Άσκηση 1: Να υπολογιστεί η μέση τραχύτητα R a της κατανομής του σχήματος..
|
|
- Τερψιχόρη Σπανός
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΣΚΗΣΕΙΣ στο μάθημα Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.) Άσκηση 1: Να υπολογιστεί η μέση τραχύτητα R a της κατανομής του σχήματος.. Λ Υ Σ Η y α Λόγω ομοιότητας των τριγώνων ισχύει ότι : εφφ = = = y = x (1) x α Εξ ορισμού η κεντρική γραμμή CL χωρίζει την κατανομή σε ίσα εμβαδά, δηλαδή ισχύει: a a x y = a = x y () Βάσει των σχέσεων (1) και (), έχουμε; a a a = x y = x x = x x = και y = x = = a a a Μήκος ολοκλήρωσης L = a + x = a + = (1 + ) L 1 1 Ra = y dx = L L 0 1 a (1 + a a ) a 3a ( E + E ) = + a = = 0,878a 1 (1 + )
2 Άσκηση : Ανοχές - Συναρμογές Δίδεται η συναρμογή 45 F8/h7. Να γίνει γραφική παράσταση της συναρμογής, να προσδιορισθεί το είδος της (ως προς τον βαθμό ελευθερίας της σχετικής κίνησης άξονα τρήματος) και να δοθούν οι οριακές διαστάσεις 1 (= περνά) και (= δεν περνά) των ελεγκτήρων [Α] και [Β] που χρησιμοποιούνται για τον ποιοτικό έλεγχο της συναρμογής αυτής. ΛΥΣΗ Χ μ =Β μ - Α ε = 64-(-5)= 89 μm Χ ε =Β ε - Α μ = 5-0 = 5 μm συναρμογή ελεύθερη Άσκηση 3: Τόρνευση Δυνάμεις κατά Kienzle Με βάση τη μέθοδο του Kienzle να γίνει ο υπολογισμός των δυνάμεων που εμφανίζονται κατά την ορθογωνική κοπή άξονα από ανθρακούχο χάλυβα St 50 διαμέτρου 100mm με εργαλείο από σκληρομέταλλο, με βάθος κοπής mm, ταχύτητα κοπής 110m/min και πρόωση 0, mm/στρ. ΛΥΣΗ Με βάση τα δεδομένα και από την ταχύτητα κοπής έχουμε ότι οι στροφές της ατράκτου θα είναι: Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.)
3 3 π D n 1000 uk uk = n = = = 350, 31rpm 1000 π D 3, Γνωρίζοντας ότι έχουμε ορθογωνική κοπή και ότι η γωνιά τοποθέτησης του εργαλείου είναι κ=90 ο τότε sinκ=1 και b = a = mm και h = s = 0.mm. Επομένως το εμβαδόν του αποβλίττου είναι A = b h = 0.4mm. Με βάση τη σελίδα 189 του βιβλίου* εκλέγω τις γωνίες ελευθερίας και αποβλίττου οι οποίες είναι: α = 8 ο και γ = 10 ο. Από τον πίνακα.3/σελ 198* εκλέγουμε τις σταθερές k 1 και (1-ζ) για τον τύπο του Kienzle. Έχουμε k 1 = 190 dan/mm και (1-ζ) = 0,74 για χάλυβα St 50. Για να υπολογίσουμε τη δύναμη, την κύρια συνιστώσα παίρνουμε κατευθείαν τον τύπο: (1 ζ ) 0,74 FH = k s A = k sbh = bk1h = 199 0, = 10,96 11daN Για να κάνουμε διόρθωση της δύναμης παίρνουμε τους συντελεστές: Κ γ = 0,88, Κ u = 0.99 (από το γράφημα), Κ ε = 1 και Κ φ = 1,4. Άρα F Hδ = 0,88 x 0.99 x 1 x 1.4 x 11 = dan Για τις άλλες δυνάμεις έχουμε (ενδεικτικά) από τους λόγους: F F H A 10 = = 5 FH 10 και = = 4 F.5 V F A = F H / = 73,79 dan και F A = F V /4 = 36,89 dan Σημείωση: 1 dan 1 kp Άσκηση 4: Διάτρηση Σε πολυάτρακτο δράπανο (βλέπε το επόμενο σχήμα) γίνεται ταυτόχρονη διάνοιξη 4 οπών σε πλάκα από κράμα μαγνησίου σε βάθος l = 50 mm. Χρησιμοποιούνται όμοια τρυπάνια με D=10 mm ενώ οι άξονες περιστρέφονται με n= 800 rpm και κοινή πρόωση s = 0, mm/rev. Ζητούνται: (α) Ο ρυθμός αποβολής υλικού. (β) Ο καθαρός χρόνος κατεργασίας. (γ) Η ροπή σε κάθε άξονα του δράπανου. (δ) Η απαιτούμενη ισχύς της Ε/Μ (η Ε/Μ = 0.8). Για τα κράματα μαγνησίου δίδεται εδική ενέργεια κοπής w c = 0,5 W.sec/mm 3. Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.)
