Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης:"

Transcript

1 ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (ΑΣΠΑΙΤΕ) - ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ Υπεύθυνος καθηγητής: Ζκέρης Βασίλειος ΕΚΘΕΣΗ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ 4: ΜΕΤΡΗΣΕΙΣ ΜΕ ΠΕΠΙΕΣΜΕΝΟ ΑΕΡΑ (Π Ν Ε Υ Μ Α Τ Ι Κ Α Ο Ρ Γ Α Ν Α ) Σπουδαστές: Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης: ΑΘΗΝΑ 2009

2 ΑΣΚΗΣΗ 4 η ΜΕΤΡΗΣΕΙΣ ΜΕ ΠΕΠΙΕΣΜΕΝΟ ΑΕΡΑ (ΠΝΕΥΜΑΤΙΚΑ ΟΡΓΑΝΑ) Ι. Μετρολογική ποιότητα SOLEX 1) Χαρακτηριστικά Σύμβολα των διακένων Η Σύμβολα της κλίμακας: Συνολικό μήκος της μεγέθυνσης 365 mm Έκταση μετρήσεως: μm Χρόνος αποκρίσεως: μm 2) Ευαισθησία Αποστάσεις βαθμονομημένου κανόνα (h) σε mm Διάστημα υποδιαιρέσεως 1μm (n) σε mm h 1 = 62mm n 1 = 6,5 mm K 1 = h 2 = 141mm n 2 = 8,7 mm K 2 = h 3 = 224mm n 3 = 7,9 mm K 3 = h 4 = 294mm n 4 = 6 mm K 4 = h 5 = 343mm n 5 = 3,8 mm K 5 = h 6 = 379mm n 6 = 2,9 mm K 6 = Ευαισθησία (Κ) Υπολογισμός ευαισθησίας Κ = m 1000( ). n( mm) n( mm) n mm K 1( m) 1( m) 1 2

3 Μεγαλύτερη ευαισθησία Κ max = Μικρότερη ευαισθησία Κ min = Συμπεράσματα: 3) Ορθότητα εκλογή σειράς πλακιδίων ποιότητας Ο. διαστάσεις πλακιδίων από 1,001 mm μέχρι και 1,010 mm 3

4 Ονομαστική τιμή πλακιδίου Ve Τιμές του 1 ου χειριστή Τιμές του 2 ου χειριστή Μέσες τιμές 1,001 1,002 1,003 1,004 1,005 1,006 1,007 1,008 1,009 μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm δυο χειριστών μm μm μm μm μm μm μm μm μm μm Τιμή του πλακιδίου V e μm μm μm μm μm μm μm μm μm μm 1,0010 Βήματα ορθότητας μm μm μm μm μm μm μm μm μm μm όπου V το πάχος ρύθμισης του μηδέν συν το V, δηλαδή V e = α+v i (Το α ισούται με 1 mm) Καμπύλη διακρίβωσης 4

5 4) Πιστότητα Παίρνουμε ένα πλακίδιο (πάχους 5 έως 15 mm). Κάθε χειριστής θα κάνει μια σειρά 10 μετρήσεων με μεγάλη προσοχή. Το πλακίδιο θα πρέπει να είναι τελείως καθαρό. Θα πρέπει να κρατιέται στο χέρι το λιγότερο δυνατό χρόνο. Οι μετρήσεις θα γίνονται στο ίδιο σημείο. Οι αναγνώσεις θα γίνονται όταν η στήλη του υγρού θα είναι σε ισορροπία. Ονομαστική τιμή α του χρησιμοποιημένου προτύπου πλακιδίου mm. Ποιότητα του πλακιδίου: 1 ος σπουδαστής α/α μέτρησης Απόκλιση σε (μm) Μέση τιμή Χ= μm Ανώτερο όριο: μm Κατώτερο όριο: μm 5

6 Στη συνέχεια θα υπολογισθεί η τυπική απόκλιση s Χ i Χ (Χ i Χ) 2 Έτσι: Σ(Χ i Χ) 2 = S = s S n 1 S s = 2 ος σπουδαστής α/α μέτρησης Απόκλιση σε (μm) Μέση τιμή Χ= μm Ανώτερο όριο: μm Κατώτερο όριο: μm Στη συνέχεια θα υπολογισθεί η τυπική απόκλιση s Χ i Χ (Χ i Χ) 2 Έτσι: Σ(Χ i Χ) 2 = S = s S n 1 S s = 6

7 Συμπεράσματα: Τα προηγούμενα αποτελέσματα μας επιτρέπουν να συμπεράνουμε ότι η συσκευή SOLEX παρουσιάζει χαρακτηριστικά πιστότητας Ο αριθμός των μετρήσεων είναι αρκετός; Ποια η επίδραση του χειριστή; 5) Ακρίβεια Συμπερασματικά οι μετρολογικές ποιότητες της συσκευής SOLEX μας επιτρέπουν να μετρήσουμε με ένα σφάλμα: Δα=± μm 7

8 ΙΙ. Μετρολογική ποιότητα ETAMIC 1) Χαρακτηριστικά: Έκταση μετρήσεως: μm Διάμετρος του κύκλου που φέρνει τις υποδιαιρέσεις d = 74 mm Χρόνος αποκρίσεως: sec 2) Ευαισθησία Συνολικό μήκος των υποδιαιρέσεων: π d 0,8 = 3, ,8= μm d 0,8 Μήκος μιας υποδιαίρεσης: n mm Ευαισθησία: 1000 n 1000 K ) Ορθότητα: Εκλογή σειράς πλακιδίων ποιότητας Ο Διαστάσεις πλακιδίων από 1,001 mm έως 1,010 mm. 8

