχυρών και ηλεκτρομαγνητικών αλληλεπιδράσεων σε μετασχηματισμούς συζυγίας φορτίου και η παραβίασή του στις ασθενείς αλληλεπιδράσεις. πρωτόνιο: Q = +e, B =+1, s=1/2, μ=+2.79(eћ/2mc) αντιπρωτόνιο: Q = -e, B = -1, s=1/2, μ=-2.79(eћ/2mc) ηλεκτρόνιο: Q = -e, Le =+1, s=1/2, μ=-(eћ/2mc) ποζιτρόνιο : Q = +e, Le =-1, s=1/2, μ=+(eћ/2mc)
15 Ο Τελεστής CP : Η διαμήκης πόλωση των νετρίνο & αντινετρίνο 15 Πειραματικά βρέθηκε ότι τα νετρίνο είναι αριστερόστροφα και τα αντινετρίνο δεξιόστροφα
Στοιχειώδη Σωματίδια. Διάλεξη 25η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 25η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 12η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 12η Πετρίδου Χαρά Νόμοι Διατήρησης Κβαντικών Αριθμών Αρχές Αναλλοίωτου (Ι) 2 Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω από μετασχηματισμούς
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Νόμοι Διατήρησης κβαντικών αριθμών Αρχές Αναλλοίωτου Συμμετρία ή αναλλοίωτο των εξισώσεων που περιγράφουν σύστημα σωματιδίων κάτω
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 20η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 15 Δεκ
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 2η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 2η Πετρίδου Χαρά Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 10-Jan-11 Πετρίδου Χαρά Στοιχειώδη Σωµάτια
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 2016 Ομοτιμία Κβαντικοί Αριθμοί Συμμετρίες και Νόμοι Διατήρησης 1 Stathis STILIARIS,
Διαβάστε περισσότεραΟμοτιμία Parity Parity
Ομοτιμία Parity Ο μετασχηματισμός της Parity, αντιστρέφει κάθε χωρική συντεταγμένη. P(t,x) (t,-x), ή Pψ(r) ψ(-r) που αντιστοιχεί σε ανάκλαση και μετά στροφή 18 ο. αν επαναλάβουμε την διαδικασία προφανώς
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 10η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 10η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Σωμάτια & Αντισωμάτια Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2011 Πετρίδου Χαρά Στοιχειώδη Σωμάτια
Διαβάστε περισσότερα108/389 Διγραμμικές αναλλοίωτες ποσότητες Είναι χρήσιμο να βρούμε όρους της μορφής ψγψ, όπου Γ γινόμενο γ πινάκων, με καθορισμένους κανόνες μετασχηματ
8/389 Διγραμμικές αναλλοίωτες ποσότητες Είναι χρήσιμο να βρούμε όρους της μορφής ψγψ, όπου Γ γινόμενο γ πινάκων, με καθορισμένους κανόνες μετασχηματισμού κάτω από μετασχηματισμούς Lorentz ώστε να φτιάξουμε
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (14-12- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης
Διαβάστε περισσότεραΜετασχηματισμοί Καταστάσεων και Τελεστών
Μετασχηματισμοί Καταστάσεων και Τελεστών Δομή Διάλεξης Μετασχηματισμοί Καταστάσεων Τελεστής Μετατόπισης Συνεχείς Μετασχηματισμοί και οι Γεννήτορές τους Τελεστής Στροφής Διακριτοί Μετασχηματισμοί: Parity
Διαβάστε περισσότεραΦερμιόνια & Μποζόνια
Φερμιόνια & Μποζόνια Φερμιόνια Στατιστική Fermi-Dirac spin ημιακέραιο 1 3 5,, 2 2 2 Μποζόνια Στατιστική Bose-Einstein 0,1, 2 spin ακέραιο δύο ταυτόσημα φερμιόνια, 1 & 2 δύο ταυτόσημα μποζόνια, 1 & 2 έχουν
Διαβάστε περισσότεραβ διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β διάσπαση II Δήμος Σαμψωνίδης (28-11- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Spin και πάριτυ ενός πυρήνα (J και πάριτυ: J p ) Σπιν πυρήνα, J = ολικό τροχιακό σπίν