4 ΛΥΣΗ 4 (α) Για τον ρυθμό αποβολής υλικού από τη θεωρία * [σελ. 81 βιβλ. Πετρόπουλου] έχουμε ότι για την μια οπή πd sn Θ = 3 [ cm / min] όπου s η πρόωση 0.mm/περ., n οι στροφές της ατράκτου 800rpm και D η διάμετρος της οπής 10mm. Άρα έχουμε Θ = π = 1, cm 3 / min Βέβαια ο ρυθμός αυτός είναι για την μια οπή. Για την περίπτωσή μας που έχουμε τέσσερεις είναι Θολ = 4Θ = 50,8 cm 3 /min (β) Ο καθαρός χρόνος κατεργασίας είναι κοινός και για τις τέσσερεις οπές μια και κατεργάζονται ταυτόχρονα και είναι ο λόγος του μήκους κατεργασίας προς την ταχύτητα πρόωσης (σελ. 311), δηλαδή t = L/(sn) όπου L = l D/(tan(ω/)) = /(tan60 ο ) = 55.88mm Άρα t = / (0.x800) = 55.88/160 = 0,349 min ή 0.95 sec (δ) Για να βρούμε την απαιτούμενη ισχύ θα πρέπει να βρούμε την ισχύ που χρειάζεται το τρυπάνι για κάθε οπή και στη συνέχεια για το σύνολο της κατεργασίας. Για κάθε οπή ισχύει ότι P = w c x Θ x 10 3 / 60 = 0,5 x 1,57 x 10 3 / 60 = 0,10475 kw Άρα P ολ = 4 x 0,10475 = 0,419kW και η ισχύς της Ε/Μ P E/M = / 0.8 = kw (γ) Για κάθε άξονα ισχύει P = Μ n /97410 M = dan.cm Σημείωση : * Η αναφορά στις ασκήσεις 4 & 5 γίνεται με βάση το βιβλίο Π. Πετρόπουλος, Μηχανουργική τεχνολογία, Τόμος ο, Εκδόσεις Ζήτη. Προφανώς μπορούν να χρησιμοποιηθούν και άλλοι παρόμοιοι Πίνακες. Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.)
5 Άσκηση 5: Κατάστρωση φασεολόγιου 5 Διαθέτουμε ράβδο από μαλακό χάλυβα διαστάσεων Φ 34 mm και μήκους L= 150 mm. Ζητείται η κατασκευή του εξαρτήματος του σχήματος σε συμβατικό τόρνο. Καταστρώστε το κατάλληλο φασεολόγιο. Για τον τόρνο που θα χρησιμοποιηθεί δίδονται το διάγραμμα ταχυτήτων και ο πίνακας των διατιθεμένων προώσεων (βλέπε τα σχήματα που ακολουθούν) Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.)
6 Ενδεικτική λύση Ένα τυπικό φασεολόγιο δίδεται στη συνέχεια. (α) 6 Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.)
7 7 (β) Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.)
8 8 ΠΑΡΑΡΤΗΜΑ: Τυπολόγιο τόρνευσης Πάχος αποβλήτου: h = s sin k Πλάτος αποβλήτου: b = a / sin k Σχέση Kienzle : F H = k 1 h 1-z b Ισχύς κοπής: {οι δυνάμεις εκφράζονται σε [dan] και οι ταχύτητες σε [m/min]} Κατεργασίες Αποβολής Υλικού & Ε/Μ CNC (Ε εξαμ.)
Ασκήσεις κοπής σε τόρνο
Ασκήσεις κοπής σε τόρνο. Σε τόρνο γίνεται κατεργασία άξονα από χάλυβα St 60. µε δύο παράλληλα εργαλειοφορεία ταυτόχρονα, όπως φαίνεται στο Σχ.. ίνονται: ιάµετροι κατεργασίας: d = 300 mm, d = 00 mm. Κοινή
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Ειδική αντίσταση κοπής Assistnt Pro. John Kehgis Mehnil Engineer, Ph.D. Περίγραμμα Στο κεφάλαιο αυτό γίνεται εκτενής αναφορά στο μηχανισμό της ορθογωνικής κοπής. Εισαγωγή - Κατεργασίες
Άσκηση µελέτης τόρνευσης
Άσκηση µελέτης τόρνευσης Σχήµα : Άξονας για κατεργασία σε τόρνο revolver Χαρακτηριστικά τόρνευσης Στροφές τόρνου: 60 200 250 35 400 500 630 800. Προώσεις: 0.06 0.08 0.0 0.25 0.6 0.20 0.25 0.35 0.40 0.50
Μηχανουργικές Κατεργασίες. Τόρνευση- Φασεολόγιο. Μηχανουργικές Κατεργασίες, Διδάσκων: Δρ. Δημητρέλλου Σωτηρία, Μηχ/γος Μηχ/κός
Μηχανουργικές Κατεργασίες Τόρνευση- Φασεολόγιο Μηχανουργικές Κατεργασίες, Διδάσκων: Δρ. Δημητρέλλου Σωτηρία, Μηχ/γος Μηχ/κός Κατεργασία κοπής με τόρνο Κατεργασία κοπής με τόρνο Αρχικοί έλεγχοι λειτουργίας
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1 Τόρνος / Συμβατικός και CNC Assistant Prof. John Kechagias Mechanical Engineer, Ph.D. Κατηγορίες τορναρίσματος 2 Με βάση τις κινήσεις του κοπτικού, την τοποθέτηση του ως προς
Συμβατικός προγραμματισμός κέντρων κατεργασιών CNC