9 Ονομαστική τιμή πλακιδίου Ve Τιμές του 1 ου χειριστή Τιμές του 2 ου χειριστή Μέσες τιμές 1,001 1,002 1,003 1,004 1,005 1,006 1,007 1,008 1,009 μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm μm δυο χειριστών μm μm μm μm μm μm μm μm μm μm Τιμή του πλακιδίου V μm μm μm μm μm μm μm μm μm μm e 1,0010 Βήματα ορθότητας μm μm μm μm μm μm μm μm μm μm όπου V e το πάχος ρύθμισης του μηδέν συν το V e δηλαδή V e + V i (Το α ισούται με 1mm) Καμπύλη διακρίβωσης 9

10 4) Πιστότητα Ονομαστική τιμή α του χρησιμοποιημένου προτύπου πλακιδίου mm. Ποιότητα του πλακιδίου: 1 ος σπουδαστής α/α μέτρησης Απόκλιση σε (μm) Μέση τιμή Χ= μm Ανώτερο όριο: μm Κατώτερο όριο: μm Στη συνέχεια θα υπολογισθεί η τυπική απόκλιση s Χ i Χ (Χ i Χ) 2 Έτσι: Σ(Χ i Χ) 2 = S = s S n 1 S s = 10

11 2 ος σπουδαστής α/α μέτρησης Απόκλιση σε (μm) Μέση τιμή Χ= μm Ανώτερο όριο: μm Κατώτερο όριο: μm Στη συνέχεια θα υπολογισθεί η τυπική απόκλιση s Χ i Χ (Χ i Χ) 2 Έτσι: Σ(Χ i Χ) 2 = S = s S n 1 S s = Συμπεράσματα: Τα προηγούμενα αποτελέσματα μας επιτρέπουν να συμπεράνουμε ότι η συσκευή ETAMIC παρουσιάζει χαρακτηριστικά πιστότητας; 11

12 Ο αριθμός των μετρήσεων είναι αρκετός; Ποια η επίδραση του χειριστή; 5) Ακρίβεια Συμπερασματικά οι μετρολογικές ποιότητες της συσκευής SOLEX μας επιτρέπουν να μετρήσουμε με ένα σφάλμα: Δα=± μm Γενικά συμπεράσματα Πλεονεκτήματα συσκευής SOLEX: Πλεονεκτήματα συσκευής ETAMIC: Παρατηρήσεις: 12

13 ΙΙΙ. Μετρήσεις εσωτερικών διαμέτρων 1) Ρύθμιση του εσωτερικού διαβήτη Ονομαστική διάμετρος mm Τιμή της κλίμακας της στήλης για αυτή τη διάμετρο Έκταση μετρήσεων: 2) Έλεγχος οριακών δακτυλίων: Πλευρά. Ανοχή Πραγματικές τιμές: Μέγιστη διάμετρος: mm Ελάχιστη διάμετρος: mm Πραγματοποιούμενες μετρήσεις 1 ος χειριστής (Αποκλίσεις της κλίμακας από την αρχική ρύθμιση) μm Μέση τιμή : μm Ελλειψοειδές : μm 13

14 2 ος χειριστής μm Μέση τιμή : μm Ελλειψοειδές : μm 3) Μέτρηση οπής Ανοχή ζητούμενη κατά την κατασκευή: μm 1 ος χειριστής 2 ος χειριστής (Οι τιμές γράφονται σε μm) Τιμή μέσης διαμέτρου: 1 ος Χειριστής: 2 ος Χειριστής: Ελλειψοειδές: 1 ος Χειριστής: 2 ος Χειριστής: Συμπεράσματα 14

15 IV. Μετρήσεις εξωτερικών διαμέτρων 1) Με τη βοήθεια των δακτυλίων διακριβώσεως: Διάμετρος δακτυλίου: mm ± mm Α) Διακρίβωση ελεγκτήρα εσωτερικής διαμέτρου: Διάμετρος mm. Ανοχή μm Μέγιστη διάμετρος mm Ελάχιστη διάμετρος mm Μετρήσεις 1 ος χειριστής (Αποκλίσεις της κλίμακας από την αρχική ρύθμιση) μm Μέση τιμή : μm Ελλειψοειδές : μm 2 ος χειριστής μm Μέση τιμή : μm Ελλειψοειδές : μm 15

16 Β) Μέτρηση διαμέτρου άξονα Ανοχή ζητούμενη κατά την κατασκευή: μm 1 ος χειριστής 2 ος χειριστής (Οι τιμές γράφονται σε μm) Τιμή μέσης διαμέτρου: 1 ος Χειριστής: 2 ος Χειριστής: Ελλειψοειδές: 1 ος Χειριστής: 2 ος Χειριστής: 2) Με τη βοήθεια του διχάλου: α) Ρύθμιση του διχάλου Ελεγκτήρας τρύματος mm ± μm 16

17 Β) Μέτρηση διαμέτρου άξονα Ανοχή ζητούμενη κατά την κατασκευή: μm 1 ος χειριστής 2 ος χειριστής (Οι τιμές γράφονται σε μm) Τιμή μέσης τιμής: 1 ος Χειριστής: 2 ος Χειριστής: Μέγιστη απόκλιση των διαμέτρων: μm Μέγιστη απόκλιση κατά μήκος της γενέτειρας: μm Πλεονεκτήματα και μειονεκτήματα του διχάλου 17

18 V. Γενικά συμπεράσματα 1. Πλεονεκτήματα των πνευματικών συσκευών: Χαμηλής πίεσης: Υψηλής πίεσης: 2. Μειονεκτήματα των πνευματικών συσκευών 3. Ενδιαφέρον της άσκησης: 4. Δυσκολίες της άσκησης 5. Ποιες τροποποιήσεις προτείνετε για την άσκηση: 18

Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης:

Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης: ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (ΑΣΠΑΙΤΕ) - ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ Υπεύθυνος καθηγητής: Ζκέρης Βασίλειος ΕΚΘΕΣΗ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ 1: ΜΗΧΑΝΙΚΕΣ ΣΥΣΚΕΥΕΣ

Διαβάστε περισσότερα

Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης:

Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης: ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (ΑΣΠΑΙΤΕ) - ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ Υπεύθυνος καθηγητής: Ζκέρης Βασίλειος ΕΚΘΕΣΗ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ 6: ΠΡΟΒΟΛΙΚΟ ΜΗΧΑΝΗΜΑ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (ΑΣΠΑΙΤΕ) ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ Υπεύθυνος καθηγητής: Ζκέρης Βασίλειος Επιμέλεια : Λουκά Γεωργία ΑΘΗΝΑ 2009 ΑΣΚΗΣΗ 1 η ΜΗΧΑΝΙΚΕΣ

Διαβάστε περισσότερα

Βασικές έννοιες Ανοχές κατά ISO Συναρμογές κατά ISO. Ανοχές-συναρμογές - ΕΜΤ

Βασικές έννοιες Ανοχές κατά ISO Συναρμογές κατά ISO. Ανοχές-συναρμογές - ΕΜΤ Ανοχές - συναρμογές Βασικές έννοιες Ανοχές κατά ISO Συναρμογές κατά ISO Δεκ-09 Γ.Βοσνιάκος Ανοχές-συναρμογές - ΕΜΤ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας

Διαβάστε περισσότερα

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους

Διαβάστε περισσότερα

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Συγγραφείς:. Τμήμα, Σχολή Εφαρμοσμένων Επιστημών, ΤΕΙ Κρήτης Περίληψη Στην παρούσα εργαστηριακή άσκηση μετρήσαμε τη διάμετρο

Διαβάστε περισσότερα

Στατικός χαρακτηρισµός οργάνου (τεκµηρίωση που συνοδεύει το όργανο)

Στατικός χαρακτηρισµός οργάνου (τεκµηρίωση που συνοδεύει το όργανο) Στατικός χαρακτηρισµός οργάνου (τεκµηρίωση που συνοδεύει το όργανο) Ορθότητα (trueness): χαρακτηρίζει τη µετρολογική ποιότητα του οργάνου και όχι την ποιότητα µιας συγκεκριµένης µέτρησης. Η εγγύτητα της

Διαβάστε περισσότερα

Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 2 η

Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 2 η Μετροτεχνικό Εργαστήριο Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 2 η http://goo.gl/feqvq Νοέμβριος 2011 Αρίστος Γεωργίου

Διαβάστε περισσότερα

ΜΕΤΡΟΛΟΓΙΑ. Εναλλαξιμότητα και Συστήματα Ανοχών. ΕΚΠΑΙΔΕΥΤΗΣ: Ανδρέας Ιωάννου

ΜΕΤΡΟΛΟΓΙΑ. Εναλλαξιμότητα και Συστήματα Ανοχών. ΕΚΠΑΙΔΕΥΤΗΣ: Ανδρέας Ιωάννου ΜΕΤΡΟΛΟΓΙΑ Εναλλαξιμότητα και Συστήματα Ανοχών. 1 Διεθνές σύστημα ανοχών συναρμογών - Ορισμοί 1. Ονομαστική Διάσταση Ν αριθμός που εκφράζει την αριθμητική τιμή ενός μήκους σε μια συγκεκριμένη μονάδα π.χ

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου

Διαβάστε περισσότερα

1517 Κ.Δ.Π. 334/2000

1517 Κ.Δ.Π. 334/2000 E.E. Παρ. ΙΙΙ(Ι) Αρ. 3451, 24.11.2000 1517 Κ.Δ.Π. 334/2000 Αριθμός 334 Οι περί Μέτρων και Σταθμών (Πιεσόμετρα Ελαστικών Μηχανοκίνητων Οχημάτων) Κανονισμοί του 2000, που εκδόθηκαν από το Υπουργείο Εμπορίου,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Χημική Τεχνολογία. Εργαστηριακό Μέρος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Χημική Τεχνολογία. Εργαστηριακό Μέρος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Εργαστηριακό Μέρος Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

1. Πειραματικά Σφάλματα

1. Πειραματικά Σφάλματα . Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο

Συστήματα Αυτομάτου Ελέγχου-Εργαστήριο 1.1. ΜΕΛΕΤΗ ΣΑΕ ΣΤΟ ΠΕΔΙΟ ΣΥΧΝΟΤΗΤΑΣ (ΠΟΛΙΚΑ ΔΙΑΓΡΑΜΜΑΤΑ) 1.1.1. Γενικά Το κριτήριο Nyquist είναι μια γραφική μέθοδος με την οποία προσδιορίζεται η συμπεριφορά ενός συστήματος Αυτομάτου Ελέγχου. Το κριτήριο

Διαβάστε περισσότερα

Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 4 η

Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 4 η Μετροτεχνικό Εργαστήριο Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 4 η ΓΕΩΜΕΤΡΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ d - Εξωτερική διάμετρος d

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Τμήμα Μηχανολογίας Γ Μηχ. Χειμερινό Εξάμηνο Εργαστήριο Ποιοτικού Ελέγχου και Τεχνολογίας Υλικών

Τμήμα Μηχανολογίας Γ Μηχ. Χειμερινό Εξάμηνο Εργαστήριο Ποιοτικού Ελέγχου και Τεχνολογίας Υλικών Τμήμα Μηχανολογίας Γ Μηχ. Χειμερινό Εξάμηνο 2006-2007 Εργαστήριο Ποιοτικού Ελέγχου και Τεχνολογίας Υλικών 1 η Εργαστηριακή Ασκηση: Βαθμονόμηση Σκληρομέτρου και Μεταλλογραφικών Μικροσκοπίων Α. Βαθμονόμηση

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος)

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος) Άσκηση Μ1 Θεωρητικό μέρος Μήκος και μάζα (βάρος) Όργανα μέτρησης μήκους Διαστημόμετρο Με το διαστημόμετρο μετράμε μήκη μέχρι και μερικά μέτρα, σε χαμηλές απαιτήσεις ως προς την ακρίβεια. Το κύριο μέρος