Διαβάστε περισσότεραΜάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2013-14) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό
Διαβάστε περισσότεραΜάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες διασπάσεις)
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Κ. Βελλίδης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 018 Συντεταγμένες Κ. Βελλίδη (Στοιχειώδη Σωμάτια): Τομέας ΠΦΣΣ: β όροφος, 10-77-6946 ΙΕΣΕ: β όροφος,
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (18-12- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης
Διαβάστε περισσότεραΜάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση το άτομο του υδρογόνου ΔΕΝ είναι προς εξέταση
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 7 & 8 Κβαντικοί αριθμοί και ομοτιμία (parity) ουσιαστικά σημεία με βάση
Διαβάστε περισσότεραE + m. m + E 2m (σ p)/(2m) v. i( p) x = v(p, 97/389
97/389 Χρησιμοποιώντας τον ίδιο νορμαλισμό N = E + m έχουμε vp, s = σ p E + m E +m χs χ s, s =, 2 και ψ = vp, se i p x = vp, se ip x με p = E, p. Η επιλογή είναι χ = και χ 2 = γιατί η απουσία ενός άνω
Διαβάστε περισσότεραΜάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη
Διαβάστε περισσότεραΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ. ΜΑΘΗΜΑ 4ο
ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΙΙ ΜΑΘΗΜΑ 4ο Αλληλεπιδράσεις αδρονίου αδρονίου Μελέτη χαρακτηριστικών των ισχυρών αλληλεπιδράσεων (αδρονίων-αδρονίων) Σε θεµελιώδες επίπεδο: αλληλεπιδράσεις µεταξύ quark
Διαβάστε περισσότεραΚεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών
Κεφάλαιο 7: Μετασχηματισμοί Καταστάσεων και Τελεστών Περιεχόμενα Κεφαλαίου Τα θέματα που θα καλύψουμε στο κεφάλαιο αυτό είναι τα εξής (Τραχανάς, 2005 Τραχανάς, 2008 Binney & Skinner, 2013 Fitzpatrick,
Διαβάστε περισσότεραΣοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2018-19 Τμήμα T3: Χ. Πετρίδου Μάθημα 9 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις) Πετρίδου Χαρά
Διαβάστε περισσότεραΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο
Διαβάστε περισσότεραΠυρηνικές Δυνάμεις. Διάλεξη 4η Πετρίδου Χαρά
Πυρηνικές Δυνάμεις Διάλεξη 4η Πετρίδου Χαρά Η Ύλη στο βιβλίο: Cottingham & Greenwood 2 Κεφάλαιο 5: Ιδιότητες των Πυρήνων 5.5: Μαγνητική Διπολική Ροπή του Πυρήνα 5.7: Ηλεκτρική Τετραπολική του Πυρήνα 5.1:
Διαβάστε περισσότεραΜάθημα 5 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 014-15) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β)
Διαβάστε περισσότεραCharge Conjuga,on. Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε. ελεύθερου σωματίδιου ως:
Charge Conjuga,on Μπορούμε να περιγράψουμε την κίνηση ενός φορτισμένου σωματιδίου σε ηλεκτρομαγνητικό πεδίο αντικαθιστώντας την ορμή και την ενέργια του ελεύθερου σωματίδιου ως: χρησιμοποιώντας τους τελεστές
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 23η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 23η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις
Διαβάστε περισσότερα16/12/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 09. ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ ΤΑΥΤΟΣΗΜΑ ΣΩΜΑΤΙΔΙΑ Στέλιος Τζωρτζάκης 1 3 4 φάση Η έννοια των ταυτόσημων σωματιδίων Ταυτόσημα αποκαλούνται όλα τα σωματίδια
Διαβάστε περισσότεραETY-202. Ο γενικός φορμαλισμός Dirac ETY-202 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC. Στέλιος Τζωρτζάκης 21/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 05. Ο ΓΕΝΙΚΟΣ ΦΟΡΜΑΛΙΣΜΟΣ DIRAC Στέλιος Τζωρτζάκης Ο γενικός φορμαλισμός Dirac 1 3 4 Εικόνες και αναπαραστάσεις Επίσης μια πολύ χρήσιμη ιδιότητα