Συμβατικός προγραμματισμός κέντρων κατεργασιών CNC Αρχές προγραμματισμού Τυποποιημένες εντολές Μη τυποποιημένες εντολές Φασεολόγια Εργαλεία Γ.Βοσνιάκος-2014 Προγραμματισμός κέντρων κατεργασιών Άδεια Χρήσης
ΚΑΤΕΡΓΑΣΙΕΣ ΑΠΟΒΟΛΗΣ ΥΛΙΚΟΥ
1. Τεχνολογικά χαρακτηριστικά ΚΑΤΕΡΓΑΣΙΕΣ ΑΠΟΒΟΛΗΣ ΥΛΙΚΟΥ Βασικοί συντελεστές της κοπής (Σχ. 1) Κατεργαζόμενο τεμάχιο (ΤΕ) Κοπτικό εργαλείο (ΚΕ) Απόβλιττο (το αφαιρούμενο υλικό) Το ΚΕ κινείται σε σχέση
ΙΑΤΡΗΣΗ (DRILLING) Σχήµα 1: Χαρακτηριστικά της διάτρησης
ΙΑΤΡΗΣΗ (DRILLING) ΠΕΡΙΓΡΑΦΗ-ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ (Σχ. 1) Είναι κατεργασία αφαίρεσης υλικού προς διάνοιξη οπής ή διεύρυνση ήδη υπάρχουσας οπής. Ως κοπτικό εργαλείο (ΚΕ) χρησιµοποιείται το ελικοειδές τρύπανο,
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Δημιουργία 12 ασκήσεων ΜΗΧΑΝΟΥΡΓΕΙΟΥ CNC με την βοήθεια του λογισμικού AUTOCAD
Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Δημιουργία 12 ασκήσεων ΜΗΧΑΝΟΥΡΓΕΙΟΥ CNC με την βοήθεια του λογισμικού AUTOCAD Σπουδαστές: Κίτσος Χαράλαμπος Α.Μ. 41837 Τσολάκης
ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ Διευθυντής Καθ. Γ. Χρυσολούρης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ Διευθυντής Καθ. Γ. Χρυσολούρης «ΟΡΘΟΓΩΝΙΚΗ ΚΟΠΗ & ΓΕΩΜΕΤΡΙΑ ΚΟΠΤΙΚΩΝ ΕΡΓΑΛΕΙΩΝ» ΕΡΓΑΣΙΑ ΣΤΑ
ΙΑΤΡΗΣΗ (DRILLING) Σχήµα 1: Χαρακτηριστικά της διάτρησης
ΙΑΤΡΗΣΗ (DRILLING) ΠΕΡΙΓΡΑΦΗ-ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ (Σχ. 1) Είναι κατεργασία αφαίρεσης υλικού προς διάνοιξη οπής ή διεύρυνση ήδη υπάρχουσας οπής. Ως κοπτικό εργαλείο (ΚΕ) χρησιµοποιείται το ελικοειδές τρύπανο,
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Ι
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Ι θεωρία κοπής Ορθογωνική κοπή-γεωμετρία κοπής Associate Prof. John Kechagias Mechanical Engineer, Ph.D. Περίγραμμα 2 Στο κεφάλαιο αυτό γίνεται εκτενής αναφορά στο μηχανισμό της
Μηχανουργικές κατεργασίες με χρήση Η/Υ για βιομηχανική παραγωγή
Προγραμματισμός Εργαλειομηχανών CNC Ο προγραμματισμός για την κατεργασία ενός τεμαχίου σε εργαλειομηχανή, με ψηφιακή καθοδήγηση, γίνεται με τον κώδικα μηχανής. Πρόκειται για μια σειρά τυποποιημένων εντολών,
ΑΠΟΚΟΠΗ ΔΙΑΤΡΗΣΗ ΚΑΜΨΗ
ΑΠΟΚΟΠΗ ΔΙΑΤΡΗΣΗ ΚΑΜΨΗ Οι μηχανουργικές κατεργασίες έχουν στόχο την μορφοποίηση των υλικών (σχήμα, ιδιότητες) ώστε αυτά να είναι πιο εύχρηστα και αποτελεσματικά. Η μορφοποίηση μπορεί να γίνει: με αφαίρεση
ΚΑΤΕΡΓΑΣΙΑ ΚΙΝΗΣΗ ΕΡΓΑΛΕΙΟΥ ΚΙΝΗΣΗ ΤΕΜΑΧΙΟΥ
29 ΚΑΤΕΡΓΑΣΙΑ ΚΙΝΗΣΗ ΕΡΓΑΛΕΙΟΥ ΚΙΝΗΣΗ ΤΕΜΑΧΙΟΥ Τόρνευση μετατόπιση περιστροφή Φραιζάρισμα περιστροφή μετατόπιση Διάτρηση περιστροφή - Επιφανειακή λείανση περιστροφή μετατόπιση Κυλινδρική λείανση περιστροφή
2. ΕΦΑΡΜΟΓΗ ΤΟΥ ΠΡΟΣΟΜΟΙΩΤΙΚΟΥ ΜΟΝΤΕΛΟΥ
2. ΕΦΑΡΜΟΓΗ ΤΟΥ ΠΡΟΣΟΜΟΙΩΤΙΚΟΥ ΜΟΝΤΕΛΟΥ 2.1 Δεδομένα εισόδου 2.1.1 Κοπτικό εργαλείο Το κοπτικό εργαλείο που χρησιμοποιήθηκε ήταν ένα δίπτερο κοπτικό εργαλείο με σφαιρική απόληξη χωρίς ελίκωση διαμέτρου
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Ι
ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ Ι Ορθογωνική κοπή - Δυνάμεις Assoiae Prof. John Kehagias Mehanial Engineer, Ph.D. Περίγραμμα 2 Στο κεφάλαιο αυτό γίνεται εκτενής αναφορά στο μηχανισμό της ορθογωνικής κοπής. Εισαγωγή
ΑΠΟΚΟΠΗ ΔΙΑΤΡΗΣΗ ΚΑΜΨΗ
ΑΠΟΚΟΠΗ ΔΙΑΤΡΗΣΗ ΚΑΜΨΗ Οι μηχανουργικές κατεργασίες έχουν στόχο την μορφοποίηση των υλικών (σχήμα, ιδιότητες) ώστε αυτά να είναι πιο εύχρηστα και αποτελεσματικά. Η μορφοποίηση μπορεί να γίνει: με αφαίρεση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ «ΕΚΤΙΜΗΣΗ ΚΟΣΤΟΥΣ ΔΙΕΡΓΑΣΙΑΣ ΤΟΡΝΕΥΣΗΣ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ «ΕΚΤΙΜΗΣΗ ΚΟΣΤΟΥΣ ΔΙΕΡΓΑΣΙΑΣ ΤΟΡΝΕΥΣΗΣ» ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ»
ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ Διευθυντής Καθ. Γ. Χρυσολούρης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ Διευθυντής Καθ. Γ. Χρυσολούρης «ΕΚΤΙΜΗΣΗ ΚΟΣΤΟΥΣ ΔΙΕΡΓΑΣΙΑΣ ΤΟΡΝΕΥΣΗΣ» ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ
Μηχανουργικές Κατεργασίες. Τόρνευση. Μηχανουργικές Κατεργασίες, Διδάσκων: Δρ. Δημητρέλλου Σωτηρία, Μηχ/γος Μηχ/κός
Μηχανουργικές Κατεργασίες Τόρνευση Μηχανουργικές Κατεργασίες, Διδάσκων: Δρ. Δημητρέλλου Σωτηρία, Μηχ/γος Μηχ/κός ΓΕΝΙΚΑ Με τη τόρνευση κατεργάζονται κομμάτια συμμετρικά εκ περιστροφής με κατά κανόνα κυκλική
ΑΠΟΚΟΠΗ ΔΙΑΤΡΗΣΗ ΚΑΜΨΗ
ΑΠΟΚΟΠΗ ΔΙΑΤΡΗΣΗ ΚΑΜΨΗ Οι μηχανουργικές κατεργασίες έχουν στόχο την μορφοποίηση των υλικών (σχήμα, ιδιότητες) ώστε αυτά να είναι πιο εύχρηστα και αποτελεσματικά. Η μορφοποίηση μπορεί να γίνει: με αφαίρεση
Στοιχεία Μηχανών ΙΙ. Α. Ασκήσεις άλυτες. Άσκηση Α.1: Πλήρης υπολογισμός οδοντοτροχών με ευθεία οδόντωση
Στοιχεία Μηχανών ΙΙ Α. Ασκήσεις άλυτες Άσκηση Α.1: Πλήρης υπολογισμός οδοντοτροχών με ευθεία οδόντωση Περιγραφή της κατασκευής: Σε μία αποθήκη υλικών σιδήρου χρησιμοποιείται μία γερανογέφυρα ανυψωτικής
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ
2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός
ΑΣΚΗΣΗ ΤΟΡΝΟΥ. ΑΡΧΙΚΟ ΚΟΜΜΑΤΙ, ΚΟΜΜΕΝΟ ΣΤΟ ΠΡΙΟΝΙ, ΑΠΟ ΑΤΡΑΚΤΟ ΕΜΠΟΡΙΟΥ Ø 30x5m. ίδονται
ΑΣΚΗΣΗ ΤΟΡΝΟΥ ΑΡΧΙΚΟ ΚΟΜΜΑΤΙ, ΚΟΜΜΕΝΟ ΣΤΟ ΠΡΙΟΝΙ, ΑΠΟ ΑΤΡΑΚΤΟ ΕΜΠΟΡΙΟΥ Ø 30x5m. ΙΑΣΤΑΣΕΩΝ Ø 30 Χ 150 20 Μ16x2 15 80 D α 2 +β 2 95 ίδονται 1) Υλικό κοµµατιού : Χάλυβας St.37. 2) Υλικό εργαλείου : Ταχυχάλυβας,
ΤΕΧΝΟΛΟΓΙΑ ΠΑΡΑΓΩΓΗΣ Ι 155 7.6 ΦΡΕΖΕΣ
ΤΕΧΝΟΛΟΓΙΑ ΠΑΡΑΓΩΓΗΣ Ι 155 7.6 ΦΡΕΖΕΣ Η φρέζα όπως και ο τόρνος αποτελεί μία από τις βασικότερες εργαλειομηχανές ενός μηχανουργείου. Κατά την κοπή στην φρέζα, το κοπτικό εργαλείο αποκόπτει από το αντικείμενο
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ /9/015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα κινείται σε ευθύγραμμη οριζόντια τροχιά με την ταχύτητά του σε συνάρτηση
ΔΡΑΠΑΝΑ. ΕΚΠΑΙΔΕΥΤΗΣ:Ανδρέας Ιωάννου 1
ΔΡΑΠΑΝΑ ΕΚΠΑΙΔΕΥΤΗΣ:Ανδρέας Ιωάννου 1 ΔΡΑΠΑΝΑ Είναι μια εργαλειομηχανή με την βοήθεια της οποίας αφαιρούμε υλικό από μια εργασία με σκοπό να ανοίξουμε μια τρύπα, η για να διευρύνομε μια τρύπα. ΕΚΠΑΙΔΕΥΤΗΣ:Ανδρέας
0 είναι η παράγωγος v ( t 0
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f(, όταν f
ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς
Αναγκαιότητα τοποθέτησης διαστάσεων 29/10/2015 Πολύζος Θωμάς 1 Αναγκαιότητα τοποθέτησης διαστάσεων Σφάλμα μέτρησης που οφείλεται: Σε υποκειμενικό λάθος εκείνου που κάνει την μέτρηση. Σε σφάλμα του οργάνου
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής
ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ)
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΗΧΑΝΟΛΟΓΙΑ (7 Ο ΕΞΑΜΗΝΟ) Νίκος Μ. Κατσουλάκος Μηχανολόγος Μηχανικός Ε.Μ.Π., PhD, Msc ΜΕΤΑΔΟΣΗ ΚΙΝΗΣΗΣ - ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ
Παράδειγμα υπολογισμού μελέτης και ελέγχου ζεύγους ατέρμονα-κορώνας
Παράδειγμα υπολογισμού μελέτης και ελέγχου ζεύγους ατέρμονα-κορώνας Δεδομένα: Στρεπτική ροπή στον ατέρμονα: Τ1 = Μ t1 = 10 Νm Περιστροφική ταχύτητα του ατέρμονα: n1 = 600 Σ/min Σχέση μετάδοσης: i = 40
ΜΕΤΡΟΛΟΓΙΑ. Εναλλαξιμότητα και Συστήματα Ανοχών. ΕΚΠΑΙΔΕΥΤΗΣ: Ανδρέας Ιωάννου
ΜΕΤΡΟΛΟΓΙΑ Εναλλαξιμότητα και Συστήματα Ανοχών. 1 Διεθνές σύστημα ανοχών συναρμογών - Ορισμοί 1. Ονομαστική Διάσταση Ν αριθμός που εκφράζει την αριθμητική τιμή ενός μήκους σε μια συγκεκριμένη μονάδα π.χ
5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y
. Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.