Διαβάστε περισσότερα

Γενικό Εργαστήριο Φυσικής

Γενικό Εργαστήριο Φυσικής http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής Γενικό Εργαστήριο Φυσικής Σφάλματα Μελέτη φυσικού φαινομένου Ποσοτική σχέση παραμέτρων Πείραμα Επαλήθευση Καθιέρωση ποσοτικής σχέσης Εύρεση τιμής

Διαβάστε περισσότερα

Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ

Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών Εισαγωγή στην Εργαστηριακή Φυσική ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Δημήτριος Ν.Νικολόπουλος Καθηγητής Περιβαλλοντική και Ιατρική Φυσική Μέτρηση Η σύγκριση ενός μεγέθους

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Μεταβολές της Δυναμικής Ενέργειας στην κατακόρυφη κίνηση σώματος εξαρτημένου από ελατήριο. Με τη βοήθεια λογισμικού LoggerProGR

Μεταβολές της Δυναμικής Ενέργειας στην κατακόρυφη κίνηση σώματος εξαρτημένου από ελατήριο. Με τη βοήθεια λογισμικού LoggerProGR Μεταβολές της Δυναμικής Ενέργειας στην κατακόρυφη κίνηση σώματος εξαρτημένου από ελατήριο. Με τη βοήθεια λογισμικού LoggerProGR τόχοι Οι μαθητές να υπολογίζουν το έργο δύναμης που το μέτρο της δεν μένει

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ.

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ. ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ 1 Σκοπός Στην άσκηση αυτή οι φοιτητές εκπαιδεύονται επάνω στη χρήση

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.4. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Παχύμετρο

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.4. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Παχύμετρο ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.4 ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Παχύμετρο ΠΑΧΥΜΕΤΡΟ Τα παχύμετρα είναι εξαιρετικώς εύχρηστα όργανα ακριβείας. Η ακρίβεια τους βασίζεται στη βοηθητική

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ ο ΜΑΘΗΜΑ

ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ ο ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ 2017 7 ο ΜΑΘΗΜΑ Εισαγωγή Κύμα είναι η διάδοση των περιοδικών κινήσεων (ταλαντώσεων) που κάνουν τα στοιχειώδη σωματίδια ενός υλικού γύρω από τη θέση ισορροπίας

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

Εργαστήριο Εδαφομηχανικής

Εργαστήριο Εδαφομηχανικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Εδαφομηχανικής Ενότητα 11η: Δοκιμή Ανεμπόδιστης Θλίψης Πλαστήρα Βιολέττα Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί

Διαβάστε περισσότερα

Άσκηση 1: Να υπολογιστεί η μέση τραχύτητα R a της κατανομής του σχήματος..

Άσκηση 1: Να υπολογιστεί η μέση τραχύτητα R a της κατανομής του σχήματος.. ΑΣΚΗΣΕΙΣ στο μάθημα Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.) Άσκηση 1: Να υπολογιστεί η μέση τραχύτητα R a της κατανομής του σχήματος.. Λ Υ Σ Η y α Λόγω ομοιότητας των τριγώνων ισχύει ότι : εφφ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ Άσκηση 8: Μελέτη των κβαντικών μεταπτώσεων στο άτομο του Na. Επώνυμο: Όνομα: Α.Ε.Μ.: Ημ/νία παράδοσης: ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Σκοπός της άσκησης που αναλύεται παρακάτω είναι η μελέτη

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3)

ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) Η εξεταστέα ύλη για τις περιγραφικές ερωτήσεις (στο πρώτο μέρος της γραπτής εξέτασης) θα είναι η παρακάτω: - Κεφ. 1: Ποια είναι τα δύο πλεονεκτήματα

Διαβάστε περισσότερα

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία 2. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΑΡΑΞΗΣ 2.1 Μετρητικές ταινίες Οι μετρητικές ταινίες, πτυσσόμενες (αρθρωτές) ή περιελισσόμενες σε θήκη, είναι κατασκευασμένες από χάλυβα ή άλλο ελαφρύ κράμα και έχουν χαραγμένες υποδιαιρέσεις

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Άσκηση Ανάλυσης Δεδομένων: (Cosmological model via SNIa), Πτολεμαίος 2014

Άσκηση Ανάλυσης Δεδομένων: (Cosmological model via SNIa), Πτολεμαίος 2014 Άσκηση Ανάλυσης Δεδομένων: (Cosmological model via SNIa), Πτολεμαίος 2014 Ένας υπερκαινοφανής αστέρας τύπου Ια (Supernova type I, SN-Iα) προκαλείται απο τη θερμοπυρινική έκρηξη Λευκού Νάνου (ΛΝ), όταν

Διαβάστε περισσότερα

Ανάλυση ευαισθησίας Ανάλυση ρίσκου

Ανάλυση ευαισθησίας Ανάλυση ρίσκου Τεχνολογία, Καινοτομία & Επιχειρηματικότητα, 9 ο εξάμηνο Σχολή Χ-Μ Ανάλυση ευαισθησίας Ανάλυση ρίσκου Γιώργος Μαυρωτάς Αν. καθηγητής ΕΜΠ Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Τομέας ΙΙ, Σχολή

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.

ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις

Διαβάστε περισσότερα

Εργαστηριακή άσκηση L0: Ασφάλεια και προστασία από ακτινοβολία Laser. Σύγκριση έντασης ακτινοβολίας Laser με συμβατικές πηγές φωτός

Εργαστηριακή άσκηση L0: Ασφάλεια και προστασία από ακτινοβολία Laser. Σύγκριση έντασης ακτινοβολίας Laser με συμβατικές πηγές φωτός Εργαστηριακή άσκηση L0: Ασφάλεια και προστασία από ακτινοβολία Laser. Σύγκριση έντασης ακτινοβολίας Laser με συμβατικές πηγές φωτός Σκοπός: Σκοπός της άσκησης αυτής είναι η κατανόηση και επίγνωση των κινδύνων