Διαβάστε περισσότεραΤο Ισοτοπικό σπιν Μαθηµα 5ο 30/3/2017
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Το Ισοτοπικό σπιν Μαθηµα 5ο 3/3/217 Ισοσπίν 3/3/217 Τι θα συζητήσουµε σήµερα Ισοσπίν 3/3/217 2 1. Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η
Διαβάστε περισσότεραΣτοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 23-24 Στοιχειώδη Σωμάτια και κβαντικοί αριθμοί τους - Αλληλεπίδραση σωματιδίων
Διαβάστε περισσότεραNobel Φυσικής για Κβαντική Ηλεκτροδυναμική
Spin Nobel Φυσικής για Κβαντική Ηλεκτροδυναμική Δομή Διάλεξης Το πείραμα Stern-Gerlach: Πειραματική απόδειξη spin Ο δισδιάστατος χώρος καταστάσεων spin του ηλεκτρονίου: οι πίνακες Pauli Χρονική εξέλιξη
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (19-12- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Τα Θεμελιώδη Φερμιόνια απο τα οποία αποτελείται η Ύλη:
Διαβάστε περισσότεραΧρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα
Άσκηση. (Βοήθημα θεωρίας) Εάν ένα κλασικό άνυσμα r μετατοπισθεί κατά a, θα προκύψει το άνυσμα r = r + a. a Χρησιμοποιείστε την πληροφορία αυτή για να δείξετε ότι ο τελεστής που θα μεταφέρει το άνυσμα r
Διαβάστε περισσότεραΜάθημα 9 Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό Yukawa Δευτέριο Βάθος πηγαδιού δυναμικού νουλεονίνων Ενέργεια Fermi
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 017-18) Τμήμα T: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 9 Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό Yukawa
Διαβάστε περισσότεραβ διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β διάσπαση II Δήμος Σαμψωνίδης (30-11- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Fermi- Kurie plot (μάζα ν) Διάγραμμα της ρίζας του αριθμού των σωματίων β με ορμή
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Spin Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 3η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια Διάλεξη 3η Πετρίδου Χαρά Τα Λεπτόνια 2 Δεν έχουν Ισχυρές Αλληλεπιδράσεις Spin 1/2 Παρατηρούνται ως ελεύθερα σωματίδια Είναι σημειακά (r < 10-17 cm) H δομή των οικογενειών... Γιατί
Διαβάστε περισσότεραΤο Ισοτοπικό σπιν Μαθηµα 5ο 27/3/2014
Το Ισοτοπικό σπιν Μαθηµα 5ο 27/3/2014 Ισοσπίν 27/3/2014 Τι θα συζητήσουµε σήµερα 1. Η ιδέα και ο ορισµός του Ισοτοπικού σπιν («Ισοσπίν») Η αρχική ιδέα του Heisenberg για πρωτόνιο και νετρόνιο 2. Φορµαλισµός
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά
Στοιχειώδη Σωματίδια II Διάλεξη 11η Πετρίδου Χαρά Η εξίσωση Dirac Οι Ασθενείς Αλληλεπιδράσεις 29-5-2014 Πετρίδου Χαρά Στοιχειώδη Σωµάτια 2 Η κυματική εξίσωση ελεύθερου σωματιδίου 3 Η σχετικιστική εξίσωση
Διαβάστε περισσότεραΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ
ΛΕΠΤΟΝΙΑ ΗΜ ΚΑΙ ΑΣΘΕΝΕΙΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΔΙΑΓΡΑΜΜΑΤΑ FEYNMAN ΔΙΑΣΠΑΣΗ ΜΙΟΝΙΟΥ ΚΕΝΤΡΙΚΗ ΙΔΕΑ ΤΗΣ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Όλα στη φύση αποτελούνται από στοιχειώδη σωματίδια τα οποία είναι φερμιόνια
Διαβάστε περισσότεραΜάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα Κώστας
Διαβάστε περισσότεραΕισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα
Διαβάστε περισσότεραΚβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο
Κβαντικό Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Δομή Διάλεξης Χαμιλτονιανή και Ρεύμα Πιθανότητας για Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Μετασχηματισμοί Βαθμίδας Αρμονικός Ταλαντωτής σε Ηλεκτρικό Πεδίο Σωμάτιο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 : ΜΑΓΝΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΤΟΥ ΠΥΡΗΝΑ. Η εξίσωση Schrödinger για ένα σωματίδιο χωρίς spin, έχει τη μορφή: ψ 4.1
ΚΕΦΑΛΑΙΟ 4 : ΜΑΓΝΗΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΤΟΥ ΠΥΡΗΝΑ Τροχιακή Στροφορμή Η εξίσωση Schrödinger για ένα σωματίδιο χωρίς spin, έχει τη μορφή: = + = M Hψ V r r ( ) ψ ( ) E ( r) ψ 4. Όπου η δυναμική ενέργεια V(r) είναι
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα Τ3: Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 21η Πετρίδου Χαρά Τμήμα Τ3: Χ. Πετρίδου Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 14/12/2017 Πετρίδου Χαρά Στοιχειώδη Σωμάτια 2 Τα Θεμελιώδη Φερμιόνια απο τα
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 21η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 21η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Κουάρκ & Λεπτόνια Αδρόνια & Διατήρηση κβαντικών αριθμών 16/12/2016 Πετρίδου Χαρά Στοιχειώδη Σωμάτια 2 Τα Θεμελιώδη Φερμιόνια
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 ΔΥΟ Μεγάλες, απλές κατηγοριοποιήσεις σωματίων, Ι. Φερμιόνια Μποζόνια Στατιστική Συμπεριφορά Νόμοι διατήρησης. Τα φερμιόνια δεν «καταστρέφονται»
Διαβάστε περισσότεραΣοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 6β β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)
Διαβάστε περισσότεραΔομή Διάλεξης. Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης. Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής
Τροχιακή Στροφορμή Δομή Διάλεξης Οι τελεστές της τροχιακής στροφορμής στην αναπαράσταση της θέσης Τελεστές δημιουργίας και καταστροφής για ιδιοκαταστάσεις στροφορμής Ιδιοτιμές και ιδιοκαταστάσεις της L
Διαβάστε περισσότεραΣυστήματα Πολλών Σωματίων
Συστήματα Πολλών Σωματίων Δομή Διάλεξης Βασικές γενικεύσεις: Κυματοσυνάρτηση-Ενέργεια συστήματος πολλών σωματίων Μη αλληλεπιδρώντα σωμάτια: Μέθοδος χωριζόμενων μεταβλητών Σύστημα δύο αλληλεπιδρώντων σωματίων:
Διαβάστε περισσότεραΛ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις
Ασθενείς Αλληλεπιδράσεις έχουμε ήδη δει διάφορες αντιδράσεις που γίνονται μέσω των ασθενών αλληλεπιδράσεων π.χ. ασθενείς διασπάσεις αδρονίων + + 0 K ππ Λ pπ n pe ν π e μ v + + μ ασθενείς διασπάσεις λεπτονίων
Διαβάστε περισσότεραΑσθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας. Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1
Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1 Parity Εφαρµόζοντας τον δύο φορές : άρα Αλλά θα πρέπει να διατηρείται και η κανονικοποίηση της κυµατοσυνάρτησης
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια
Διαβάστε περισσότεραSpin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή. Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής
Spin του πυρήνα Μαγνητική διπολική ροπή Ηλεκτρική τετραπολική ροπή Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής Εξάρτηση του πυρηνικού δυναμικού από άλλους παράγοντες (πλην της απόστασης) Η συνάρτηση του δυναμικού
Διαβάστε περισσότεραΛύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι
Λύσεις 9 ου Set Ασκήσεων Κβαντομηχανικής Ι Disclaimer: Οι δυο ασκήσεις ζητούν τις κυματοσυναρτήσεις, τις ενέργειες, τις τιμές (x 1 x 2 ) 2 των διαφόρων καταστάσεων και τη διόρθωση από διαταραχή, για μποζόνια