Επισκόπηση εργαλειομηχανών κοπής. Τόρνος Φρέζα Δράπανο Λειαντικό Συγκρότηση Λειτουργία Εργαλεία
Επισκόπηση εργαλειομηχανών κοπής Τόρνος Φρέζα Δράπανο Λειαντικό Συγκρότηση Λειτουργία Εργαλεία Δεκ-09 Γ.Βοσνιάκος Εργαλειομηχανές κοπής - ΕΜΤ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative
ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3)
ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) Η εξεταστέα ύλη για τις περιγραφικές ερωτήσεις (στο πρώτο μέρος της γραπτής εξέτασης) θα είναι η παρακάτω: - Κεφ. 1: Ποια είναι τα δύο πλεονεκτήματα
ΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) Τμήμα Μηχανολογίας ΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ Κώστας Κιτσάκης Μηχανολόγος Μηχανικός ΤΕ MSc Διασφάλιση ποιότητας Επιστημονικός Συνεργάτης Λειτουργικές
ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ
ΑΕΝ/ΑΣΠΡΟΠΥΡΓΟΥ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ε Εξαμ. ΒΟΗΘΗΤΙΚΕΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : Κώστας Τατζίδης ΣΗΜΕΙΩΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΜΕΛΕΤΗΣ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ ΜΕ ΠΛΑΓΙΟΥΣ ΟΔΟΝΤΕΣ Απαραίτητα δεδομένα : αριθμός στροφών
Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i
Κέντρο μάζας Ασκήσεις κέντρου μάζας και ροπής αδράνειας Η θέση κέντρου μάζας ορίζεται ως r r i i αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας i και θέσης r i. Συμβολίζουμε
Κεφάλαιο 1. Εργαλειομηχανές. 1. Εισαγωγή Ιστορική Αναδρομή. Κεφάλαιο 1: Εργαλειομηχανές
Κεφάλαιο 1: Εργαλειομηχανές Κεφάλαιο 1 Εργαλειομηχανές Εργαλειομηχανή ονομάζεται μία μηχανή η οποία χρησιμοποιείται κατά κύριο λόγο στην κατασκευή εξαρτημάτων, με την απομάκρυνση υλικού. Ο όρος «Εργαλειομηχανή»,
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Μηχανουργική Τεχνολογία Ημερομηνία
Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.
Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.
5o Φύλλο Ασκήσεων. Γενικής Παιδείας. ΑΣΚΗΣΗ 1η. ΑΣΚΗΣΗ 2η. Να βρείτε τα διαστήματα μονοτονίας και τα ακρότατα των συναρτήσεων :
ΛΥΚΕΙΟ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ Λ Υ Κ Ε Ι Ο Υ Κ E Φ Α Λ Α Ι Ο Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ 1ο Λ Ο Γ Ι Σ Μ Ο Σ ΤΡΙΜΗΣ ΠΑΝΤΕΛΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Γενικής Παιδείας 5o Φύλλο Ασκήσεων ΑΣΚΗΣΗ 1η Να βρείτε τα διαστήματα μονοτονίας
ΜΕΛΕΤΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΑΠΟΛΗΞΗΣ (BURR) ΣΕ ΚΑΤΕΡΓΑΣΙΕΣ ΙΑΤΡΗΣΗΣ EN AW 2007
ΜΕΛΕΤΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΑΠΟΛΗΞΗΣ (BURR) ΣΕ ΚΑΤΕΡΓΑΣΙΕΣ ΙΑΤΡΗΣΗΣ EN AW 2007 Καθ. Αριστομένης Αντωνιάδης Καθ. Νικόλαος Μπιλάλης Καθ. Γεώργιος Σταυρουλάκης Ιωάννης Μαρακάκης Πολυτεχνείο
ΑΡΧΗ ΜΑ: ΘΕΜΑ Α1. Να
Γ ΤΑΞΗΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ ΠΕΜΠΤΗ 21 ΣΕΠΤΕΜΒΡΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜ ΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝΝ
ΠΕΙΡΑΜΑΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΦΘΟΡΑΣ ΚΟΠΤΙΚΩΝ ΕΡΓΑΛΕΙΩΝ
ΠΕΙΡΑΜΑΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΦΘΟΡΑΣ ΚΟΠΤΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΠΕΙΡΑΜΑΤΙΚΗΣ ΙΑ ΙΚΑΣΙΑΣ Αρχικά γίνεται η προετοιµασία της εργαλειοµηχανής. Το κάθε κατεργαζόµενο τεµάχιο, πριν υποστεί την τελική κατεργασία
ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών
ΛΥΣΕΙΣ άλυτων ΑΣΚΗΣΕΩΝ στην Αντοχή των Υλικών Ασκήσεις για λύση Η ράβδος του σχήματος είναι ομοιόμορφα μεταβαλλόμενης κυκλικής 1 διατομής εφελκύεται αξονικά με δύναμη Ρ. Αν D d είναι οι διάμετροι των ακραίων
Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια
Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια Κ. ΝΤΑΒΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Α. ΗΛΩΣΕΙΣ. Να αναφέρετε τα μέσα σύνδεσης.. Σε ποιες κατηγορίες διακρίνονται οι συνδέσεις;. Ποιες συνδέσεις ονομάζονται
, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΟΡΙΣΜΟΣ : Αν δυο μεταβλητά μεγέθη, y συνδέονται με τη σχέση y f (, όταν f είναι μια συνάρτηση παραγωγίσιμη στο, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το στο σημείο την παράγωγο
Εσωτερικές Αλληλεπιδράσεις Νο 3.