Διαβάστε περισσότερα

Ε.Ε. Παρ. III(I) 1497 Κ.Α.ΙΪ. 332/2000 Αρ. 3451,

Ε.Ε. Παρ. III(I) 1497 Κ.Α.ΙΪ. 332/2000 Αρ. 3451, Ε.Ε. Παρ. III(I) 1497 Κ.Α.ΙΪ. 332/2000 Αρ. 3451, 24.11.2000 Αριθμός 332 Οι περί Μέτρων και Σταθμών (Ακλοολόμετρα και Αραιόμετρα Αλκοόλης) Κανονισμοί του 2000, που εκδόθηκαν από το Υπουργείο Εμπορίου, Βιομηχανίας

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΤΑΣΗΣ ΣΦΑΛΜΑΤΑ

ΜΕΤΡΗΣΗ ΤΑΣΗΣ ΣΦΑΛΜΑΤΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΑΣΗΣ ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΗΣ ΗΜΕΡΟΜΗΝΙΑ: ΤΡΙΩΡΟ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: 1 ΣΚΟΠΟΣ... 1 ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ... 1.1 ΠΗΓΗ ΣΥΝΕΧΟΥΣ ΤΑΣΗΣ... 1. ΜΕΤΡΗΣΗ

Διαβάστε περισσότερα

ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ. Η διαφορά µεταξύ ονοµαστικής και πραγµατικής διαστάσεως ονοµάζεται, ΑΠΟΚΛΙΣΗ ή ΣΦΑΛΜΑ.

ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ. Η διαφορά µεταξύ ονοµαστικής και πραγµατικής διαστάσεως ονοµάζεται, ΑΠΟΚΛΙΣΗ ή ΣΦΑΛΜΑ. ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ ΑΝΟΧΕΣ. Παρά την τελειοποίηση των µέσων κατεργασίας και των οργάνων µετρήσεως και ελέγχου, η κατασκευή ενός εξαρτήµατος µε απόλυτη ακρίβεια είναι αδύνατον να επιτευχθεί, γιατί, απλούστατα,

Διαβάστε περισσότερα

1. Τίτλος εργαστηριακής άσκησης «Βαθμονόμηση θερμομέτρου»

1. Τίτλος εργαστηριακής άσκησης «Βαθμονόμηση θερμομέτρου» 1. Τίτλος εργαστηριακής άσκησης «Βαθμονόμηση θερμομέτρου» 2. Εμπλεκόμενες γνωστικές περιοχές Γνωστικό αντικείμενο του μαθήματος Φυσική Β Γυμνασίου Ιδιαίτερη περιοχή του γνωστικού αντικειμένου Θερμότητα

Διαβάστε περισσότερα

Άσκηση 1 η. Τοµέας Βιοµηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών. Αρίστος Γεωργίου Νοέµβριος 2011 Γεώργιος Χατζηστέλιος

Άσκηση 1 η. Τοµέας Βιοµηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών. Αρίστος Γεωργίου Νοέµβριος 2011 Γεώργιος Χατζηστέλιος Τοµέας Βιοµηχανικής ιοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών Έλεγχος Μ Άσκηση 1 η http://goo.gl/feqvq Αρίστος Γεωργίου Νοέµβριος 2011 Γεώργιος Χατζηστέλιος Ενότητες Παρουσίασης 1.

Διαβάστε περισσότερα

ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ ΙΙ

ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ ΙΙ 1 Τ. Ε. Ι. ΔΥ Τ Ι Κ Η Σ Μ Α Κ Ε Δ Ο Ν Ι Α Σ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ Μ Η Μ Α Μ Η Χ Α Ν ΟΛΟ Γ Ι Α Σ Εργαστήριο Μηχανουργικών Κατεργασιών & CAD ΜΗΧΑΝΟΛΟΓΙΚΟ ΣΧΕΔΙΟ ΙΙ ΜΑΘΗΜΑ 1: Ανοχές Δρ. Βαρύτης Δ.

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία.

Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 9144 Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία. Συνεργάτες: Ιντζέογλου

Διαβάστε περισσότερα

Συµπεριφορά συγκολλήσεων ράβδων οπλισµού σκυροδέµατος, Κ.Γ. Τρέζος, M-A.H. Μενάγια, 1

Συµπεριφορά συγκολλήσεων ράβδων οπλισµού σκυροδέµατος, Κ.Γ. Τρέζος, M-A.H. Μενάγια, 1 Συµπεριφορά συγκολλήσεων ράβδων οπλισµού σκυροδέµατος Κ.Γ. Τρέζος, M-A.H. Μενάγια Εργαστήριο Ωπλισµένου Σκυροδέµατος Ε.Μ.Π. Λέξεις κλειδιά: Ράβδοι οπλισµού σκυροδέµατος, συγκολλήσεις, ΠΕΡΙΛΗΨΗ: Στην παρούσα

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ι 1. ΜΕΤΡΟΛΟΓΙΑ, ΠΟΙΟΤΗΤΑ ΜΕΤΡΗΣΕΩΝ, ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΠΑΡΑΜΕΤΡΩΝ ΑΞΙΟΠΙΣΤΙΑΣ ΜΕΤΡΗΣΕΩΝ ΓΚΛΩΤΣΟΣ ΔΗΜΗΤΡΗΣ dimglo@teiath.gr Εργαστήριο Επεξεργασίας

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΠΑΧΟΥΣ ΡΑΜΜΑΤΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΠΑΧΟΥΣ ΡΑΜΜΑΤΩΝ EUCAT SA 2006 Σελίδα 1 από 12 Dial gauge PREISSER range 12.5mm S/N: 86460 Μεταλλικοί Μετρητικοί Κανόνες Meter 1 S/N: 30-7-06.5a Meter 2 S/N: 30-7-06.5b Προδιαγραφές προτύπου για συσκευή Εύρος 0-12 mm Διάμετρος

Διαβάστε περισσότερα

Ε.Μ.Π Τομέας Υδατικών Πόρων Υδραυλικών & Θαλασσίων Έργων Μάθημα: Τεχνολογία Συστημάτων Υδατικών Πόρων 9 ο Εξάμηνο Πολ. Μηχανικών Ε. Μπαλτάς.

