Το διαστημόμετρο. Εισαγωγικές Έννοιες
|
|
- Βαραββᾶς Φωτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Το διαστημόμετρο Εισαγωγικές Έννοιες Το διαστημόμετρο είναι μια συσκευή που χρησιμοποιείται για τη μέτρηση αποστάσεων μεταξύ δύο αντικριστών πλευρών ενός αντικειμένου. Τα άκρα του διαστημόμετρου προσαρμόζονται στα ακρότατα σημεία του αντικειμένου προς μέτρηση, στη συνέχεια το διαστημόμετρο απομακρύνεται και η απόσταση μετριέται από την κλίμακα του οργάνου, όπως θα κάναμε και με έναν απλό χάρακα. Σχ. 1 Η πιο απλή περίπτωση διαστημόμετρου με δείκτη που μας δείχνει τη μέτρηση χωρίς ακρίβεια. Το παχύμετρο μας δίνει μια άμεση τιμή μιας απόστασης που μετρήσαμε με μεγάλη ακρίβεια. Η πιο απλή περίπτωση μέτρησης είναι να διαβάσουμε τη θέση του δείκτη οπτικά κατ ευθείαν από την κλίμακα. Όταν όμως ο δείκτης βρίσκεται ανάμεσα από δύο σημεία, τότε ο χρήστης θα μπορούσε νοητά να υπολογίσει την παρεμβολή ώστε να βελτιώσει την ακρίβεια της μέτρησης (Σχ.1). Ένα τέτοιο εργαλείο θα μπορούσε να είναι ένα απλό βαθμονομημένο διαστημόμετρο. Αλλά η προσθήκη στο παραπάνω όργανο και μιας δεύτερης κλίμακας, της κλίμακας του Βερνιέρου (Vernier scale), επιτρέπει ένα περισσότερο ακριβή τρόπο υπολογισμού της παρεμβολής ανάμεσα από δύο σημεία. Αυτή η πρακτική είναι διεθνώς διαδεδομένη, και το αποτέλεσμα είναι το διαστημόμετρο του Βερνιέρου, ή απλώς ο βερνιέρος. 1
2 Σχ. 2 Το όργανο της προηγούμενης εικόνας, με μια νέα κλίμακα που μας επιτρέπει να υπολογίσουμε με ακρίβεια τη θέση του δείκτη όταν είναι ανάμεσα από δύο υποδιαιρέσεις. Τα διαστημόμετρα μπορούν να μετρήσουν διάφορες αποστάσεις. εσωτερικά ανοίγματα (χρησιμοποιώντας τις δαγκάνες στο ανώτερο τμήμα του εργαλείου, πάνω αριστερά στο Σχ.2), εξωτερικές διαστάσεις με τις κυρίως σιαγόνες και σε πολλές περιπτώσεις και βάθη με τη χρήση ενός στελέχους (σαν κεραία ραδιοφώνου) που είναι στερεωμένο στην κινούμενη κεφαλή και τοποθετημένο κατά μήκος της κυρίως κλίμακας. Αυτή η κεραία είναι λεπτή και μπορεί να μπει σε βαθιά αυλάκια και τρύπες, που άλλα εργαλεία θα δυσκολεύονταν να πάρουν μέτρηση. Οι κλίμακες βερνιέρου συνήθως προσφέρουν μετρικές μετρήσεις στο κάτω μέρος της κλίμακας και μετρήσεις ιντσών στο πάνω μέρος, ή αντίστροφα, για χώρες που χρησιμοποιούν τις ίντσες. Τα διαστημόμετρα συνήθως χρησιμοποιούνται στη βιομηχανία παρέχοντας ακρίβεια στις μετρήσεις 0,01 mm (10 μικρόμετρα), ή ένα χιλιοστό της ίντσας. Είναι διαθέσιμα σε μεγέθη που μπορούν να μετρήσουν έως και mm (72 in). Παρακάτω βλέπουμε αναλυτικά τα κυρίως χαρακτηριστικά του διαστημόμετρου. Εξωτερικές σιαγώνες ή κύριες σιαγόνες: χρησιμοποιούνται για τη μέτρηση εξωτερικών διαστάσεων ή διαμέτρων αντικειμένων Εσωτερικές σιαγόνες: χρησιμοποιούνται για τη μέτρηση εσωτερικών διαστάσεων ενός αντικειμένου Βυθόμετρο: χρησιμοποιείται για την μέτρηση του βάθους ενός αντικείμενου ή μιας τρύπας Κύρια Κλίμακα: η κλίμακα είναι χαραγμένη κάθε ένα mm Κύρια Κλίμακα: η κυρίως κλίμακα χαραγμένη σε ίντσες Κλίμακα Βερνιέρου: μας δίνει ακρίβεια στον υπολογισμό της παρεμβολής με ακρίβεια 0,1 mm ή καλύτερα Κλίμακα Βερνιέρου: μας δίνει ακρίβεια στην μέτρηση σε κλάσματα της ίντσας Σταθεροποιητής: Χρησιμοποιείται για να μπλοκάρει το κινούμενο μέρος και να εμποδίζει τυχαίες κινήσεις κατά τη μεταφορά της μέτρησης 2
3 Τεχνική χρήση του διαστημόμετρου Το διαστημόμετρο πρέπει να προσαρμοστεί κατάλληλα στο αντικείμενο που θέλουμε να μετρήσουμε προκειμένου να πραγματοποιήσουμε την επιθυμητή μέτρηση. Για παράδειγμα, όταν μετράμε το πάχος μιας πλάκας, οι δαγκάνες του βερνιέρου πρέπει να τοποθετηθούν ώστε να εφάπτονται σωστά με τις πλευρές του. Κάποια εξάσκηση είναι απαραίτητη για τη σωστή μέτρηση κυκλικών αντικειμένων, η αντικειμένων με ακανόνιστο σχήμα. Η ακρίβεια της μέτρησης με τη χρήση του βερνιέρου εξαρτάται από τις ικανότητες του χρήστη. Ανεξαρτήτως τύπου, οι δαγκάνες του βερνιέρου πρέπει να πιέζονται για έρθουν σε επαφή με το αντικείμενο προς μέτρηση. Δεδομένου ότι και ο