Το θέμα του 05, (επαναληπτικές) Εσωτερικές λληλεπιδράσεις Νο 3. Δύο ράβδοι είναι συνδεδεμένες στο άκρο τους και σχηματίζουν σταθερή γωνία 60 ο μεταξύ τους, όπως φαίνεται στο Σχήμα. Οι ράβδοι είναι διαφορετικές
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2016-2017 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Επιτρεπόμενη διάρκεια γραπτού 2,5ώρες (150 λεπτά). Μάθημα: ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ
Ανακρίνοντας τρία διαγράμματα
Ανακρίνοντας τρία διαγράμματα 1) Ένα σώµα κινείται πάνω στον άξονα x και στο διάγραµµα φαίνεται η θέση του σε συνάρτηση µε το χρόνο. Με βάση πληροφορίες που µπορείτε να αντλήσετε µελετώντας το παραπάνω
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά
Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.
Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 Μαρούσι 04-02-2014 Καθηγητής Σιδερής Ε. ΘΕΜΑ 1 ο (βαθμοί 4) (α) Θέλετε να κρεμάσετε μια ατσάλινη δοκό που έχει
Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία
1 Προσομοίωση μετωπικού φραιζαρίσματος με πεπερασμένα στοιχεία 2 Μετωπικό φραιζάρισμα: Χρησιμοποιείται κυρίως στις αρχικές φάσεις της κατεργασίας (φάση εκχόνδρισης) Μεγάλη διάμετρο Μεγάλες προώσεις μείωση
ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ. Η διαφορά µεταξύ ονοµαστικής και πραγµατικής διαστάσεως ονοµάζεται, ΑΠΟΚΛΙΣΗ ή ΣΦΑΛΜΑ.
ΑΝΟΧΕΣ - ΣΥΝΑΡΜΟΓΕΣ ΑΝΟΧΕΣ. Παρά την τελειοποίηση των µέσων κατεργασίας και των οργάνων µετρήσεως και ελέγχου, η κατασκευή ενός εξαρτήµατος µε απόλυτη ακρίβεια είναι αδύνατον να επιτευχθεί, γιατί, απλούστατα,
ΠΑΡΑ ΕΙΓΜΑ : ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΠΗ ΑΛΙΟΥ
Γεώργιος Κ. Χατζηκωνσταντής Μηχανές Πλοίου ΙΙ (εργαστήριο) 15 Πηδαλιουχία - πηδάλια ΠΑΡΑ ΕΙΓΜΑ : ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΠΗ ΑΛΙΟΥ (σελ. 96 / ΠΗ ΑΛΙΟΥΧΙΑ - ΠΗ ΑΛΙΑ 17 ) Η μελέτη σχεδίαση του πηδαλίου εκπονείται
Σχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς.
ΑΣΚΗΣΗ 1 Ένας οδοντωτός τροχός με ευθείς οδόντες, z = 80 και m = 4 mm πρόκειται να κατασκευασθεί με συντελεστή μετατόπισης x = + 0,5. Να προσδιοριστούν με ακρίβεια 0,01 mm: Τα μεγέθη της οδόντωσης h α,
ΑΡΧΙΜΗ ΗΣ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ Τ.Ε.Ι. (ΕΕΟΤ)
Πειραµατικός προσδιορισµός των συντελεστών του προσοµοιωτικού προτύπου των δυνάµεων κοπής για κοπτικό εργαλείο πλακίδιο σκληροµετάλλου κατηγορίας Ρ 0 µε επικάλυψη TiN και υλικό κατεργασίας χάλυβα επιβελτιώσεως
Σχήμα 3.13 : Τεμάχια κατεργασμένα με φραιζάρισμα
40 3.3 Φραιζάρισμα (milling) Με φραιζάρισμα κατεργάζονται τεμάχια από διάφορα υλικά όπως χάλυβας, χυτοσίδηρος, συνθετικά υλικά κ.λπ, με επίπεδες ή καμπύλες επιφάνειες, εσοχές, αυλάκια ακόμα και οδοντωτοί
ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2017-2018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ (ΕΝΔΕΙΚΤΙΚΕΣ) ΗΜΕΡΟΜΗΝΙΑ: 03/12/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό καθεμιάς
ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ
ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑ 1: Ο κύλινδρος που φαίνεται στο σχήμα είναι από χάλυβα που έχει ένα ειδικό βάρος 80.000 N/m 3. Υπολογίστε την θλιπτική τάση που ενεργεί στα σημεία Α και
2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 00 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ Α. Να αντιστοιχίσετε κάθε στοιχείο της πρώτης στήλης με το αντίστοιχο στοιχείο
ΠΑΚΕΤΟ ΕΡΓΑΣΙΑΣ 03. Θέμα: Πειραματικοαναλυτική διερεύνηση της επίδρασης δυναμικών φαινομένων στο μηχανισμό και στην κινηματική της κοπής.
ΠΑΚΕΤΟ ΕΡΓΑΣΙΑΣ 03 Θέμα: Πειραματικοαναλυτική διερεύνηση της επίδρασης δυναμικών φαινομένων στο μηχανισμό και στην κινηματική της κοπής. ΕΙΣΑΓΩΓΗ Στις κατεργασίες των μετάλλων με αφαίρεση υλικού, ένα πολύ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
ΚΑΤΕΡΓΑΣΙΕΣ ΜΕ ΑΦΑΙΡΕΣΗ ΥΛΙΚΟΥ
19 Γ ΚΑΤΕΡΓΑΣΙΕΣ ΜΕ ΑΦΑΙΡΕΣΗ ΥΛΙΚΟΥ 1. ΕΙΣΑΓΩΓΗ Οι βασικότερες κατεργασίες με αφαίρεση υλικού και οι εργαλειομηχανές στις οποίες γίνονται οι αντίστοιχες κατεργασίες, είναι : Κατεργασία Τόρνευση Φραιζάρισμα
ΑΡΧΙΜΗ ΗΣ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ Τ.Ε.Ι. (ΕΕΟΤ) ΙΕΞΑΓΩΓΗ ΠΕΙΡΑΜΑΤΩΝ
ΙΕΞΑΓΩΓΗ ΠΕΙΡΑΜΑΤΩΝ ΚΟΠΤΙΚΑ ΕΡΓΑΛΕΙΑ Τα κοπτικά εργαλεία που χρησιµοποιήθηκαν είναι της εταιρείας Kennametal (Εικόνα 1), κοπτικά KC725M µε πολλαπλές στρώσεις TiN/TiCN/TiN, υψηλής απόδοσης και σχεδιασµένα
ΑΡΧΙΜΗ ΗΣ: ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ Τ.Ε.Ι. (ΕΕΟΤ)
Πειραµατικός προσδιορισµός των συντελεστών του προσοµοιωτικού προτύπου των δυνάµεων κοπής για κοπτικό εργαλείο πλακίδιο σκληροµετάλλου κατηγορίας Ρ 0 µε επικάλυψη TiN και υλικό κατεργασίας χάλυβα επιβελτιώσεως
Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά
Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα
Σημειώσεις του μαθήματος Μητρωϊκή Στατική
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού
Μη φοβάστε την κρίση, έχουµε τη λύση!
Μη φοβάστε την κρίση, έχουµε τη λύση! Νέα σειρά µηχανηµάτων Άνθρωποι που διαφέρουν... Αγαπητοί φίλοι, Οι καλοί συνεργάτες στα δύσκολα φαίνονται. Αυτή την εποχή που η κρίση έχει επεκταθεί σε όλους τους
Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1
Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις
0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ).
Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ 8 ΟΡΙΣΜΟΣ Τι λέμε ρυθμό μεταβολής του μεγέθους y ως προς το μέγεθος για, αν y f( είναι παραγωγίσιμη συνάρτηση ; Απάντηση : Αν δύο μεταβλητά μεγέθη, y συνδέονται
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ
ΕΝΟΤΗΤΑ ΠΡΩΤΗ. Κατασκευή 1 ου Μέρους: Σκελετός του Οχήματος. Για την ενότητα αυτή απαιτούνται:
ΕΝΟΤΗΤΑ ΠΡΩΤΗ Κατασκευή 1 ου Μέρους: Σκελετός του Οχήματος Για την ενότητα αυτή απαιτούνται: Εργαλεία - Μέτρο - Μαρκαδόρος - Κόφτης σωλήνα PVC - Σταυροκατσάβιδο - Τρυπάνι - Αρίδα 1 4 - Αρίδα 3 32 - Μέγγενη
( x)( x) x ( x) 2. 2x< 60 x< 30 και τελικά 0 < x < 30. = x = (παραγώγιση σύνθετης συνάρτησης)
Β3. Από ένα φύλλο λαμαρίνας σχήματος τετραγώνου πλευράς 6 cm θα κατασκευαστεί ένα δοχείο, ανοικτό από πάνω, αφού κοπούν από τις γωνίες του τέσσερα ίσα τετράγωνα και στη συνέχεια διπλωθούν προς τα επάνω
( ) L v. δ Τύμπανο. κίνησης. Αντίβαρο τάνυσης. 600m. 6000Ν ανά cm πλάτους ιµάντα και ανά ενίσχυση 0.065
Ανυψωτικές & Μεταφορικές Μηχανές Ακαδημαϊκό έτος: 010-011 Άσκηση (Θέμα Επαναληπτικής Γραπτής Εξέτασης Σεπ010 / Βαρύτητα: 50%) Έστω η εγκατάσταση της ευθύγραµµης µεταφορικής ταινίας του Σχήµατος 1, η οποία
ρυθμός μεταβολής = παράγωγος
ΠΡΟΒΛΗΜΑΤΑ Ρυθμός μεταβολής ρυθμός μεταβολής = παράγωγος Πιο σωστό είναι να λέμε «ρυθμός μεταβολής ενός μεγέθους, ως προς ένα άλλο», αλλά... :) Προσέχουμε γιατί οι συναρτήσεις, στα περισσότερα προβλήματα,
ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2
ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται
Λυμένες ασκήσεις εργαλειομηχανών CNC (φρέζας, τόρνου) με χρήση προγραμματισμού G,M Για εκπαιδευτικούς σκοπούς
ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Λυμένες ασκήσεις εργαλειομηχανών CNC (φρέζας, τόρνου) με χρήση προγραμματισμού G,M Για εκπαιδευτικούς σκοπούς ΠΤΥΧΙΑΚΗ
Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α
Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 10 ο, Τμήμα Α Ορθογώνιο παραλληλόγραμμο 3 cm 5 cm Ο τύπος όπως είναι γραμμένος δείχνει ότι μπορούμε να πολλαπλασιάσουμε δύο μήκη. Ε=3cm x 5cm=15cm 2. Πώς καταλαβαίνετε
Συμβατικός προγραμματισμός CNC. κέντρα τόρνευσης
Συμβατικός προγραμματισμός CNC κέντρα τόρνευσης Κέντρα τόρνευσης Δομή προγράμματος Αρχές προγραμματισμού Τυποποιημένες εντολές Παραδείγματα Γ.Βοσνιάκος-2013 Συμβατικός προγραμματισμός CNC Άδεια Χρήσης
ΚΑΤΕΡΓΑΣΙΑ ΕΠΙΦΑΝΕΙΩΝ
ΚΑΤΕΡΓΑΣΙΑ ΕΠΙΦΑΝΕΙΩΝ Τα προϊόντα θα πρέπει να έχουν διαστατική ακρίβεια ακρίβεια μορφής αυτό οδηγεί σε καθορισμό του βαθμού τραχύτητας επιφάνειας για κάθε εφαρμογή ποιότητα επιφάνειας που καταχωρείται
Ειδικά θέματα στη ροπή αδράνειας του στερεού.
Ειδικά θέματα στη ροπή αδράνειας του στερεού Η συνική ροπή αδράνειας ως άθροισμα επί μέρους ροπών αδράνειας Έστω το τυχαίο στερεό του σχήματος που αποτελείται από επιμέρους τμήματα Α,Β,Γ,Δ Η ροπή αδράνειας
ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑΤΑ
ΠΑΝΕΛΛΗΝΙΕΣ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΘΕΜΑ Α ΘΕΜΑΤΑ Α1. Να γράψετε στο τετράδιό σας τους αριθμούς 1, 2, 3, 4, 5 από τη στήλη Α και δίπλα ένα από τα γράμματα α, β, γ, δ, ε, στ της στήλης
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις
Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι
Ερωτήσεις θεωρίας - Θέμα Β Εκφώνηση 1η Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι α) β) γ) Λύση Εκφώνηση 2η Στο διπλανό υδραυλικό
ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΣΚΙΤΤΙ ΗΣ ΦΙΛΗΜΩΝ
ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΙΤΛΟΣ: Επεξήγηση της χρήσης των κωδικών που χρησιµοποιούνται στον προγραµµατισµό µηχανών
Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου
Διάτρηση: Εφαρμογή Την επιμέλεια της εφαρμογής είχε η Γαλήνη Καλαϊτζοπούλου Υποστύλωμα διαστάσεων 0.50*0.50m θεμελιώνεται σε πλάκα γενικής κοιτόστρωσης πάχους h=0.70m. Η πλάκα είναι οπλισμένη με διπλή
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΡΧΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΙΔΙΚΟΤΗΤΑΣ Ι.Ε.Κ. "ΤΕΧΝΙΚΟΣ ΕΡΓΑΛΕΙΟΜΗΧΑΝΩΝ ΑΡΙΘΜΗΤΙΚΟΥ ΕΛΕΓΧΟΥ (C.N.C.
ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΡΧΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΙΔΙΚΟΤΗΤΑΣ Ι.Ε.Κ. "ΤΕΧΝΙΚΟΣ ΕΡΓΑΛΕΙΟΜΗΧΑΝΩΝ ΑΡΙΘΜΗΤΙΚΟΥ ΕΛΕΓΧΟΥ (C.N.C.)" 1 η ΠΕΡΙΟΔΟΣ 2015
Σχεδιασµός βιοµηχανικής παραγωγής εξαρτήµατος
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Σχεδιασµός βιοµηχανικής παραγωγής εξαρτήµατος Φοιτητής: Μπουλταδάκης Γεράσιµος Επιβλέπων Καθηγητής:
4. Κατάλογος Ερωτήσεων
4. Κατάλογος Ερωτήσεων ΟΜΑΔΑ ΕΡΩΤΗΣΕΩΝ 1 1.0.1. Σε τι διαφέρει το ευρωπαϊκό σύστημα προβολών από το αμερικανικό και πώς τοποθετούνται οι τρεις (3) βασικές όψεις στο χαρτί σχεδιάσεως στο κάθε σύστημα; (Να
TEXNIKH MHXANIKH 4. ΦΟΡΕΙΣ, ΔΟΚΟΙ, ΔΙΑΓΡΑΜΜΑΤΑ ΔΥΝΑΜΕΩΝ ΚΑΙ ΡΟΠΩΝ
TEXNIKH MHXANIKH 4. ΓΚΛΩΤΣΟΣ ΔΗΜΗΤΡΗΣ dimglo@uniwa.gr Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Πανεπιστήμιο Δυτικής Αττικής Δεκέμβριος 2018 1 Τύποι φορέων/δοκών Αμφιέρειστη Μονοπροέχουσα Αμφιπροέχουσα 2
ΤΟΡΝΕΥΣΗ (TURNING) Σχηµατική παράσταση της κατεργασίας και τυποποιηµένη µορφή του ΚΕ τόρνευσης παρουσιάζονται στα Σχ. 1 και 2, αντίστοιχα.
ΤΟΡΝΕΥΣΗ (TURNING) ΟΡΙΣΜΟΣ Είναι κατεργασία κοπής µε κύρια κίνηση την περιστροφική κίνηση της ατράκτου, όπου προσδένεται κατάλληλα το ΤΕ, και δευτερεύουσα τη µεταφορική κίνηση της πρόωσης (κίνηση του ΚΕ),
Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Method, Slab Analysis)
Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Metod, Slab Analysis) Α. Προβλήµατα επίπεδης παραµορφωσιακής κατάστασης A. ιπλή συµµετρία γεωµετρίας και φόρτισης Θεωρούµε τη σφυρηλάτηση ορθογωνικής µπιγέτας µε
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Εφαρμοσμένης Μηχανικής
ΑΣΚHΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ
ΣΚHΣΙΣ ΠΝΛΗΨΗΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΦΥΛΧΤΟΣ Π. ΣΜΪΛΗ. ΜYΡΙΙΝΝΗΣ. 1. Να λύσετε τις εξισώσεις : α) χ (χ 1) 3 = (1+5χ) β) x (3 3 x) 1 3(1 x) γ ) χ 3(χ ) +7 =( 3)( 5) 3χ δ) 5χ 19 3-(4χ-5) =χ (6χ 5) ε) 4 x 5 x
Tόρνοι Εξαρτήματα ΟΚ ΕΛΕΓΜΕΝΑ 15-12 τορνοι 2011 δ).indd 2 15/12/2011 5:54:29 μμ
Tόρνοι Εξαρτήματα OPTI D180 X 300 VARIO Στιβαρός τόρνος γενικής χρήσης με ψηφιακή ένδειξη ταχύτητας Πλεονεκτήματα Σκληρυμένες και ρεκτιφιαρισμένες γλύστρες Σκληρυμένος κώνος ατράκτου (DIN 6350) Εγγυημένη
ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΙΧΕΙΡΗΣΙΑΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΕΚΠΑΙΔΕΥΣΗ & ΑΡΧΙΚΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΤΑΡΤΙΣΗ (Ε.Π.Ε.Α.Ε.Κ. ΙΙ) ΚΑΤΗΓΟΡΙΑ ΠΡΑΞΕΩΝ: 2.2.2.α. Αναμόρφωση Προπτυχιακών