Ε.Μ.Π Τομέας Υδατικών Πόρων Υδραυλικών & Θαλασσίων Έργων Μάθημα: Τεχνολογία Συστημάτων Υδατικών Πόρων 9 ο Εξάμηνο Πολ. Μηχανικών Ε. Μπαλτάς. Ε.Μ.Π Τομέας Υδατικών Πόρων Υδραυλικών & Θαλασσίων Έργων Μάθημα: Τεχνολογία Συστημάτων Υδατικών Πόρων 9 ο Εξάμηνο Πολ. Μηχανικών Ε. Μπαλτάς Θέμα 1 Σε θέση ποταμού, όπου πρόκειται να κατασκευαστεί ταμιευτήρας,

Διαβάστε περισσότερα

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ. 5 - Δεκεμβρίου Χριστόφορος Στογιάννος

ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ. 5 - Δεκεμβρίου Χριστόφορος Στογιάννος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 ΦΥΣΙΚΗ 5 - Δεκεμβρίου - 2015 Χριστόφορος Στογιάννος 1 ΕΚΦΕ ΑΛΙΜΟΥ ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2016 Eξεταζόμενο μάθημα: ΦΥΣΙΚΗ ΟΜΑΔΑ..... 1 η Δραστηριότητα Σκοπός της άσκησης

Διαβάστε περισσότερα

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************

Διαβάστε περισσότερα

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Σύνοψη Αυτή είναι μια από τις πρώτες ασκήσεις που κάνεις στο εργαστήριο Φυσικής Ι, γι αυτό καλό είναι να μάθεις ότι

Διαβάστε περισσότερα

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE

Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE ΤΕΙ ΧΑΛΚΙΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Α/Α ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ : ΑΣΚΗΣΗ 3 η Τίτλος Άσκησης : ΜΕΤΡΗΣΗ ΑΝΤΙΣΤΑΣΕΩΝ ΜΕ ΤΗ ΓΕΦΥΡΑ WHEATSTONE Σκοπός Η κατανόηση της λειτουργίας και

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων Σκοπός Σκοπός είναι να κατανοηθεί η έννοια των σφαλμάτων, η σπουδαιότητά τους και η αναγκαιότητα υπολογισμού τους. Δίνονται επίσης οι βασικοί μαθηματικοί τύποι που επιτρέπουν

Διαβάστε περισσότερα

4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΝΤΗΡΗΣΗΣ / ΑΝΑΚΑΙΝΙΣΗΣ ΕΠΙΔΟΜΗΣ ΟΡΙΑ ΣΦΑΛΜΑΤΩΝ ΓΡΑΜΜΗΣ

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΝΤΗΡΗΣΗΣ / ΑΝΑΚΑΙΝΙΣΗΣ ΕΠΙΔΟΜΗΣ ΟΡΙΑ ΣΦΑΛΜΑΤΩΝ ΓΡΑΜΜΗΣ ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΥΠΟΔΟΜΗΣ ΔΙΕΥΘΥΝΣΗ ΓΡΑΜΜΗΣ Ε 07.01.30Β Έκδοση 1 / 14.06.2011 07 ΣΥΝΤΗΡΗΣΗ ΓΡΑΜΜΩΝ 01 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΝΤΗΡΗΣΗΣ / ΑΝΑΚΑΙΝΙΣΗΣ ΕΠΙΔΟΜΗΣ ΟΡΙΑ ΣΦΑΛΜΑΤΩΝ ΓΡΑΜΜΗΣ 30Β ΜΕΡΟΣ Β: ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΤΗΡΗΣΗΣ

Διαβάστε περισσότερα

5/14/2018. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80)

5/14/2018. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) 1 Βασική αρχή εργαστηριακής άσκησης Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία

Διαβάστε περισσότερα

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Η πειραματική διάταξη φαίνεται στο ακόλουθο σχήμα: Θα χρησιμοποιήσουμε: Ένα φακό Laser κόκκινου χρώματος. Ένα φράγμα περίθλασης. Μια οθόνη που φέρει πάνω

Διαβάστε περισσότερα

Στατιστική, Άσκηση 2. (Κανονική κατανομή)

Στατιστική, Άσκηση 2. (Κανονική κατανομή) Στατιστική, Άσκηση 2 (Κανονική κατανομή) Στον πίνακα που ακολουθεί δίνονται οι μέσες παροχές όπως προέκυψαν από μετρήσεις πεδίου σε μια διατομή ενός ποταμού. Ζητείται: 1. Να αποδειχθεί ότι το δείγμα προσαρμόζεται

Διαβάστε περισσότερα

Τροχαλίες και τροχοί. Μηχανολογικό Σχέδιο ΙΙ. Dr.-Ing. Β. Ιακωβάκης

Τροχαλίες και τροχοί. Μηχανολογικό Σχέδιο ΙΙ. Dr.-Ing. Β. Ιακωβάκης Τροχαλίες και τροχοί Μηχανολογικό Σχέδιο ΙΙ Dr.-Ing. Β. Ιακωβάκης Βιβλιογραφία Handbuch Kettentechnik, IWIS http://www.hreiter.at/userfiles/file/36af028e-4450-44ae-bca1-816754d1474dkettenraeder.pdf Ιμαντοκινήσεις

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 14 Μέτρηση του λόγου e/m του ηλεκτρονίου.

Εργαστηριακή Άσκηση 14 Μέτρηση του λόγου e/m του ηλεκτρονίου. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 0910404 Εργαστηριακή Άσκηση 14 Μέτρηση του λόγου e/ του ηλεκτρονίου. Συνεργάτες: Καίνιχ Αλέξανδρος

Διαβάστε περισσότερα

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο.