βερνιέρος αλλά και το αντικείμενο προς μέτρηση είναι σε κάποιο βαθμό ελαστικά, η δύναμη που θα ασκηθεί θα επηρεάσει την ένδειξη. Ένα σταθερό, σφικτό άγγιγμα είναι το σωστό. Υπερβολική δύναμη μπορεί να οδηγήσει σε υποεκτίμηση του μήκους λόγω στρέβλωσης του εργαλείου, του αντικειμένου, ή και των δύο. Αντίθετα, με μικρή δύναμη θα έχουμε ανεπαρκή επαφή του εργαλείου με το αντικείμενο και τελικά θα έχουμε μια υπερεκτίμηση του μήκους. Σε όλους τους βερνιέρους χρειάζεται καλή όραση προκειμένου να επιτύχουμε τη μεγαλύτερη δυνατή ακρίβεια. Τα ψηφιακά διαστημόμετρα σε αυτόν τον τομέα έχουν το πλεονέκτημα. Βαθμονομημένοι βερνιέροι μπορεί λόγω κακής χρήσης, να χάσουν το μηδέν. Να έχουμε δηλαδή τη λεγόμενη μετάθεση του μηδενός. Δηλαδή, όπως είναι αναμενόμενο, όταν οι δαγκάνες είναι τελείως κλειστές, πρέπει η μέτρηση να είναι το μηδέν. Εάν δεν είναι, το όργανο πρέπει να βαθμονομηθεί ή να επισκευαστεί. Μπορεί να φαίνεται πως ένας βερνιέρος δε γίνεται να απορυθμιστεί λόγω κατασκευής, αλλά μία πτώση ή ένα χτύπημα μπορεί να την προκαλέσουν. Οι ψηφιακοί βερνιέροι έχουν ειδικό κουμπί ρύθμισης του μηδέν. Η κλίμακα του Βερνιέρου Όπως είπαμε, η κλίμακα του Βερνιέρου είναι μια πρόσθετη κλίμακα που επιτρέπει μία μέτρηση μήκους (αλλά ακόμα και γωνίας ή άλλου μεγέθους, ανάλογα με το όργανο) να είναι πιο ακριβής απ ότι θα ήταν από μια απ ευθείας εκτίμηση από ένα όργανο με ομοιόμορφα κατανεμημένες υποδιαιρέσεις. Πρόκειται για μια δευτερεύουσα συρόμενη κλίμακα που χρησιμοποιείται για να μας υποδείξει πού ακριβώς βρίσκεται η μέτρησή μας, όταν ο δείκτης δείχνει ένα σημείο ανάμεσα από δύο υποδιαιρέσεις της κύριας κλίμακας. Η κλίμακα αυτή, επινοήθηκε το 1631 από ένα Γάλλο μαθηματικό τον Pierre Vernier ( ). Πώς λειτουργεί η κλίμακα του Βερνιέρου Η κλίμακα του Βερνιέρου είναι κατασκευασμένη με τέτοιο τρόπο ώστε να είναι κατανεμημένη σε ένα σταθερό κλάσμα της κύριας κλίμακας. Έτσι για μια δεκαδική συσκευή μέτρησης κάθε υποδιαίρεση του 3
4 βερνιέρου θα απέχει κατά τα εννιά δέκατα από τις υποδιαιρέσεις της κύριας κλίμακας. Εάν βάλεις τις δύο κλίμακες μαζί με τα μηδέν ευθυγραμμισμένα τότε η πρώτη υποδιαίρεση της κλίμακας του βερνιέρου θα είναι κατά 1/10 ποιο κοντή από την πρώτη υποδιαίρεση της κύριας κλίμακας, η δεύτερη κατά 2/10 κοντύτερη κ.ο.κ. έως την ένατη υποδιαίρεση που θα είναι ευθυγραμμισμένη κατά τα 9/10. Μόνο σε μια πλήρη κλίμακα με 10 υποδιαιρέσεις θα είχαμε ξανά μια δεύτερη ευθυγράμμιση, διότι το 10 σημείο θα ήταν τα 10/10 της κύριας κλίμακας, και ως εκ τούτου θα ευθυγραμμιζόταν στο ένατο σημείο της κύριας κλίμακας (σχ. 3). Σχ. 3 Η κλίμακα του βερνιέρου είναι τα 9/10 της κύριας κλίμακας. Τώρα αν μετακινήσουμε την κλίμακα βερνιέρου κατά 1/10, ας πούμε, πάνω στην κύρια κλίμακα, το μόνο ζεύγος σημείων που θα ευθυγραμμιστούν θα είναι το 1 της κλίμακας του βερνιέρου και το 1 της κύριας κλίμακας. Αντίστοιχα αν την μετακινήσουμε κατά τα 2/10 θα ευθυγραμμιστούν το 2 της κλίμακας βερνιέρου και το 2 της κύριας κλίμακας, κ.ο.κ. Τελικά σε κάθε μετακίνηση παρατηρούμε πως υπάρχει μόνο ένα ζεύγος ευθυγραμμισμένων σημείων, που θα μας υποδείξει κατά πόσο παρεμβάλλεται το 0 ανάμεσα από 2 υποδιαιρέσεις της κύριας κλίμακας (Σχ. 4) Πώς κάνουμε μια μέτρηση Ας δούμε τώρα λοιπόν πως μπορούμε να κάνουμε μια μέτρηση με ένα βερνιέρο όπως τον περιγράψαμε. 4
5 Σχ. 5 Παράδειγμα μέτρησης Έστω ότι μετακινούμε το βερνιέρο δεξιά ώστε το μηδέν της κύριας κλίμακας να πέφτει ανάμεσα από το 6 και το 7 της κύριας κλίμακας. Άρα η μέτρησή μας είναι 6,«κάτι». Πώς θα βρούμε όμως αυτό το «κάτι»; Όπως είπαμε, αναμένουμε να ευθυγραμμίζεται μόνο μία υποδιαίρεση της κλίμακας βερνιέρου με την κύρια κλίμακα. Ύστερα από προσεκτική παρατήρηση βλέπουμε πως το 8 της κλίμακας βερνιέρου ευθυγραμμίζεται τέλεια με μια υποδιαίρεση με την κύρια κλίμακα. Άρα πολλαπλασιάζουμε το 8 με την ακρίβεια του οργάνου, δηλαδή τη σταθερά του. Στο συγκεκριμένο παράδειγμα είναι 0,1 mm/υποδιαίρεση (την ακρίβεια την βρίσκουμε συνήθως στο δεξιό τμήμα της κινούμενης κλίμακας). Άρα το «κάτι» είναι ίσο με 8 x 0,1 mm = 0,8 mm. Τελικά η κύρια μέτρηση είναι 6 mm + 0,8 mm = 6,8 mm. Ένα δεύτερο παράδειγμα: Το μηδέν πέφτει ανάμεσα από το 0,3 cm και 0,4 cm (ή 3,«κάτι» mm). Σε αυτό το όργανο βλέπουμε πως η ακρίβεια είναι 0,02 mm/υποδιαίρεση (πάνω δεξιά στην εικόνα). Άρα το «κάτι» σε αυτή την περίπτωση είναι 29 υποδιαιρέσεις x 0,02 mm/υποδιαίρεση = 0,58 mm. Τελικά η μέτρηση είναι 3 mm + 0,58 mm = 3.58 mm (ή 0,358 cm). 5
Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών
Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του
ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο
ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας
ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.4. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Παχύμετρο
ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.4 ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Παχύμετρο ΠΑΧΥΜΕΤΡΟ Τα παχύμετρα είναι εξαιρετικώς εύχρηστα όργανα ακριβείας. Η ακρίβεια τους βασίζεται στη βοηθητική
ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)
ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) Όταν το πρωτοείδα, κι εγώ δεν το συμπάθησα. Είναι, όμως, λάθος μας, καθώς πρόκειται για κάτι πολύ απλό και σίγουρο ως μέθοδος υπολογισμού
Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία
2. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΑΡΑΞΗΣ 2.1 Μετρητικές ταινίες Οι μετρητικές ταινίες, πτυσσόμενες (αρθρωτές) ή περιελισσόμενες σε θήκη, είναι κατασκευασμένες από χάλυβα ή άλλο ελαφρύ κράμα και έχουν χαραγμένες υποδιαιρέσεις
Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος
Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους
ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων
ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων 1. Θα λέμε ότι Ν μετρήσεις ενός μεγέθους παρουσιάζουν μεγάλη ακρίβεια (accuracy), αν η μέση τιμή των μετρήσεων είναι κοντά στην αληθινή τιμή του μεγέθους.
ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα
ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή
ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα
- &. ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου: Να µετρήσουµε την πυκνότητα
ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ
ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΣΥΝΟΠΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΠΡΟΤΑΣΗΣ ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΓΓΕΛΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ ΕΙΔΙΚΟΤΗΤΑ ΠΕ1204 1. ΠΕΡΙΓΡΑΦΗ 1.1 ΤΙΤΛΟΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Μέτρηση μήκους,
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ.
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ 1 Σκοπός Στην άσκηση αυτή οι φοιτητές εκπαιδεύονται επάνω στη χρήση
Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος)
Άσκηση Μ1 Θεωρητικό μέρος Μήκος και μάζα (βάρος) Όργανα μέτρησης μήκους Διαστημόμετρο Με το διαστημόμετρο μετράμε μήκη μέχρι και μερικά μέτρα, σε χαμηλές απαιτήσεις ως προς την ακρίβεια. Το κύριο μέρος
ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου
ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.5. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Μικρόμετρο
ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΟΥΡΓΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Μετρολογία ΚΕΦΑΛΑΙΟ 3.5 ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΜΗΚΩΝ Μικρόμετρο Τα μικρομετρα χρησιμοποιούνται για τη μέτρηση εσωτερικών και εξωτερικών διαστάσεων και για μετρήσεις βάθους.
ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ
ΑΣΚΗΣΗ 3 ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ Η κλίµακα των διαστάσεων της ύλης από τα στοιχειώδη σωµάτια έως τα όρια του Σύµπαντος. Το παραπάνω σχήµα προέρχεται απο το βιβλίο του E. Hecht Physics Brooks 3.1
Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.
Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά
Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων
Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Συγγραφείς:. Τμήμα, Σχολή Εφαρμοσμένων Επιστημών, ΤΕΙ Κρήτης Περίληψη Στην παρούσα εργαστηριακή άσκηση μετρήσαμε τη διάμετρο
ΜΗΧΑΝΗ ΒΙΒΛΙΟΔΕΣΙΑΣ ΒΑΡΙΑΣ ΧΡΗΣΗΣ ΓΙΑ ΠΛΑΣΤΙΚΟ ΣΠΙΡΑΛ
ΜΗΧΑΝΗ ΒΙΒΛΙΟΔΕΣΙΑΣ ΒΑΡΙΑΣ ΧΡΗΣΗΣ ΓΙΑ ΠΛΑΣΤΙΚΟ ΣΠΙΡΑΛ. ΕΙΣΑΓΩΓΗ Εγχειρίδιο Χρήσης ΣΥΓΧΑΡΗΤΗΡΙΑ ΓΙΑ ΤΗΝ ΑΓΟΡΑ ΤΗΣ ΝΕΑΣ ΜΗΧΑΝΗΣ ΒΙΒΛΙΟΔΕΣΙΑΣ ΒΑΡΙΑΣ ΧΡΗΣΗΣ ΓΙΑ ΔΙΑΣΚΕΔΑΣΤΙΚΗ, ΕΥΚΟΛΗ ΚΑΙ ΠΡΑΚΤΙΚΗ ΒΙΒΛΙΟΔΕΣΙΑ
ΜΕΤΕΩΡΟΛΟΓΙΑ - ΚΛΙΜΑΤΟΛΟΓΙΑ 8. ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ
ΜΕΤΕΩΡΟΛΟΓΙΑ - ΚΛΙΜΑΤΟΛΟΓΙΑ 8. ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ Ατμοσφαιρική πίεση - ατμοσφαιρική πίεση είναι η δύναμη ανά μονάδα επιφάνειας που ασκείται από στήλη αέρα, δηλαδή ολόκληρη τη μάζα του αέρα - επειδή η δύναμη
gr/ Μιχαήλ Μιχαήλ, Φυσικός
1. ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Όργανα µέτρησης µήκους Όταν πρόκειται να µετρήσουµε ένα µήκος, πρέπει να επιλέξουµε εκείνο το όργανο µέτρησης το οποίο είναι κατάλληλο για να µετρήσει το µήκος αυτό και να δώσει την απαιτούµενη
Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού
Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός της πυκνότητας του υλικού ενός ομογενούς σώματος. Είναι μια έμμεση μέτρηση και θα γίνει με
Σχ. 6.1α. Είδη κατσαβιδιών.
6. ΚΑΤΣΑΒΙΔΙΑ ΚΛΕΙΔΙΑ Η βίδα μαζί με το περικόχλιο (παξιμάδι) ή χωρίς αυτό, αποτελεί ένα μέσο που μας επιτρέπει να συνδέουμε δυο ή περισσότερα κομμάτια. Για να πραγματοποιήσουμε όμως τη σύνδεση με τη βίδα
Περί σφαλμάτων και γραφικών παραστάσεων
Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις
4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ
4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Μετρούμε με το μέτρο και με άλλα όργανα «ÔÏÏ ÊÔÚ Ï ˆ fiùè fiù Ó ÌappleÔÚÂ Ó ÌÂÙÚ ÛÂÈ ÂΠÓÔ ÁÈ ÙÔ ÔappleÔ Ô ÌÈÏ Î È Ó ÙÔ ÂÎÊÚ ÛÂÈ Ì ÚÈıÌÔ, Í ÚÂÈ Î ÙÈ ÁÈ' Ùfi. ŸÙ Ó fiìˆ ÂÓ ÌappleÔÚÂ
Μικροί Χάκερ -Μέτρηση απόστασης με τον αισθητήρα υπερήχων
Μικροί Χάκερ -Μέτρηση απόστασης με τον αισθητήρα υπερήχων Ένας από τους τρόπους για να μετρήσουμε την απόσταση εντός αντικειμένου από την συσκευή μας είναι ο αισθητήρας υπέρηχων. Η λειτουργία του στηρίζεται
Q 40 th International Physics Olympiad, Merida, Mexico, July 2009
ΠΕΙΡΑΜΑΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ ΦΩΤΟΣ ASER ΥΛΙΚΑ ΚΑΙ ΟΡΓΑΝΑ Επιπρόσθετα με τα υλικά 1), 2) και 3), αναμένεται να χρησιμοποιήσετε τα ακόλουθα: 4) Φακός ενσωματωμένος μέσα σε
Μονάδες μέτρησης του μήκους
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 45 Μονάδες μέτρησης του μήκους Ενότητα 8 β τεύχος Μονάδες μέτρησης του μήκους 45 1η Άσκηση Όργανο μέτρησης 1 Υποδεκατόμετρο Να γράψεις τις ομοιότητες και τις διαφορές
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης
Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική
Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική
ΥΠΟΛΟΓΙΣΜΟΣ ΚΥΒΙΣΜΟΥ ΜΗΧΑΝΗΣ
ΥΠΟΛΟΓΙΣΜΟΣ ΚΥΒΙΣΜΟΥ ΜΗΧΑΝΗΣ Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μηχανολογία (Ε.Ε.) Δημιουργός: ΔΗΜΗΤΡΙΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ
ΜΕΤΕΩΡΟΛΟΓΙΑ - ΚΛΙΜΑΤΟΛΟΓΙΑ 10. ΑΤΜΟΣΦΑΙΡΙΚΑ ΚΑΤΑΚΡΗΜΝΙΣΜΑΤΑ
ΜΕΤΕΩΡΟΛΟΓΙΑ - ΚΛΙΜΑΤΟΛΟΓΙΑ 10. ΑΤΜΟΣΦΑΙΡΙΚΑ ΚΑΤΑΚΡΗΜΝΙΣΜΑΤΑ ΓΕΝΙΚΑ - Για τη μέτρηση του ύψους βροχής χρησιμοποιούνται τα βροχόμετρα και οι βροχογράφοι - Με τα βροχόμετρα επίσης μετράμε το χιόνι και το
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή οι φοιτητές
25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:
ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗ 25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: Το πρόβλημα Ένας φίλος σας βρήκε ένα μικρό, πολύ όμορφο τεμάχιο διαφανούς στερεού και ζητά τη γνώμη
Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.
Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι
ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
ΜΑΘΗΜΑΤΙΚΑ (Γ ΤΑΞΗ) ΟΝΟΜΑ:. (ΕΙΣΑΓΩΓΗ ΣΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΣΤΟΥΣ ΔΕΚΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ) ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΛΑΤΕ ΝΑ ΣΚΕΦΤΟΥΜΕ ΜΑΖΙ: Υπάρχουν άραγε αριθμοί ανάμεσα στο 0 και
ΣΥΣΚΕΥΗ ΦΑΙΝΟΜΕΝΩΝ ΠΟΛΩΣΗΣ POA01 ΦΥΛΛΑΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΕΩΣ
ΣΥΣΚΕΥΗ ΦΑΙΝΟΜΕΝΩΝ ΠΟΛΩΣΗΣ POA01 ΦΥΛΛΑΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΕΩΣ 1 ΣΚΟΠΟΣ Η παρατήρηση του φαινομένου της πόλωσης και η μέτρηση της γωνίας στροφής του πολωμένου φωτός διαλυμάτων οπτικά ενεργών ουσιών π.χ. σάκχαρα.
ΟΔΗΓΙΕΣ ΤΟΠΟΘΕΤΗΣΗΣ ΓΙΑ ΟΙΚΙΑΚΑ ΡΟΛΑ ΚΑΤΕΥΘΥΝΤΗΡΙΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΟΛΟΚΛΗΡΩΜΕΝΗ ΠΙΣΤΟΠΟΙΗΣΗ CE
ΟΔΗΓΙΕΣ ΤΟΠΟΘΕΤΗΣΗΣ ΓΙΑ ΟΙΚΙΑΚΑ ΡΟΛΑ ΚΑΤΕΥΘΥΝΤΗΡΙΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΟΛΟΚΛΗΡΩΜΕΝΗ ΠΙΣΤΟΠΟΙΗΣΗ CE 1. Τρόποι τοποθέτησης Α) Επικαθήμενο στο κούφωμα. Ο μηχανισμός χειροκίνησης βρίσκεται εσωτερικά του σπιτιού.
ΚΕΦΑΛΑΙΟ 8.1 ΜΗΧΑΝΟΥΡΓΙΚΕΣ ΜΕΤΡΗΣΕΙΣ
ΤΕΧΝΟΛΟΓΙΑ ΠΑΡΑΓΩΓΗΣ Ι 203 ΚΕΦΑΛΑΙΟ 8.1 ΜΗΧΑΝΟΥΡΓΙΚΕΣ ΜΕΤΡΗΣΕΙΣ Οι βασικοί στόχοι της Τεχνολογίας Παραγωγής είναι σε πρώτο στάδιο η μελέτη, σχεδίαση και ανάπτυξη υφισταμένων ή νέων τεχνολογιών-διαδικασιών
Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών
Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο
κριτήρια αξιολόγησης
A ΓΥΜΝΑΣΙΟΥ Γιάννης Κανελλόπουλος, Ευαγγελία Κανελλοπούλου κριτήρια αξιολόγησης ΦΥΣΙΚΗ Ανακεφαλαίωση της θεωρίας και μεθοδολογία επίλυσης των ασκήσεων Διαγωνίσματα σε κάθε Θεματική ενότητα Διαγωνίσματα
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» Ονοµατεπώνυµο...ΑΜ...
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΙΚΡΟΣΚΟΠΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ «ΒΙΟΛΟΓΙΑΣ ΚΥΤΤΑΡΟΥ» ΑΣΚΗΣΗ 2 η Μετρήσεις µε το µικροσκόπιο Κ. Φασσέας. Ονοµατεπώνυµο...ΑΜ... Σκοπός της άσκησης είναι: Να µάθουµε πώς γίνεται η
Κατασκευάστε ένα απλό antenna tuner (Μέρος Α )
Κατασκευάστε ένα απλό antenna tuner (Μέρος Α ) Του Νίκου Παναγιωτίδη (SV6 DBK) φυσικού και ραδιοερασιτέχνη. Ο σκοπός του άρθρου αυτού είναι να κατευθύνει τον αναγνώστη ραδιοερασιτέχνη να κατασκευάσει το
ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος
Περιεχόμενα ΦΕ1 ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ ΤΟ ΜΗΚΟΣ 2015-16 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Τα φυσικά μεγέθη Η Μέτρηση των φυσικών μεγεθών Μια μονάδα μέτρησης για όλους Το φυσικό μέγεθος Μήκος Όργανα μέτρησης
AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση
Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ
Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΥΝΤΕΛΕΣΤΗΣ ΙΞΩΔΟΥΣ Κατά την κίνηση των υγρών, εκτός από την υδροστατική πίεση που ενεργεί κάθετα σε όλη την επιφάνεια, έχουμε και
Τεχνικό Τοπογραφικό Σχέδιο
Τεχνικό Τοπογραφικό Σχέδιο Γ. Καριώτου ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι:
Μετρήσεις-Αβεβαιότητα-Σφάλματα. Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Στην άμεση μέτρηση το μέγεθος μετράται με κάποιο όργανο. Στην έμμεση μέτρηση το μέγεθος υπολογίζεται
ΠΛΑΝΗ ΞΕΧΟΝΔΡΙΣΤΗΡΑΣ 1500W 900RPM
111686 ΠΛΑΝΗ ΞΕΧΟΝΔΡΙΣΤΗΡΑΣ 1500W 900RPM 1 1. ΚΟΥΜΠΙ ΚΛΕΙΔΩΜΑΤΟΣ 2. ΚΟΥΜΠΙ ΧΕΙΡΙΣΜΟΥ 3. ΠΡΟΣΑΡΤΗΜΑ ΓΙΑ ΠΡΟΣΤΑΣΙΑ ΜΑΧΑΙΡΙΩΝ 4. ΔΙΑΚΟΠΤΗΣ ΑΣΦΑΛΕΙΑΣ 5. ΣΤΑΘΕΡΗ ΒΑΣΗ 6. ΜΑΝΙΒΕΛΑ 7. ΔΙΑΚΟΠΤΗΣ NVR 8. ΟΔΗΓΟΣ
ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ Α. ΣΤΟΧΟΙ Η επαφή και εξοικείωση του μαθητή με βασικά όργανα του ηλεκτρισμού και μετρήσεις. Η ικανότητα συναρμολόγησης απλών
Περίθλαση από ακµή και από εµπόδιο.
ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών
Κεφάλαιο 7 Μέτρηση θεμελιωδών φυσικών μεγεθών
Κεφάλαιο 7 Μέτρηση θεμελιωδών φυσικών μεγεθών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται όργανα μέτρησης θεμελιωδών φυσικών μεγεθών, όπως το μήκος, η μάζα, ο χρόνος και η θερμοκρασία. Αναφέρονται συνοπτικά
Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου
Μ7 Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου A. Προσδιορισµός της πυκνότητας στερεού σώµατος B. Εύρεση της εστιακής απόστασης συγκλίνοντα φακού. Σκοπός Σκοπός
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ
ΘΕΜΑ Δ (15732) Δύο ακίνητα σημειακά ηλεκτρικά φορτία 2 μc και 3 μc, βρίσκονται αντίστοιχα στις θέσεις 3 m και 6 m ενός άξονα, όπως φαίνεται στο παρακάτω σχήμα. Δ1) Να υπολογίσετε το δυναμικό του ηλεκτρικού
1. ROSIN-RAMMLERRAMMLER
ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΝΟΜΗΣ ΜΕΓΕΘΟΥΣ ΤΕΜΑΧΙΩΝ. OSIN-AMMLEAMMLE 2. GATES-GAUDIN-SCHUHMANN Τσακαλάκης Κώστας, Καθηγητής Ε.Μ.Π.-2008 Κατανομή osi mmler - - k 00 = e ή = 00 k e 00 % e k = αθροιστικό παραμένον σε
APEIROSTIKOS LOGISMOS I
APEIROSTIKOS LOGISMOS I ΟΛΟΗΜΕΡΟ ΕΡΓΑΣΤΗΡΙΟ ΠΡΟΒΛΗΜΑΤΩΝ Λύσεις ασκήσεων φυλλαδίου 4. Άσκηση : Υπολογίστε, αν υπάρχουν, τα παρακάτω όρια. Αν χρειάζεται, υπολογίστε τα αντίστοιχα πλευρικά όρια. + 4 3 + +,
1.Παρατηρώντας τις παρακάτω εικόνες, αντιστοίχισε ποιες εκφράζουν
1.Παρατηρώντας τις παρακάτω εικόνες, αντιστοίχισε ποιες εκφράζουν φυσικά μεγέθη και ποιες μη μετρήσιμα φυσικά μεγέθη και συμπλήρωσε τον παρακάτω πίνακα: α). β). γ). δ). ε). στ). ζ). η). θ). Εικόνες Φυσικά
Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ
Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ 4_15580 Δύο σημειακά ηλεκτρικά φορτία Q 1 = μc και Q = 8 μc, συγκρατούνται ακλόνητα πάνω σε οριζόντιο μονωτικό δάπεδο, στα σημεία Α και Β αντίστοιχα, σε απόσταση
Μετρήσεις Αβεβαιότητες Μετρήσεων
Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης
Το εκπαιδευτικό υλικό της Φροντιστηριακής Εκπαίδευσης Τσιάρα διανέμεται δωρεάν αποκλειστικά από τον ψηφιακό τόπο του schooltime.gr
Το εκπαιδευτικό υλικό της Φροντιστηριακής Εκπαίδευσης Τσιάρα διανέμεται δωρεάν αποκλειστικά από τον ψηφιακό τόπο του schooltime.gr Η νέα ιστοσελίδα μας: ΦΡΟΝΤΙΣΤΗΡΙΑΚΗ ΕΚΠΑΙΔΕΥΣΗ ΤΣΙΑΡΑ Εισαγωγή Φυσικές
Ποσοστά (Π%) Π % = Εξάσκηση: Μετατρέψτε τα ποσοστά σε ανάγωγα κλάσματα και δεκαδικούς ποσοστό 1) 20% 2) 25% 3) 30% βασική έννοια
βασική έννοια Ποσοστά (Π%) Π % = Τα ποσοστά είναι μια διαφορετική αναπαράσταση των κλασμάτων και των δεκαδικών! Α. Μετατροπή του δεκαδικού 0,35 σε ποσοστό Β. Μετατροπή του κλάσματος σε ποσοστό 0, 35 00
Συμπληρωματικό Φύλλο Εργασίας 1+ ( * ) Μετρήσεις Μήκους Η Μέση Τιμή
Συμπληρωματικό Φύλλο Εργασίας 1+ ( * ) Μετρήσεις Μήκους Η Μέση Τιμή ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Πώς νομίζεις ότι ξέρουμε το
ΖΥΓΟΣ ΡΕΥΜΑΤΟΣ Επαλήθευση βασικών σχέσεων του ηλεκτρομαγνητισμού
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΖΥΓΟΣ ΡΕΥΜΑΤΟΣ Επαλήθευση βασικών σχέσεων του ηλεκτρομαγνητισμού Α. ΣΤΟΧΟΙ Η εξοικείωση με τη δημιουργία μικρών βαρών από λεπτό σύρμα μετρώντας το μήκος του.
Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου
Μαθηματικά Α Γυμνασίου Μέρος Α - Κεφάλαιο 7, Α. 7.1 Μέρος Α' - Κεφάλαιο 7ο - Θετικοί και Αρνητικοί Αριθμοί Α.7.1. Θετικοί και Αρνητικοί Αριθμοί (Ρητοί αριθμοί) - H ευθεία των ρητών - Τετμημένη σημείου
0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία
ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ Είναι απαραίτητο να πούμε μερικά πράγματα για μια επαναλαμβανόμενη πηγή προβλημάτων και δυσκολιών: τα σημαντικά ψηφία. Τα μαθηματικά είναι μια επιστήμη όπου οι αριθμοί και οι σχέσεις μπορούν
Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ)
ΘΕΜΑ ο Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΠΑΡΑΓΩΓΟΥΣ (ΜΕΧΡΙ ΚΑΙ ΡΥΘΜΟ ΜΕΤΑΒΟΛΗΣ) Α. Να αποδείξετε ότι αν μία συνάρτηση είναι παραγωγίσιμη σ ένα σημείο 0,τότε είναι και συνεχής στο σημείο αυτό Β. Να αποδείξετε ότι
ΜΕΤΡΗΣΕΙΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ΕΡΓΑΣΤΗΡΙΟ
ΜΕΤΡΗΣΕΙΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΡΗΣΕΙΣ ΜΗΚΟΥΣ Μετροταινία, Κανόνας (ΜΕΤΡΟ) Ακρίβεια 1mm ΜΕΤΡΗΣΕΙΣ ΜΗΚΟΥΣ ΔΙΑΣΤΗΜΟΜΕΤΡΟ Μέτρηση μήκους με μεγαλύτερη ακρίβεια από το μέτρο.(το διαστημόμετρο της εικόνας
ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ
ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ ΧΥΤΟΣΙΔΗΡΑ ΒΑΣΗ ΤΥΠΟΥ Β (ΓΕ.010.0) Η βάση είναι χυτοσιδηρά και διαστάσεων 20 cm περίπου x 12 cm περίπου x 1 cm περίπου, και εδράζεται σε τέσσερα
Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης:
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (ΑΣΠΑΙΤΕ) - ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ Υπεύθυνος καθηγητής: Ζκέρης Βασίλειος ΕΚΘΕΣΗ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ 1: ΜΗΧΑΝΙΚΕΣ ΣΥΣΚΕΥΕΣ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ 1. Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - 2 μc και q 2 = + 3 μc, βρίσκονται αντίστοιχα
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ 1. Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - 2 μc και q 2 = + 3 μc, βρίσκονται αντίστοιχα στις θέσεις x 1 = - 3 m και x 2 = + 6 m ενός άξονα x'x, όπως φαίνεται στο παρακάτω
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.
A Γυμνασίου 29 Μαρτίου 2014 Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:... Σχολείο:... Τάξη/Τμήμα:. Εξεταστικό Κέντρο:. Πειραματικό Μέρος Θέμα 1 ο H μέτρηση του μήκους γίνεται, συνήθως, με μετροταινία
Οδηγίες χρήσης για γρύλλο BWR2075. Ευθύνη χρήστη Ο χρήστης θα πρέπει να μελετήσει καλά τις οδηγίες χρήσης και να της διατηρήσει για μελλοντική χρήση.
Οδηγίες χρήσης για γρύλλο BWR2075 Ευθύνη χρήστη Ο χρήστης θα πρέπει να μελετήσει καλά τις οδηγίες χρήσης και να της διατηρήσει για μελλοντική χρήση. Λειτουργία Ο χρήστης θα πρέπει να κατανοήσει το μηχάνημα,
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ
Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας
Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας 1.1. ΧΩΡΟΒΑΤΗΣ Ο χωροβάτης είναι το Τοπογραφικό όργανο, που χρησιμοποιείται στη μέτρηση των υψομέτρων σημείων.
ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ
ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές
Ευθυγραµµίζοντας ένα τηλεσκόπιο
Ευθυγραµµίζοντας ένα τηλεσκόπιο Τι είναι ευθυγράµµιση Πρόκειται για τη διαδικασία ευθυγράµµισης των οπτικών και µηχανικών αξόνων όλων των οπτικών στοιχείων του τηλεσκοπίου. Όταν τα στοιχεία αυτά ευθυγραµµιστούν
1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες
. Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την
Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι:
Μετρήσεις-Αβεβαιότητα-Σφάλματα. Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Στην άμεση μέτρηση το μέγεθος μετράται με κάποιο όργανο. Στην έμμεση μέτρηση το μέγεθος υπολογίζεται
ΕΡΓΟΝΟΜΙΑ - Λύσεις ασκήσεων στην ενότητα
ΕΡΓΟΝΟΜΙΑ - Λύσεις ασκήσεων στην ενότητα 1. α. Να εξηγήσετε τον ρόλο του στοιχείου της προσαρμοστικότητας σε θέματα εργονομίας προϊόντων. Να αναφέρετε ένα παράδειγμα. β. Να αναφέρετε επιπτώσεις εργονομικών
ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων
ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων Σκοπός Σκοπός είναι να κατανοηθεί η έννοια των σφαλμάτων, η σπουδαιότητά τους και η αναγκαιότητα υπολογισμού τους. Δίνονται επίσης οι βασικοί μαθηματικοί τύποι που επιτρέπουν
ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ
ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν
Πρακτική Δραστηριότητα : Εύρεση του πάχους μιας ανθρώπινης τρίχας χρησιμοποιώντας την περίθλαση του φωτός. Κβαντοφυσική
1 Κβαντοφυσική Η φυσική των πολύ μικρών στοιχείων με τις μεγάλες εφαρμογές 3 ο Μέρος : ΠΡΑΚΤΙΚΕΣ ΔΡΑΣΤΡΙΟΤΗΤΕΣ Εύρεση του πάχους μιας ανθρώπινης τρίχας χρησιμοποιώντας την περίθλαση του φωτός Το Quantum
Δ2) Να υπολογίσετε την απόσταση ra του σημείου Α από το σημειακό φορτίο Q καθώς και τη τιμή του ηλεκτρικού φορτίου Q. Μονάδες 9
14345 Ακίνητο σημειακό ηλεκτρικό φορτίο Q δημιουργεί γύρω του ηλεκτροστατικό πεδίο. Σε σημείο Α του πεδίου αυτού, το μέτρο της έντασης είναι N/ και η τιμή του δυναμικού είναι - 6 V. Δ1) Να παραστήσετε
METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν ΕΞΕΤΑΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΟΝΟΜΑTΕΠΩΝΥΜΟ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Χρησιμοποιώντας
ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε
Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ
ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ Τροποποίηση του εργαστηριακού οδηγού (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) Στόχοι αυτής της εργαστηριακής άσκησης
Φυσική Α Γυμνασίου. Για να καταφέρουμε λοιπόν να εξομαλύνουμε τα σφάλματα κάνουμε πολλές μετρήσεις και υπολογίζουμε την μέση τιμή.
Φυσική Α Γυμνασίου Επιμέλεια: Αγκανάκης Α. Παναγιώτης Φυσικά Μεγέθη ονομάζουμε τις ποσότητες που μπορούμε να μετρήσουμε. Η μέτρηση τους γίνεται με την χρήση διαφόρων οργάνων, τα οποία θα δούμε αναλυτικά
Αλλαγή κλίμακας σχεδίου με το COREL
Αλλαγή κλίμακας σχεδίου με το COREL Πολλές φορές στο χόμπι μας χρειάζεται να αλλάξουμε τις διαστάσεις ενός σχεδίου για να το κάνουμε μικρότερο η μεγαλύτερο και πάρα πολλές φορές έχω ακούσει από φίλους
2. Επίδραση των δυνάμεων στην περιστροφική κίνηση Ισοδύναμα συστήματα δυνάμεων
2. Επίδραση των δυνάμεων στην περιστροφική κίνηση Ισοδύναμα συστήματα δυνάμεων 2.1 Όπως είναι γνωστό, όταν σε κάποιο σώμα ενεργούν δυνάμεις, ένα από τα αποτελέσματά τους μπορεί να είναι να αλλάξει η κατάσταση
ΤΕΧΝΟΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΕΡΙΓΡΑΦΗ ΜΟΝΑ ΩΝ ΑΕΡΙΣΜΟΥ / ΑΝΑ ΕΥΣΗΣ ΤΥΠΟΥ TORNADO ΤΗΣ AEROMIX USA
ΠΕΡΙΓΡΑΦΗ ΜΟΝΑ ΩΝ ΑΕΡΙΣΜΟΥ / ΑΝΑ ΕΥΣΗΣ ΤΥΠΟΥ TORNADO ΤΗΣ AEROMIX USA Γενική περιγραφή-εφαρµογές Οι µονάδες αυτές είναι κατασκευασµένες εξ ολοκλήρου από ανοξείδωτο χάλυβα SS316 και εξασφαλίζουν ισχυρή ανάδευση
Robert Bosch GmbH. Σκευοθήκη
Σκευοθήκη Τόσο ντιζάιν πρέπει να υπάρχει. Σκευοθήκη Ξεχωριστό στοιχείο προσέλκυσης της προσοχής και ταυτόχρονα πρακτικός χώρος φύλαξης: Η σκευοθήκη σε μοντέρνα υλικά. 1 Εισαγωγή Από τα διάφορα υλικά γίνεται
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΧΡΟΝΟΥ ΑΡΧΙΚΗΣ ΚΑΙ ΤΕΛΙΚΗΣ ΠΗΞΗΣ ΤΟΥ ΤΣΙΜΕΝΤΟΥ
Άσκηση 2 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΧΡΟΝΟΥ ΑΡΧΙΚΗΣ ΚΑΙ ΤΕΛΙΚΗΣ ΠΗΞΗΣ ΤΟΥ ΤΣΙΜΕΝΤΟΥ 21 Εισαγωγή αρχή της μεθόδου 22 Συσκευή Vicat 23 Κανονική συνεκτικότητα Πειραματική διαδικασία 24 Προσδιορισμός χρόνου πήξης τσιμέντου
Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης
Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της Α. Το Μαγνητικό πεδίο σαν διάνυσμα Σο μαγνητικό πεδίο περιγράφεται με το μέγεθος που αποκαλούμε ένταση μαγνητικού
ιαστασιολόγηση Περιεχόμενα Ορισμός Μηχανολογικός Σχεδιασμός Εισαγωγή Στοιχεία διαστασιολόγησης ιαστασιολόγηση χαρακτηριστικών αντικειμένων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Περιεχόμενα Εισαγωγή ιαστασιολόγηση η Στοιχεία διαστασιολόγησης ιαστασιολόγηση χαρακτηριστικών αντικειμένων Πρακτική διαστασιολόγησης Μηχανολογικός
Φύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή
Φύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Όπως θα μάθεις αναλυτικότερα στη Β και Γ γυμνασίου: Η μέτρηση είναι πρωταρχική και σημαντική διαδικασία για τη φυσική
Ε.Ε. Παρ. III(I) 1497 Κ.Α.ΙΪ. 332/2000 Αρ. 3451,
Ε.Ε. Παρ. III(I) 1497 Κ.Α.ΙΪ. 332/2000 Αρ. 3451, 24.11.2000 Αριθμός 332 Οι περί Μέτρων και Σταθμών (Ακλοολόμετρα και Αραιόμετρα Αλκοόλης) Κανονισμοί του 2000, που εκδόθηκαν από το Υπουργείο Εμπορίου, Βιομηχανίας
Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε
Δεκαδικά κλάσματα Δεκαδικοί αριθμοί Μάθημα 7 ο Σε κάθε κλάσμα έχουμε : όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική
Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι
Ερωτήσεις θεωρίας - Θέμα Β Εκφώνηση 1η Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι α) β) γ) Λύση Εκφώνηση 2η Στο διπλανό υδραυλικό