Διαβάστε περισσότεραu'+v u= 1+(u'v/c c+c=c Δx Δx'+vΔt' (Δx'/Δt')+v Δt Δt'+(v/c )Δx' 1+(v/c )(Δx'/Δt')
Μετασχηματισμοί Lorentz Σύμφωνα με την ειδική θεωρία της σχετικότητας οι νόμοι της φυσικής είναι ανεξάρτητοι από το αν το σύστημα αναφοράς κινείται ή είναι ακίνητο. x =γ(x-vt), y =y, z =z, t =γ(t-vx/c
Διαβάστε περισσότεραΠυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 1γ Μια ματιά στα Στοιχειώδη Σωμάτια και τους κβαντικούς αριθμούς τους Κώστας
Διαβάστε περισσότεραΜάθημα 5 α) β-διάσπαση β) Ασκήσεις
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2012-13) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 5 α) β-διάσπαση β) Ασκήσεις Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Διαβάστε περισσότεραΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Διαβάστε περισσότεραμαγνητικό πεδίο τυχαίας κατεύθυνσης
Σπιν 1 μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο τυχαίας κατεύθυνσης 1) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο B B ˆ ˆ ˆ 0xex B0 yey B0 zez, όπου B0 x, B0
Διαβάστε περισσότεραVan Swinderen Institute
Συμμετρίες και Δυισμοί Θανάσης Χατζησταυρακίδης Van Swinderen Institute @ Κέρκυρα 13η Σεπτεμβρίου 2016 Γιατί συμμετρία; Συμμετρία Αισθητική Ομορφιά Στην Φύση Η συμμετρία στα φυσικά αντικείμενα συνήθως
Διαβάστε περισσότεραΣύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 19/04/16
Διάλεξη 15: Νετρίνα Νετρίνα Τα νετρίνα τα συναντήσαμε αρκετές φορές μέχρι τώρα: Αρχικά στην αποδιέγερση β αλλά και αργότερα κατά την αποδιέγερση των πιονίων και των μιονίων. Τα νετρίνα αξίζει να τα δούμε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΗ εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1
Η εξίσωση Dirac (Ι) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Μη- Σχετικιστική Κβαντομηχανική Η μη- σχετικιστική έκφραση για την ενέργεια: Στην QM αντιστοιχούμε την ενέργεια και την ορμή με Τελεστές:
Διαβάστε περισσότεραΔύο διακρίσιμα σωμάτια με σπιν s 1
Δύο διακρίσιμα σωμάτια με σπιν και Σύνδεση της βάσης των ιδιοκαταστάσεων του τετραγώνου και της z συνιστώσας του ολικού σπιν με τη βάση που αποτελείται από τα τανυστικά γινόμενα των καταστάσεων των δύο
Διαβάστε περισσότεραΑτομική και Μοριακή Φυσική
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Σύστημα με δύο ηλεκτρόνια Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότερα1 ΣΤΟΙΧΕΙΑ ΦΥΣΙΚΗΣ ΣΤΟΙΧΕΙΩ ΩΝ ΣΩΜΑΤΙ ΙΩΝ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑΣ Στοιχειώδη σωµατίδια 1) Τι ονοµάζουµε στοιχειώδη σωµατίδια και τι στοιχειώδη σωµάτια; Η συνήθης ύλη, ήταν γνωστό µέχρι το 1932 ότι αποτελείται
Διαβάστε περισσότεραΜάθημα 14 β-διάσπαση B' μέρος
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 14 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες
Διαβάστε περισσότεραΔιάλεξη 2: Κεντρικά Δυναμικά. Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schrödinger για κεντρικά δυναμικά
Διάλεξη : Κεντρικά Δυναμικά Αναζητούμε λύσεις της χρονοανεξάρτητης εξίσωσης Schöing για κεντρικά δυναμικά Μ. Μπενής. Διαλέξεις Μαθήματος Σύγχρονης Φυσικής ΙΙ. Ιωάννινα 03 Κεντρικά δυναμικά Εξάρτηση δυναμικού
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Ατομική Δομή ΙΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική II Ατομική Δομή ΙΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cetive Commons.
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 016 Κλασική Κβαντική Κβαντική Εικόνα Πεδίου Θεωρία Yukawa Διαγράμματα Feynman
Διαβάστε περισσότεραβ - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β - διάσπαση Δήμος Σαμψωνίδης (26-11- 2010) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας
Διαβάστε περισσότεραΔιάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος
Διάλεξη 16: Παράδοξα σωματίδια και οκταπλός δρόμος Παράδοξα σωματίδια Μετά την ανακάλυψη του μεσονίου που είχε προβλέψει ο Yukawa, την ανακάλυψη των αντισωματιδίων του Dirac και την κοπιώδη αλλά αποτελεσματική
Διαβάστε περισσότεραΣύγχρονη Φυσική - 2012: Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/05/15
Διάλεξη 14: Μεσόνια και αντισωματίδια Μεσόνια Όπως αναφέρθηκε προηγουμένως (διάλεξη 13) η έννοια των στοιχειωδών σωματίων άλλαξε πολλές φορές μέχρι σήμερα. Μέχρι το 1934 ο κόσμος των στοιχειωδών σωματιδίων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΣοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15
Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο 2014-15 Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, parity, επιτρεπτές και απαγορευμένες διασπάσεις)
Διαβάστε περισσότεραΔιάλεξη 6: Ατομική Δομή Συμμετρία Εναλλαγής
Συμμετρία Εναλλαγής Σε μονοηλεκτρονιακά άτομα ιόντα η κατάσταση του ηλεκτρονίου καθορίζεται από τέσσερις κβαντικούς αριθμούς {n, l, m l, m s } ή {n, l, j, m j }. Σε πολυηλεκτρονιακά άτομα πόσα ηλεκτρόνια
Διαβάστε περισσότερα1. Μετάπτωση Larmor (γενικά)
. Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται
Διαβάστε περισσότεραΤο Μποζόνιο Higgs. Το σωματίδιο Higgs σύμφωνα με το Καθιερωμένο Πρότυπο
1 Το Μποζόνιο Higgs 29/05/13 Σκοποί: I. Να απαντήσει στο ερώτημα του τι είναι ακριβώς το σωματίδιο Higgs. II. Να εισάγει τους διάφορους τρόπους παραγωγής και μετάπτωσης του Higgs. III. Να δώσει μία σύντομη
Διαβάστε περισσότεραΟµάδα Ασκήσεων #1-Λύσεις
Οµάδα Ασκήσεων #-Λύσεις Πρόβληµα # (α) (β) Τουλάχιστον Β.Ε. (Βαθµοί Ελευθερίας) χρειάζονται για αυθαίρετη τοποθέτηση στο χώρο (x,y,z) και επιπλέον Β.Ε. απαιτούνται για αυθαίρετο προσανατολισµό (στη δεδοµένη
Διαβάστε περισσότερακαι χρησιμοποιώντας τον τελεστή A r P αποδείξτε ότι για
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου IV Άσκηση 1: Σωματίδιο μάζας Μ κινείται στην περιφέρεια κύκλου ακτίνας R. Υπολογίστε τις επιτρεπόμενες τιμές της ενέργειας, τις αντίστοιχες κυματοσυναρτήσεις και τον εκφυλισμό.
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Κ. Βελλίδης & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, 018 Κλασσική-Κβαντική Εικόνα Πεδίου Εικονικά σωµάτια Διαγράµµατα Feynman Ηλεκτροµαγνητικές και Ασθενείς
Διαβάστε περισσότεραn proton = 10N A 18cm 3 (2) cm 2 3 m (3) (β) Η χρονική απόσταση δύο τέτοιων γεγονότων θα είναι 3m msec (4)
ΛΥΣΕΙΣ ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ 8 Διδάσκων: Θεόδωρος Ν. Τομαράς 1. Η θεωρία των μαγνητικών μονοπόλων προβλέπει οτι αυτά αντιδρούν με πρωτόνια και δίνουν M + p M + e + + π 0 (1) με ενεργό διατομή σ 0.01 barn. Το
Διαβάστε περισσότεραΕφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή
Εφαρμογές Θεωρίας Διαταραχών σε Υδρογόνο: Λεπτή Υφή, Φαινόμενο Zeeman, Υπέρλεπτη Υφή Δομή Διάλεξης Λεπτή Υφή: Άρση εκφυλισμού λόγω σύζευξης spin με μαγνητικό πεδίο τροχιακής στροφορμής και λόγω σχετικιστικού
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ. Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, Ιδιότητες των Σωματίων Ισοτοπικό Σπιν
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ Ν. Γιόκαρης,, (Κ.Ν.( Παπανικόλας) & Ε. Στυλιάρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ,, 206 Ιδιότητες των Σωματίων Ισοτοπικό Σπιν Stathis STILIARIS, UoA 206 Ιδιότητες
Διαβάστε περισσότεραΑτομική και Μοριακή Φυσική
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Το άτομο του Υδρογόνου Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΚύριος κβαντικός αριθμός (n)
Κύριος κβαντικός αριθμός (n) Επιτρεπτές τιμές: n = 1, 2, 3, Καθορίζει: το μέγεθος του ηλεκτρονιακού νέφους κατά μεγάλο μέρος, την ενέργεια του τροχιακού τη στιβάδα στην οποία κινείται το ηλεκτρόνιο Όσομεγαλύτερηείναιητιμήτουn
Διαβάστε περισσότεραΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 53 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 5 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εφαρμογές Θεωρίας Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΗ εξίσωση Dirac (ΙI) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1
Η εξίσωση Dirac (ΙI) Σπύρος Ευστ. Τζαμαρίας Στοιχειώδη Σωμάτια 1 Συναλλοίωτη Μορφή: οι Dirac γ Matrices Η εξίσωση Dirac μπορεί να γραφεί σε συναλλοίωτη μορφή χρησιμοποιώντας τις 4 Dirac γ matrices: Πολλαπλασιάζοντας
Διαβάστε περισσότερα1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Διαβάστε περισσότεραΜάθημα 10 & 11 Πυρηνικό μοντέλο των φλοιών
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2017-18) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 10 & 11 Πυρηνικό μοντέλο των φλοιών Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
Διαβάστε περισσότεραΕισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων Δήμος Σαμψωνίδης (8-1- 2018) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 Αλληλεπιδράσεις και Πεδία στη Σωματιδιακή Φυσική 2 Κλασική
Διαβάστε περισσότεραΠαραμαγνητικός συντονισμός
Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη
Διαβάστε περισσότεραβ - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο
β - διάσπαση Δήμος Σαμψωνίδης (29-11- 2016) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο 1 β - διάσπαση Βήτα διάσπαση (εκπομπή e + ) είναι ένας μηχανισμός αποκατάστασης της συμμετρίας
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 11η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 11η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Αλληλεπιδράσεις & Πεδία στη Σωματιδιακή Φυσική 2 Τα Θεμελιώδη Μποζόνια των αλληλεπιδράσεων Οι Θεμελιώδεις Αλληλεπιδράσεις
Διαβάστε περισσότεραΜάθημα 7o Συντονισμοί & Παραγωγή Σωματιδίων στις Υψηλές Ενέργειες 27/4/2017
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 7o Συντονισμοί & Παραγωγή Σωματιδίων στις Υψηλές Ενέργειες 7/4/017 Σύνδεση σχέσης Breit-Wigner με τον χρόνο ζωης τ και το πλάτος Γ Οι Συντονισμοί
Διαβάστε περισσότερα