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΚΛΙΣΗ ΣΤΡΩΜΑΤΟΣ Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. Πραγματική κλίση στρώματος Η διεύθυνση μέγιστης κλίσης,

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

ΟΜΑΔΑ: 13 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΦΕ Αιγίου ΠΕΙΡΑΜΑΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ

ΟΜΑΔΑ: 13 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΦΕ Αιγίου ΠΕΙΡΑΜΑΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΠΑΝΕΚΦΕ European Union Science Olympiad 13 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2015 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΦΕ Αιγίου ΠΕΙΡΑΜΑΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 29 ΝΟΕΜΒΡΙΟΥ 2014 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ)

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ Διευθυντής Καθ. Γ. Χρυσολούρης

ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ Διευθυντής Καθ. Γ. Χρυσολούρης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ Διευθυντής Καθ. Γ. Χρυσολούρης «ΠΟΙΟΤΗΤΑ ΔΙΕΡΓΑΣΙΑΣ» ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΟΥΡΓΙΚΗ

Διαβάστε περισσότερα

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης

Διαβάστε περισσότερα

10,2. 1,24 Τυπική απόκλιση, s 42

10,2. 1,24 Τυπική απόκλιση, s 42 Ασκηση 3.1 (a) Αν μία ράβδος οπλισμού θεωρηθεί ότι λυγίζει μεταξύ δύο διαδοχικών συνδετήρων με μήκος λυγισμού το μισό της απόστασης, s w, των συνδετήρων, να υπολογισθεί η απόσταση συνδετήρων, s w, πέραν

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΟΡΓΑΝΟΥ ΚΙΝΗΤΟΥ ΠΗΝΙΟΥ

ΜΕΛΕΤΗ ΟΡΓΑΝΟΥ ΚΙΝΗΤΟΥ ΠΗΝΙΟΥ ΜΕΛΕΤΗ ΟΡΓΑΝΟΥ ΚΙΝΗΤΟΥ ΠΗΝΙΟΥ ΕΠΩΝΥΜΟ ΟΝΟΜΑ Α.Μ. ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ:.... /..../ 20.. ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:.... /..../ 20.. ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΙΚΕΙΜΕΝΟ της

Διαβάστε περισσότερα

Κινητήρας συνεχούς ρεύματος σύνθετης διέγερσης. α) αθροιστικής σύνθετης διέγερσης

Κινητήρας συνεχούς ρεύματος σύνθετης διέγερσης. α) αθροιστικής σύνθετης διέγερσης ΑΣΚΗΣΗ 10 Κινητήρας συνεχούς ρεύματος σύνθετης διέγερσης α) αθροιστικής σύνθετης διέγερσης 1 Α. Θεωρητικές επεξηγήσεις: Ο κινητήρας συνεχούς ρεύματος σύνθετης διέγερσης συνδυάζει τα πλεονεκτήματα του κινητήρα

Διαβάστε περισσότερα

3.2 ιαγραµµικά σχέδια αµαξωµάτων

3.2 ιαγραµµικά σχέδια αµαξωµάτων 3.2 ιαγραµµικά σχέδια αµαξωµάτων Τα διαγραµµικά σχέδια των αµαξωµάτων χρησιµοποιούνται για την απεικόνιση των γεωµετρικών στοιχείων των διαφόρων µερών τους, αλλά και την κατάδειξη των σηµείων όπου γίνονται

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8.1 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΩΣΤΙΚΟ ΕΔΡΑΝΟ ΟΛΙΣΘΗΣΗΣ 8.1. Εισαγωγή Το απλό επίπεδο ωστικό έδρανο ολίσθησης (Σχήμα 8.1) είναι ίσως η απλούστερη περίπτωση εφαρμογής της εξίσωσης Reynolds που περιγράφει τη

Διαβάστε περισσότερα

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2

ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ Περιεχόμενα 1. Στρογγυλοποίηση.... 2 1.1 Γενικά.... 2 1.2 Κανόνες Στρογγυλοποίησης.... 2 2. Σημαντικά ψηφία.... 2 2.1 Γενικά.... 2 2.2 Κανόνες για την

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ «Β ΘΕΜΑΤΑ ΑΚΤΙΝΕΣ Χ» ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 1. ΘΕΜΑ B B.1 Σε σωλήνα παραγωγής

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΧΑΛΚΙ ΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΧΑΛΚΙ ΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΡΕΥΝΩΝ ΕΝΕΡΓΕΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΦΑΝΗ Γ. ΛΑΥΡΕΝΤΗ Ο ΗΓΙΑ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟ ΟΣΗΣ ΚΤΗΡΙΩΝ Στόχοι

Διαβάστε περισσότερα

Φυσική Α Γυμνασίου Υποστηρικτικό υλικό ΦΕ 4 και 5

Φυσική Α Γυμνασίου Υποστηρικτικό υλικό ΦΕ 4 και 5 Φυσική Α Γυμνασίου Υποστηρικτικό υλικό ΦΕ 4 και 5 ΕΚΦΕ Νέας Ιωνίας Μαρίνα Στέλλα Φύλλο Εργασίας 4 Μετρήσεις Θερμοκρασίας Η Βαθμονόμηση Διδακτικοί στόχοι να αντιληφθούν τη διαφορά μεταξύ της εκτίμησης (

Διαβάστε περισσότερα

Το διαστημόμετρο. Εισαγωγικές Έννοιες

Το διαστημόμετρο. Εισαγωγικές Έννοιες Το διαστημόμετρο Εισαγωγικές Έννοιες Το διαστημόμετρο είναι μια συσκευή που χρησιμοποιείται για τη μέτρηση αποστάσεων μεταξύ δύο αντικριστών πλευρών ενός αντικειμένου. Τα άκρα του διαστημόμετρου προσαρμόζονται

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΤΗ Τάξη, τμήμα: Ημερομηνία:. Επώνυμο-όνομα:..

ΜΕΛΕΤΗ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΤΗ Τάξη, τμήμα: Ημερομηνία:. Επώνυμο-όνομα:.. 1 ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ Multilong ΜΕΛΕΤΗ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΤΟΥ ΜΑΘΗΤΗ Τάξη, τμήμα: Ημερομηνία:. Επώνυμο-όνομα:.. Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων των ταλαντώσεων

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.5. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Μικρόμετρο

ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.5. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Μικρόμετρο ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.5 ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Μικρόμετρο Τα μικρομετρα χρησιμοποιούνται για τη μέτρηση εσωτερικών και εξωτερικών διαστάσεων και για μετρήσεις βάθους.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Κινητήρας συνεχούς ρεύματος σύνθετης διέγερσης. β) διαφορικής σύνθετης διέγερσης

Κινητήρας συνεχούς ρεύματος σύνθετης διέγερσης. β) διαφορικής σύνθετης διέγερσης ΑΣΚΗΣΗ 11 Κινητήρας συνεχούς ρεύματος σύνθετης διέγερσης β) διαφορικής σύνθετης διέγερσης 1 Α. Θεωρητικές επεξηγήσεις: βλέπε άσκηση 10 Β. Πορεία εκτέλεσης της άσκησης: Σκοπός: Μετά την πραγματοποίηση αυτής

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού

Διαβάστε περισσότερα

Α Σ Κ Η Σ Ε Ι Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙΙ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ιδάσκουσα:. Παπαδοπούλου ΚΕΦΑΛΑΙΟ VΙ

Α Σ Κ Η Σ Ε Ι Σ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙΙ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ιδάσκουσα:. Παπαδοπούλου ΚΕΦΑΛΑΙΟ VΙ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙΙ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 0 Α Σ Κ Η Σ Ε Ι Σ ιδάσκουσα:. Παπαδοπούλου ΚΕΦΑΛΑΙΟ VΙ. ίνονται οι ευθείες δ: x ={,0,0}+λ{,,},λ R, και ε: x -x + x -=0, x -x =. (α) Να αποδείξετε

Διαβάστε περισσότερα

Περί σφαλμάτων και γραφικών παραστάσεων

Περί σφαλμάτων και γραφικών παραστάσεων Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις

Διαβάστε περισσότερα

Τα Β θέματα της τράπεζας θεμάτων

Τα Β θέματα της τράπεζας θεμάτων Τα Β θέματα της τράπεζας θεμάτων Ακτίνες Χ Θέμα Δ _176 Β. Σε μια συσκευή παραγωγής ακτίνων Χ η ηλεκτρική τάση που εφαρμόζεται μεταξύ ανόδου και καθόδου, έχει τιμή V. Η μέγιστη συχνότητα των ακτίνων Χ που

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΤΕΧΝΟΛΟΓΙΑΣ ΟΜΙΚΩΝ ΥΛΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΤΕΧΝΟΛΟΓΙΑΣ ΟΜΙΚΩΝ ΥΛΙΚΩΝ Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΤΕΧΝΟΛΟΓΙΑΣ ΟΜΙΚΩΝ ΥΛΙΚΩΝ Θωµάς Μπενέτος Καθηγητής Eφαρµογών ΗΡΑΚΛΕΙΟ 2013 Π Ι Ν Α Κ Α Σ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Ω Ν Ασφάλεια Εργαστηρίου...

Διαβάστε περισσότερα

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α)

Εισαγωγή στην Στατιστική (ΔΕ200Α-210Α) Τμήμα Διοίκησης Επιχειρήσεων (Αγ. Νικόλαος), Τ.Ε.Ι. Κρήτης Σελίδα 1 από 13 5η Εργαστηριακή Άσκηση Σκοπός: Η παρούσα εργαστηριακή άσκηση στοχεύει στην εκμάθηση κατασκευής γραφημάτων που θα παρουσιάζουν

Διαβάστε περισσότερα

Α Λυκείου Σελ. 1 από 13

Α Λυκείου Σελ. 1 από 13 ΟΔΗΓΙΕΣ: 1. Εκτός αν η εκφώνηση ορίζει διαφορετικά, οι απαντήσεις σε όλα τα ερωτήματα θα πρέπει να αναγραφούν στο Φύλλο Απαντήσεων που θα σας δοθεί μαζί με τις εκφωνήσεις. 2. Η επεξεργασία των θεμάτων

Διαβάστε περισσότερα

4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν.

4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν. ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙI Α Σ Κ Η Σ Ε Ι Σ ΑΚΑΔ. ΕΤΟΣ 009-00 Κ Ε Φ Α Λ Α Ι Ο V Ι. Δίνονται οι ευθείες δ: x ={,0,0}+λ{,,}, ε: x -x + x -=0, x -x =. Να εξετάσετε αν οι ευθείες δ, ε είναι ασύμβατες. Αν ναι, βρείτε

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μετρήσεις Τεχνικών Μεγεθών Τελική Εξέταση Ι (Ιουνίου Εαρινό Εξάμηνο 9 Πρόβλημα Α Ένας μηχανικός, με βάση τις μετρήσεις

Διαβάστε περισσότερα

Εργαστηριακή άσκηση: Σωλήνας Venturi

Εργαστηριακή άσκηση: Σωλήνας Venturi Εργαστήριο Μηχανικών των Ρευστών Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Δυτικής Αττικής Σκοπός της άσκησης Εργαστηριακή άσκηση: Σωλήνας Veturi Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Β Γυμνασίου 29 Μαρτίου 2013 Θεωρητικό Μέρος Θέμα 1 ο Α. Όταν μετατρέπουμε την τιμή ενός μήκους από km σε m προκύπτει: α) αριθμός πάντοτε μεγαλύτερος του αρχικού β) αριθμός πάντοτε μικρότερος του αρχικού

Διαβάστε περισσότερα

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης.

από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία Σχέση ελαστικότητας ζήτησης και κλίση της καμπύλης ζήτησης. ΕΛΑΣΤΙΚΟΤΗΤΑ ΖΗΤΗΣΗΣ Ορισμός: Η ελαστικότητα ζήτησης, ενός αγαθού ως προς την τιμή του δίνεται από την ποσοστιαία μεταβολή της ζητούμενης ποσότητας προς την ποσοστιαία μεταβολή της τιμής του. Δηλαδή %

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα