ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ.
|
|
- Αδελφά Μεσσηνέζης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ 1 Σκοπός Στην άσκηση αυτή οι φοιτητές εκπαιδεύονται επάνω στη χρήση οργάνων ακριβείας με τα οποία μπορούν να μετρήσουν διάφορες ποσότητες της μηχανικής. Εξοικειώνονται με τη χρήση του παχυμέτρου (γνωστού και ως διαστημομέτρου) για τη μέτρηση μήκους, τον ζυγό ακριβείας για τη ζύγιση μαζών και το χρονόμετρο για τη μέτρηση του χρόνου. Στο πρώτο μέρος της άσκησης, υπολογίζονται οι τιμές του όγκου και της πυκνότητας διαφόρων σωμάτων. Στο δεύτερο μέρος της άσκησης προσδιορίζεται η επιτάχυνση της βαρύτητας και συγκρίνεται η τιμή της με την αντίστοιχη τιμή από την βιβλιογραφία. Στο τρίτο μέρος της άσκησης, μελετάται η ροπή αδρανείας κάποιων σωμάτων ως προς έναν άξονα περιστροφής, η οποία προσδιορίζεται σαν συνάρτηση της μάζας των σωμάτων και της απόστασής τους από τον άξονα περιστροφής. ΛΕΞΕΙΣ-ΚΛΕΙΔΙΑ Χρόνος, μήκος, μάζα, ακρίβεια, αβεβαιότητα, απόλυτο σφάλμα, αξιοπιστία, μετάδοση σφάλματος, παχύμετρο, βερνιέρος, σταθερά του βερνιέρου, μετάδοση σφάλματος, απλό εκκρεμές, επιτάχυνση της βαρύτητας, γωνιακή ταχύτητα, γωνιακή επιτάχυνση, ροπή αδρανείας, κινητική ενέργεια 2 Μέτρηση πυκνότητας στερεού 2.1 Μέτρηση του μήκους Το μήκος είναι ένα θεμελιώδες φυσικό μέγεθος και αποτελεί βασικό στοιχείο των διαστάσεων των σωμάτων. Μονάδα μήκους στο SI είναι το μέτρο (m) και στο σύστημα CGS το εκατοστόμετρο (cm). Έχουν αναπτυχθεί αρκετά όργανα μέτρησης μήκους με πιο κοινό την μετροταινία με ελάχιστη υποδιαίρεση το m. Όταν οι μετρήσεις απαιτούν μεγαλύτερη ακρίβεια στη μέτρηση του μήκους, τότε χρησιμοποιούμε όργανα που φέρουν βερνιέρο, όπως το παχύμετρο (ή διαστημόμετρο) και το μικρόμετρο. 2.2 Παχύμετρο Το παχύμετρο (ή διαστημόμετρο) είναι ένα όργανο που χρησιμοποιείται για τη μέτρηση του μήκους μέχρι περίπου τα 20 cm. Όπως φαίνεται στο Σχ. 1.1, το παχύμετρο αποτελείται από ένα κανόνα που φέρει την κύρια κλίμακα με διαιρέσεις σε mm (ή και σε ίντσες). Η ελάχιστη υποδιαίρεση της κύριας 1
2 κλίμακας είναι το 1 mm. Στον κανόνα είναι προσαρμοσμένος ένας άλλος μικρότερος κανόνας που καλείται βερνιέρος και κινείται παράλληλα με την κύρια κλίμακα (Σχήμα 1.1). Σχήμα 1.1: Το παχύμετρο. Το παχύμετρο είναι κατασκευασμένο κατά τέτοιο τρόπο, ώστε να μπορούμε να μετρήσουμε εξωτερικές διαστάσεις, εσωτερικές διαστάσεις και βάθος. Η κύρια κλίμακα του παχυμέτρου διαθέτει δύο σταθερές σιαγόνες (η πάνω αριστερά και η κάτω αριστερά στο σχήμα) και το στέλεχος του βερνιέρου διαθέτει δύο αντίστοιχες κινητές σιαγόνες (η πάνω δεξιά και η κάτω δεξιά στο σχήμα). Όπως φαίνεται στο Σχήμα 1.2, οι δύο κάτω σιαγόνες (μια σταθερή και μια κινητή) χρησιμοποιούνται για τη μέτρηση των εξωτερικών διαστάσεων ενός σώματος ενώ οι αντίστοιχες δυο πάνω σιαγόνες για την μέτρηση εσωτερικών διαστάσεων (π.χ. κοιλοτήτων). Επίσης ο άξονας που προεξέχει από το τέλος του στελέχους της κύριας κλίμακας δεξιά, χρησιμοποιείται για τη μέτρηση του βάθους. Σχήμα 1.2: Τρόποι μέτρησης με το παχύμετρο. 2
3 Βερνιέρος Ο βερνιέρος είναι μια ιδιαίτερη κλίμακα που χρησιμοποιείται σε πολλά όργανα και βελτιώνει την ακρίβεια του αντιστοίχου οργάνου κατά 10 έως 1000 φορές. Η κλίμακα αυτή κινείται πάνω στην κύρια κλίμακα του οργάνου. Η λειτουργία του βερνιέρου στηρίζεται στο ότι οι υποδιαιρέσεις του είναι μικρότερες από τις υποδιαιρέσεις της κύριας κλίμακας κατά 1/x όπου x είναι ένα πολλαπλάσιο του 10 π.χ. 1/10, 1/100 ή1/1000, ανάλογα με την ακρίβεια του παχυμέτρου. Η ακρίβεια ενός οργάνου που φέρει βερνιέρο προσδιορίζεται από το λόγο της ελάχιστης υποδιαίρεσης της κύριας κλίμακας δια του αριθμού των χαραγών του βερνιέρου. Ο λόγος αυτός λ ονομάζεται σταθερά του βερνιέρου η οποία πρέπει να είναι γνωστή πριν το όργανο χρησιμοποιηθεί σε συγκεκριμένη μέτρηση. Διαδικασία μέτρησης με παχύμετρο Για τη μέτρηση των εξωτερικών διαστάσεων ενός σώματος, απομακρύνουμε τις σιαγόνες με μετακίνηση του βερνιέρου πιέζοντας την ασφάλεια του και τοποθετούμε το αντικείμενο ανάμεσα στις σιαγόνες. Πλησιάζουμε τις σιαγόνες μέχρι να έλθουν σε επαφή με το σώμα, όπως φαίνεται στο Σχ Προσδιορίζουμε τις ακέραιες υποδιαιρέσεις της κύριας κλίμακας που είναι πριν από το μηδέν του βερνιέρου και καταγράφουμε αυτό το νούμερο ως x. Επίσης καταγράφουμε το νούμερο m το οποίο περιγράφει την m οστή ένδειξη της κλίμακας του Βερνιέρου που συμπίπτει με μια και μοναδική γραμμή της κύριας κλίμακας. Το μετρούμενο μήκος τότε ισούται με x = x + mλ σε χιλιοστά. Χρησιμοποιώντας τις άλλες σιαγόνες ανάλογα και με τον ίδιο ακριβώς τρόπο, μετράμε εσωτερικές διαστάσεις και βάθη, πάντα στην ίδια κλίμακα. Για παράδειγμα το Σχήμα 1.3 δείχνει σε μεγέθυνση μια μέτρηση με παχύμετρο. Ο συγκεκριμμένος βερνιέρος έχει 20 υποδιαρέσεις (προσέξτε και τα μισά ανάμεσα από τα 10 νούμερά του) ενώ η κύρια κλίμακα έχει ελάχιστη υποδιάρεση το 1 mm και έτσι η σταθερά του βερνιέρου ισούται με λ = 1/20 = 0,05 mm. Από την κύρια κλίμακα διαβάζουμε x = 23,00 mm ενώ στον βερνιέρο βλέπουμε ότι συμπίπτει η m = 12 υποδιαίρεση (το 6). Επομένως η μέτρηση στο σχήμα αυτό αντιστοιχεί σε μήκος L = x + mλ = ,05 = 23,60 mm. Σχήμα 1.3: Μια μέτρηση με παχύμετρο (ένδειξη mm (= 23, ,05)). Η σταθερά του βερνιέρου (η ακρίβεια) προσδιορίζεται από το λόγο της ελάχιστης υποδιαίρεσης της κύριας κλίμακας δια του αριθμού των χαραγών του βερνιέρου: 1 mm/20 = 0,05 mm 3
4 2.3 Μέτρηση της μάζας Την μάζα ενός σώματος την μετράμε με τη βοήθεια του ζυγού ακριβείας ο οποίος συνήθως έχει ελάχιστη υποδιαίρεση το 1/100 του γραμμαρίου. Είναι σημαντικό να μηδενίζουμε πάντοτε την ένδειξη του οργάνου πριν από κάθε μέτρηση (πιέζοντας το κουμπί με την ένδειξη TARE ). Όταν ζυγίζουμε υγρά, μηδενίζουμε το ζυγό έχοντας επάνω του άδειο το δοχείο που πρόκειται να χρησιμοποιήσουμε. Ακολούθως γεμίζουμε το δοχείο με το υγρό ώστε να μετρήσουμε μόνο τη μάζα του υγρού και όχι του υγρού μαζί με το δοχείο του. Ο ζυγός βασίζεται στην απόκλιση ενός πολύ ευαίσθητου μικροελατηρίου και έτσι πάντοτε προσέχουμε να τοποθετούμε με φροντίδα τα διάφορα σώματα επάνω του ώστε να μην καταστραφεί το ελατήριο. 2.4 Πυκνότητα Ο ορισμός της πυκνότητας ρ ενός σώματος μάζας m είναι ο εξής ρ = m/v (1) Η πυκνότητα είναι μια πολύ σημαντική ιδιότητα των υλικών. Τυπικές τιμές πυκνότητας για διάφορα σώματα σε g/cm και kg/m δίνονται στον παρακάτω Πίνακα 1. Ο φοιτητής πρέπει να θυμάται ότι το νερό έχει πυκνότητα 1.0 g/cm και συγκρινόμενο με αυτό ο αέρας είναι περίπου 1000 φορές αραιότερος ενώ το ελαφρύτερο μέταλλο, το αλουμίνιο, είναι 2.7 φορές πυκνότερο. Πίνακας 1: Πυκνότητα διάφορων υλικών Υλικό - Ουσία Πυκνότητα Πυκνότητα (kg/m 3 ) (g/cm 3 ) Αέρας Πάγος Νερό Αλουμίνιο Al Αλουμίνα Al 2O Ζιρκόνια ZrO Σίδηρος Χάλυβας Πλατίνα Πειραματική διάταξη Χρησιμοποιούνται παχύμετρο για τις μετρήσεις μήκους και ζυγό για τη ζύγιση των μαζών. Μελετώνται σώματα από διάφορα υλικά και με διαφορετικές γεωμετρίες. 2.6 Πειραματική διαδικασία 1. Προσδιορίστε την σταθερά του παχύμετρου σας. 4
5 2. Μετρήστε τις διαστάσεις 2 διαφορετικών αντικειμένων και καταγράψτε τις τιμές. 3. Ζυγίστε τα ίδια 2 αντικείμενα και καταγράψτε τις τιμές. 4. Ποιο είναι το απόλυτο σφάλμα στη μέτρηση της διάστασης και της μάζας; 2.7 Εργαστηριακή Αναφορά Στο κομμάτι της θεωρίας απαντήστε μόνο τις παρακάτω ερωτήσεις: (1) Εξηγείστε τις έννοιες χρόνος, μήκος και μάζα στο σύστημα SI. (2) Εξηγείστε τους όρους ακρίβεια, αβεβαιότητα, απόλυτο σφάλμα και αξιοπιστία. (3) Τι διακρίνει ένα τυχαίο σφάλμα από ένα συστηματικό σφάλμα; (4) Εξηγείστε την έννοια σταθερά του βερνιέρου. (5) Τη είναι η μετάθεση (μετατόπιση) του μηδενός και η μετάδοσης σφάλματος; Δώστε παραδείγματα. (6) Δώστε τις γνωστές εξισώσεις για το εμβαδόν και το όγκο ένας σώματος της μορφής δακτυλίου. Εφαρμόστε επίσης για τον ίδιο σώμα την γνωστή εξίσωση της μετάδοσης σφάλματος για την περίπτωση εμβαδόν, όγκο και πυκνότητα. (7) Στον πίνακα με τις πυκνότητες, οι τιμές δίνονται σε δυο διαφορετικές μονάδες. Δείξτε αναλυτικά πως μετατρέπεται η τιμή ρ = 1 g/cm στο S.I. (8) Στον πίνακα με τις πυκνότητες, το Αλουμίνιο είναι με έντονη γραφή επειδή έχει ξεχωριστή θέση στα υλικά. Από τις τιμές του πίνακα, μπορείτε να μαντέψετε τον λόγο αυτής της ιδιαιτερότητας; Ζητούνται τα ακόλουθα στο κεφάλαιο «αποτελέσματα»: (1) Υπολογίστε όγκο και κατόπιν την πυκνότητα για τα 2 αντικείμενα και συγκρίνετε με τον Πίνακα 1. (2) Υπολογίστε επίσης την μετάδοση σφάλματος στον όγκο και στην πυκνότητα για ένα αντικείμενο (μπορείτε να χρησιμοποιήσετε ένα υπολογιστικό πρόγραμμα όπως το Excel ή το Origin). (3) Καταγράψτε τα τελικά αποτελέσματα στον παρακάτω πίνακα. Α/Α 1 βάθος h/mm εξωτερική διάμετρος D/mm εσωτερική διάμετρος d/mm όγκος V/mm μετάδοση σφάλματος σ /mm πυκνότητα ρ/kgm μετάδοση σφάλματος σ /kgm 2 5
6 3 Προσδιορισμός της επιτάχυνσης της βαρύτητας 3.1 Θεωρία Το απλό εκκρεμές αποτελείται από ένα βαρίδι μάζας m, θεωρητικά σημειακό, που αναρτάται από ένα αβαρές νήμα. Όταν το βάρος είναι σε θέση ισορροπίας, το νήμα είναι κατακόρυφο. Όταν το βάρος μετακινηθεί κατά μια μικρή γωνία (< 5 ) από τη θέση ισορροπίας, τότε το εκκρεμές εκτελεί απλή αρμονική ταλάντωση με περίοδο Τ που δίνεται από τη σχέση: Τ = 2π L/g (2) όπου L είναι το μήκος του νήματος και g η επιτάχυνση της βαρύτητας. Είναι αυτονόητο ότι όταν μεταβάλλεται το L θα μεταβάλλεται και το T. Από την καθημερινή μας εμπειρία γνωρίζουμε ότι εάν εκτρέψουμε το εκκρεμές κατά μια μικρή γωνία σε σχέση με την κατακόρυφο, τότε αυτό θα εκτελέσει ταλαντώσεις γύρω από αυτή σε τροχιά τόξου. Θεωρήστε το εκκρεμές στο διπλανό σχήμα σε τυχαία γωνία θ. Στη μάζα ασκούνται δυο δυνάμεις, το βάρος του mg και η τάση Τ του νήματος. Είναι βολικό να αναλύσουμε τις δυνάμεις αυτές κατά μήκος του νήματος και κατά μήκος της κυκλικής τροχιάς της μάζας m. Κατά μήκος του νήματος, η συνολική δύναμη Τ mg cosθ παίζει τον ρόλο της κεντρομόλου ενώ κατά μήκος της τροχιάς η F = mgsinθ παίζει τον ρόλο της δύναμης επαναφοράς. Το μείον έχει την έννοια του ότι η F έχει αντίθετο πρόσημο από αυτό της γωνίας θ. Από τη δεξιά μεριά π.χ. της κατακορύφου θ > 0 ενώ η F είναι αρνητική (προς την κατεύθυνση x) και αντίθετα στην αριστερή μεριά. Ο 2 ος νόμος του Νεύτωνα κατά μήκος της κυκλικής τροχιάς δίνει F = mα => mx = mg sinθ (3) όπου α = x είναι η επιτάχυνση της μάζας και ο διπλός τόνος συμβολίζει διπλή παραγώγιση ως προς το χρόνο. Στην παραπάνω διαφορική εξίσωση πρέπει να συσχετίσουμε το x με το θ. Το x είναι το μήκος του τόξου και γνωρίζουμε από απλή γεωμετρία ότι ισούται με την ακτίνα L επί την γωνία θ. Έτσι η διαφορική εξίσωση γίνεται x = g sin x (4) L Αυτή είναι μια μη γραμμική εξίσωση και δεν λύνεται εύκολα. Άλλωστε στο εκκρεμές μας ενδιαφέρουν μόνο οι μικρές γωνίες θ και έτσι μπορούμε να χρησιμοποιήσουμε την προσέγγιση sinθ ~ θ (ισχύει μόνο για γωνίες που είναι σε ακτίνια). Έτσι x = g x L (5) 6
7 η οποία έχει αρμονική λύση x = x sinωt με ω = g/l και επομένως περίοδο Τ που δίνεται από την Τ = (2π) L g (6) Μπορούμε να καταγράψουμε μια σειρά από διαφορετικές τιμές της περιόδου για διαφορετικές τιμές του νήματος L. Το L μετριέται με μια μετροταινία, ενώ το Τ μετριέται με χρονόμετρο. Συνήθως αφήνουμε το εκκρεμές να ταλαντεύεται για μια σειρά από διαδοχικές περιόδους, ταλαντώσεις (π.χ. 10), και μετρούμε έτσι με μεγαλύτερη ακρίβεια το χρόνο μιας περιόδου (γιατί;). Η εξίσωση (2) μπορεί να ξαναγραφεί με την εξής μορφή: Τ = 4π L (7) g η οποία μπορεί να θεωρηθεί ως μια γραμμική σχέση της μορφής y = λx (8) εάν θέσουμε y = T, λ = 4π /g και x = L. Έτσι εάν απεικονίσουμε τις τιμές (x, y) σε ένα χαρτί μιλιμετρέ, θα προκύψει μια ευθεία γραμμή, η κλίση της οποίας θα μας δώσει την τιμή λ και κατ επέκταση την τιμή g της επιτάχυνσης της βαρύτητας. 3.2 Πειραματική διάταξη Η πειραματική διάταξη αποτελείται από κατακόρυφη βάση στήριξης, αβαρές νήμα, βαρίδι γνωστού βάρους, μετροταινία και ψηφιακό χρονόμετρο. 3.3 Πειραματική διαδικασία Να μετρηθούν οι τιμές του 10Τ για πέντε διαφορετικές τιμές του L. 3.4 Εργαστηριακή Αναφορά Στο κομμάτι της θεωρίας απαντήστε μόνο τις παρακάτω ερωτήσεις: (1) Εξηγείστε την έννοια επιτάχυνση της βαρύτητας. (2) Εφαρμόστε το 2 ος νόμο του Νεύτωνα κατά μήκος της κυκλικής τροχιάς στην περίπτωση του εκκρεμούς για να εξηγείστε τα παρακάτω ερωτήματα: Αν αλλάξει η μάζα του βαριδίου, ποιά θα είναι η επίδραση στην τιμή της επιτάχυνσης της βαρύτητας; Τι θα συμβεί εάν αυξήσουμε την γωνία ταλάντωσης σε πολύ μεγάλες τιμές; 7
8 Ζητούνται τα ακόλουθα στο κεφάλαιο «αποτελέσματα»: (1) Να συμπληρώσετε στο παρακάτω πίνακα τα δεδομένα σας: 10Τ / sec T / sec T 2 / sec 2 L / cm (2) Να κατασκευαστεί το διάγραμμα Τ L σε χιλιοστομετρικό χαρτί (με το χέρι). Να χαραχθεί η ευθεία που θα περνά από το μηδέν (T = 0, L = 0). (3) Να υπολογιστεί από την κλίση της ευθείας η τιμή του g. Να συγκριθεί με τη θεωρητική τιμή της και να δικαιολογηθούν οι αποκλίσεις, εάν υπάρχουν. (4) Ποια συστηματικά σφάλματα γίνονται κατά τη μέτρηση του μήκους του εκκρεμούς; Αυτά τα σφάλματα είναι εντονότερα για μεγαλύτερο μήκος L ή για μικρότερο; (5) Γράψτε τις τιμές τριών γωνιών θ σε μοίρες που θεωρείτε ότι είναι σχετικά μικρές, μετατρέψτε τις σε ακτίνια και υπολογίστε το ημίτονό τους. Από τις τιμές σας σχολιάστε σε τι ποσοστό ισχύει η προσέγγιση sinθ ~ θ που χρησιμοποιήσαμε στην εξίσωση (4). Επίσης σχολιάστε εάν ισχύει τόσο για τις μοίρες όσο και για τα ακτίνια. (6) Στο πείραμα με το εκκρεμές μετράμε τον χρόνο 10 περιόδων και μετά διαιρούμε δια 10 για να βρούμε την περίοδο. Εξηγήστε γιατί δεν μετράμε τον χρόνο της μιας περιόδου απευθείας; 4 Βιβλιογραφία [1] Δ. Κουζούδης «Εργαστήριο Φυσικής, Μηχανική-Θερμοδυναμική-Κυματική», Γενικό τμήμα Πολυτεχνικής Σχολής, Πανεπιστήμιο Πατρών, 2011 (e-class, έγγραφα) [2] Μ. Πηλακούτα «Μετρήσεις-Αβεβαιότητα Μετρήσεων, Εργαστήριο Φυσικής ( ) 8
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή
Διαβάστε περισσότεραΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ
ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή οι φοιτητές
Διαβάστε περισσότεραΠυκνότητα στερεών σωμάτων κυλινδρικού σχήματος
Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους
Διαβάστε περισσότεραΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο
ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας
Διαβάστε περισσότεραΌργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων
Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Συγγραφείς:. Τμήμα, Σχολή Εφαρμοσμένων Επιστημών, ΤΕΙ Κρήτης Περίληψη Στην παρούσα εργαστηριακή άσκηση μετρήσαμε τη διάμετρο
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου
Διαβάστε περισσότεραΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα
ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα
Διαβάστε περισσότεραΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα
- &. ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου: Να µετρήσουµε την πυκνότητα
Διαβάστε περισσότεραΜέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς.
Μ2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. 1 Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί στη μέτρηση της επιτάχυνσης της βαρύτητας σε ένα τόπο. Αυτή η μέτρηση επιτυγχάνεται
Διαβάστε περισσότεραΜέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς
Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.
Διαβάστε περισσότεραΚεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές
Κεφάλαιο 11: Προσδιορισμός της επιτάχυνσης της βαρύτητας με το απλό εκκρεμές Σύνοψη Προσδιορισμός της έντασης του γήινου βαρυτικού πεδίου μέσω μέτρησης της περιόδου απλών αρμονικών ταλαντώσεων ενός απλού
Διαβάστε περισσότεραΟμαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο.
Ομαλή Κυκλική Κίνηση 1. Γίνεται με σταθερή ακτίνα (Το διάνυσμα θέσης έχει σταθερό μέτρο και περιστρέφεται γύρω από σταθερό σημείο. 1 3 υ υ 1 1. Το μέτρο της ταχύτητας του υλικού σημείου είναι σταθερό.
Διαβάστε περισσότερα2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
Διαβάστε περισσότεραΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ
ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ Συνοπτική περιγραφή Μελετάμε την κίνηση μιας ράβδου που μπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα,
Διαβάστε περισσότεραΣχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος)
Άσκηση Μ1 Θεωρητικό μέρος Μήκος και μάζα (βάρος) Όργανα μέτρησης μήκους Διαστημόμετρο Με το διαστημόμετρο μετράμε μήκη μέχρι και μερικά μέτρα, σε χαμηλές απαιτήσεις ως προς την ακρίβεια. Το κύριο μέρος
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Διαβάστε περισσότεραΕΚΦΕ Τρικάλων. Πειραματική Δοκιμασία στη Φυσική. Τοπικός Μαθητικός Διαγωνισμός. Τρίκαλα, Σάββατο, 8 Δεκεμβρίου 2012
1 Τοπικός Μαθητικός Διαγωνισμός 11η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2013 11Η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΕΚΦΕ Τρικάλων Πειραματική Δοκιμασία στη Φυσική Τοπικός Μαθητικός Διαγωνισμός Τρίκαλα,
Διαβάστε περισσότεραΜελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς
Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης
Διαβάστε περισσότεραΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO
ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 0 ΦΥΣΙΚΗ 0 - Δεκεμβρίου - 0 η ραστηριότητα Μέτρηση της πυκνότητας στερεού σώµατος Σκοπός της άσκησης Ο σκοπός στη άσκηση αυτή είναι η πειραµατική εύρεση της πυκνότητας ενός µεταλλικού
Διαβάστε περισσότεραΜηχανική Στερεού Ασκήσεις Εμπέδωσης
Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή
Διαβάστε περισσότεραΘέματα Παγκύπριων Εξετάσεων
Θέματα Παγκύπριων Εξετάσεων 2009-2015 Σελίδα 1 από 13 Μηχανική Στερεού Σώματος 1. Στο πιο κάτω σχήμα φαίνονται δύο όμοιες πλατφόρμες οι οποίες μπορούν να περιστρέφονται χωρίς τριβές, γύρω από κατακόρυφο
Διαβάστε περισσότερα1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
Διαβάστε περισσότεραmu l mu l Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός
Άσκηση Μ3 Μαθηματικό εκκρεμές Ορισμός Μαθηματικό εκκρεμές ονομάζεται μια σημειακή μάζα, η οποία είναι αναρτημένη σε νήμα. Το ίδιο το νήμα δεν έχει δική του μάζα και το οποίο εξάλλου δεν μπορεί να επιμηκυνθεί.
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019 ΘΕΜΑ A Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Διαβάστε περισσότεραΕργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού
Διαβάστε περισσότεραΔΙΑΡΚΕΙΑ: 180min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ
Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 80min ΤΜΗΜΑ:. ONOMA/ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΜΟΝΑΔΕΣ ΘΕΜΑ ο ΘΕΜΑ ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΘΕΜΑ Α:. Κατά την διάρκεια της φθίνουσας ταλάντωσης ενός αντικειμένου, το
Διαβάστε περισσότεραΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ ΑΣΚΗΣΗ Ένα αντικείμενο εκτελεί απλή αρμονική κίνηση με πλάτος 4, cm και συχνότητα 4, Hz, και τη χρονική στιγμή t= περνά από το σημείο ισορροπίας και κινείται προς τα δεξιά. Γράψτε
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Β ΛΥΚΕΙΟΥ (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 12/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ / Β ΛΥΚΕΙΟΥ (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 1/11/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4
Διαβάστε περισσότεραΦΥΣΙΚΗ. 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 2015 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός. Λευκάδα
ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΥΠΕΥΘΥΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΚΕΝΤΡΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ «ΠΑΝΕΚΦE» 13 η Ευρωπαϊκή Ολυμπιάδα επιστημών EUSO 15 ΕΚΦΕ Λευκάδας - Τοπικός Διαγωνισμός Λευκάδα 6-1-14 ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ:. ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:.
Διαβάστε περισσότερα1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ
1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
Κανάρη 36, Δάφνη Τηλ. 1 9713934 & 1 9769376 ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραΓ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΕ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΔΥΟ ΣΩΜΑΤΩΝ (ΤΑΛΑΝΤΩΣΗ + ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ) Όνομα:...
A A N A B P Y T A 9 5 0 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΕ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΔΥΟ ΣΩΜΑΤΩΝ (ΤΑΛΑΝΤΩΣΗ + ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ) Όνομα: Μέρος ο Στο διπλανό σχήμα βλέπετε ένα σύστημα
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης
Διαβάστε περισσότεραΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
Διαβάστε περισσότεραΜηχανική Στερεού Σώματος
Μηχανική Στερεού Σώματος 1. Ο ομογενής οριζόντιος δίσκος ακτίνας R και μάζας Μ, περιστρέφεται γύρω από κατακόρυφο άξονα που περνά από το κέντρο του με γωνιακή ταχύτητα ω 1. Μυρμήγκι μάζας m= 2 M που αρχικά
Διαβάστε περισσότεραΥπολογισμός της σταθεράς ελατηρίου
Εργαστηριακή Άσκηση 6 Υπολογισμός της σταθεράς ελατηρίου Βαρσάμης Χρήστος Στόχος: Υπολογισμός της σταθεράς ελατηρίου, k. Πειραματική διάταξη: Κατακόρυφο ελατήριο, σειρά πλακιδίων μάζας m. Μέθοδος: α) Εφαρμογή
Διαβάστε περισσότεραΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.
ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις
Διαβάστε περισσότεραΚεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής
Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής Σύνοψη Διερεύνηση με τη βοήθεια της μηχανής του Atwood της σχέσης μεταξύ δύναμης και επιτάχυνσης, καθώς και προσδιορισμός της επιτάχυνσης της βαρύτητας. Προαπαιτούμενη
Διαβάστε περισσότεραΒ22. Μέτρηση Ροπής Αδράνειας
Β22. Μέτρηση Ροπής Αδράνειας Α. Σκοπός της άσκησης Στο εργαστήριο αυτό θα μελετήσουμε την περιστροφική κίνηση που εκτελεί ένα υλικό σημείο ή ένα στερεό σώμα, σταθερού μεγέθους και σχήματος, υπό την παρουσία
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΝΙΚΑΙΑΣ ΠΕΙΡΑΙΑ. Φύλλο εργασίας
Φύλλο εργασίας ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΤΑΞΗ ΤΜΗΜΑ... ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΚΥΛΙΝΔΡΟΥ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ. ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΟΥ Στόχοι: Να μετρήσετε τη ροπή αδράνειας στερεού σώματος
Διαβάστε περισσότεραΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Διαβάστε περισσότεραTheory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό.
Q1-1 Δύο προβλήματα Μηχανικής (10 Μονάδες) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Μέρος A. Ο Κρυμμένος Δίσκος (3.5 Μονάδες)
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,
Διαβάστε περισσότεραΕυρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3)
ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Σχήμα 1 Εργαστηριακή Άσκηση: Μέτρηση της μάζας κινούμενου
Διαβάστε περισσότεραΘέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: Ε.Κ.Φ.Ε Κέρκυρας -1-
Θέμα: Πειραματική Μελέτη του απλού εκκρεμούς ΟΝΟΜΑ ΟΜΑΔΑΣ: ΜΕΛΗ ΟΜΑΔΑΣ: 1) 2) 3) 4) Ε.Κ.Φ.Ε Κέρκυρας -1- ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Α. Θεωρητική εισαγωγή Το απλό εκκρεμές είναι μια διάταξη που
Διαβάστε περισσότεραΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 7 Ιανουαρίου, 00 Ώρα: 0.00.00 Οδηγίες: ) Το δοκίμιο αποτελείται από έξι (6) σελίδες και πέντε (5) θέματα. ) Να απαντήσετε τα ερωτήματα όλων
Διαβάστε περισσότεραΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα
Διαβάστε περισσότεραΕυρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3)
ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική 17-01-2009 Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3) Επισηµάνσεις από τη θεωρία Πάνω στον πάγκο
Διαβάστε περισσότεραΚεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε
Διαβάστε περισσότερα1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος
7η ΗΜΕΡΙΔΑ ΠΕΙΡΑΜΑΤΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΒΙΟΛΟΓΙΑΣ ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ: 1. 2. 3. 1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος Ο Σκοπός της άσκησης Ο σκοπός
Διαβάστε περισσότεραΠροετοιμασία των ομάδων για τον τοπικό διαγωνισμό.
Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και
Διαβάστε περισσότεραΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας
Διαβάστε περισσότερα% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου
1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου
Διαβάστε περισσότεραΜέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών
Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του
Διαβάστε περισσότεραΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
Διαβάστε περισσότεραΦυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 3: Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς. Αικατερίνη Σκουρολιάκου
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 3: Μέτρηση της επιτάχυνσης της βαρύτητας με τη βοήθεια του απλού εκκρεμούς Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής
Διαβάστε περισσότεραΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό
Διαβάστε περισσότεραΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να
Διαβάστε περισσότεραΣχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία
2. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΑΡΑΞΗΣ 2.1 Μετρητικές ταινίες Οι μετρητικές ταινίες, πτυσσόμενες (αρθρωτές) ή περιελισσόμενες σε θήκη, είναι κατασκευασμένες από χάλυβα ή άλλο ελαφρύ κράμα και έχουν χαραγμένες υποδιαιρέσεις
Διαβάστε περισσότεραΘέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλάντωση Doppler Ρευστά -Στερεό Ονοματεπώνυμο Μαθητή: Ημερομηνία: 04-03-2019 Επιδιωκόμενος Στόχος: 80/100 Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της
Διαβάστε περισσότερα2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:
Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί
Διαβάστε περισσότεραΚεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
Διαβάστε περισσότεραΘέματα Παγκύπριων Εξετάσεων
Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί
Διαβάστε περισσότεραΆσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης
Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 017 Πρόβλημα Α Ένα σημειακό σωματίδιο μάζας m βάλλεται υπό γωνία ϕ και με αρχική ταχύτητα μέτρου v 0 από το έδαφος Η κίνηση εκτελείται στο ομογενές
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω
Διαβάστε περισσότεραα) Αν αλλάξει η πυκνότητα του σώματος (σφαίρας) από
AΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ ΑΝΩΣΗΣ 1. Με βάση το διπλανό σχήμα να απαντήσετε στα παρακάτω, F α) Αν αλλάξει η πυκνότητα του σώματος (σφαίρας) από A ρ= 2,7g/cm 3 σε ρ= 7,8g/cm 3 παραμένοντας βυθισμένο στο ίδιο υγρό,
Διαβάστε περισσότεραΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO Ε.Κ.Φ.Ε. Νέας Σμύρνης
ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 14-15 Ε.Κ.Φ.Ε. Νέας Σμύρνης Εξέταση στη Φυσική ΛΥΚΕΙΟ: Τριμελής ομάδα μαθητών: 1.. 3. Αναπληρωματικός: Θέματα: Ηλ. Μαυροματίδης Β Σειρά Θεμάτων (Φυσική) Μέτρηση της
Διαβάστε περισσότεραΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 2013 ΕΚΦΕ ΠΕΙΡΑΙΑ ΝΙΚΑΙΑΣ ΣΑΒΒΑΤΟ 8/12/2012 «ΦΥΣΙΚΗ» Σχολείο:.. Ονομ/επώνυμα μαθητών:
EUROPEAN UNION SCIENCE OLYMPIAD EUSO 013 1 ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 013 ΕΚΦΕ ΠΕΙΡΑΙΑ ΝΙΚΑΙΑΣ ΣΑΒΒΑΤΟ 8/1/01 «ΦΥΣΙΚΗ» Σχολείο:.. Ονομ/επώνυμα μαθητών: 1).. ).. 3).. ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ
Διαβάστε περισσότερατο άκρο Β έχει γραμμική ταχύτητα μέτρου.
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Μια ράβδος ΑΒ περιστρέφεται με σταθερή γωνιακή ταχύτητα γύρω από έναν σταθερό οριζόντιο άξονα που περνάει από ένα σημείο πάνω
Διαβάστε περισσότεραΕργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 2010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ
Εργαστηριακά Κέντρα Φυσικών Επιστηµών Ανατολικής (ΕΚΦΕ) Αττικής 010 ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΙΚΟΥ ΣΩΜΑΤΟΣ, ΜΕ ΤΗ ΧΡΗΣΗ ΦΩΤΟΠΥΛΗΣ Στόχοι. Σχεδιασµός, συναρµολόγηση και λειτουργία απλών πειραµατικών
Διαβάστε περισσότεραΈνωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.
Θεωρητικό Μέρος Θέμα 1 ο A Λυκείου 1 Μαρτίου 011 Στις ερωτήσεις A, B, Γ, και Δ μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.
Διαβάστε περισσότεραΛαμβάνοντας επιπλέον και την βαρύτητα, η επιτάχυνση του σώματος έχει συνιστώσες
Μικρό σώμα μάζας m κινείται μέσα σε βαρυτικό πεδίο με σταθερά g και επιπλέον κάτω από την επίδραση μιας δύναμης με συνιστώσες F x = 2κm και F y = 12λmt 2 όπου κ και λ είναι θετικές σταθερές σε κατάλληλες
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. δ) κινείται έτσι ώστε η μεταξύ τους απόσταση να παραμένει σταθερή.
Κανάρη 36, Δάφνη Τηλ. 10 9713934 & 10 9769376 ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ
ΦΥΣΙΚΗ Ο.Π Β Λ-Γ Λ 25/11/2018 ΧΡΗΣΤΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΙΩΑΝΝΗΣ ΤΖΑΓΚΑΡΑΚΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΈνωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.
Θεωρητικό Μέρος Θέμα 1 ο A Λυκείου 1 Μαρτίου 011 Στις ερωτήσεις A, B, και Γ, μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.
Διαβάστε περισσότεραΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6)
ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6) ΘΕΜΑ Α. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ
ΜΙΝΟΠΕΤΡΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΦΥΣΙΚΟΣ - Ρ/Η ΚΑΘΗΓΗΤΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ου ΥΠΕΥΘΥΝΟΣ ΣΕΦΕ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΡΑΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ ΚΕΡΑΤΣΙΝΙ
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΜΑΡΑΘΩΝΑ ΣΧΟΛΙΚΟ ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2009 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ
ΓΥΜΝΑΣΙΟ ΜΑΡΑΘΩΝΑ ΣΧΟΛΙΚΟ ΕΤΟΣ 2008-2009 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2009 ΤΑΞΗ Β ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Θέμα 1 ο : Α. Να μεταφέρετε στο γραπτό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που
Διαβάστε περισσότεραΤοπικός Διαγωνισμός EUSO2019 Πειραματική δοκιμασία Φυσικής
ΕΚΦΕ Νέας Ιωνίας ΕΚΦΕ Χαλανδρίου Τοπικός Διαγωνισμός EUSO2019 Πειραματική δοκιμασία Φυσικής Ένα «ακατάλληλο» δυναμόμετρο! 8 Δεκεμβρίου 2018 ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ: ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1) 2). 3).. Τα δυναμόμετρα Το
Διαβάστε περισσότεραΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίου, 2013 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε σε
Διαβάστε περισσότεραΕργαστηριακές Ασκήσεις Φυσικής - Α Λυκείου. Δύναμη και κίνηση. Όργανα, συσκευές, υλικά: Θεωρία. v = v αρχ + α Δt Δx = v αρχ Δt +1/2 α Δt 2
Δύναμη και κίνηση Όργανα, συσκευές, υλικά: Ένα εργαστηριακό αμαξάκι + πλάκες βαριδιών. Τροχαλία+ βάση χυτοσίδηρου για stp στο αμαξίδιο. Νήμα (70-80cm). Μάζα (50gr.) Δυναμόμετρο. Χρονομετρητής. Μετροταινία
Διαβάστε περισσότεραΜΟΝΑΔΕΣ 5. A4. Σώμα περιστρέφεται γύρω από σταθερό άξονα έχοντας στροφορμή μέτρου L. Τη χρονική στιγμή t=0 ασκούμε στο σώμα ροπή δύναμης μέτρου τ
ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΑΒΒΑΤΟ 31 ΜΑΡΤΙΟΥ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο
Διαβάστε περισσότεραβ. F = 2ρΑυ 2 γ. F = 1 2 ραυ 2 δ. F = 1 3 ραυ 2
Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα σύστημα ελατηρίου - μάζας εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Αν τετραπλασιάσουμε την ολική ενέργεια της ταλάντωσης αυτού του συστήματος
Διαβάστε περισσότεραγραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης
η εξεταστική περίοδος από 4/0/5 έως 08//5 γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017
ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017 ΘΕΜΑ Α Α1. Δ Α2. Γ Α3. Α Α4. Δ Α5. α) Λ β) Σ γ) Σ δ) Σ ε) Λ ΘΕΜΑ Β Β1. α) Σωστή η ii. β) Στη θέση ισορροπίας (Θ.Ι.) του σώματος ισχύει η συνθήκη ισορροπίας: ΣF=0
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΦΥΣΙΚΗΣ
ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 11 η Ευρωπαϊκή Ολυµπιάδα Επιστηµών EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συµµετέχουν: (1) (2) (3) Σέρρες 08/12/2012
Διαβάστε περισσότεραΤοπικός Μαθητικός Διαγωνισμός EUSO
Τοπικός Μαθητικός Διαγωνισμός EUSO 2014-2015 ΟΜΑΔΑ : 1] 2] 3] Γενικό Λύκειο Άργους Ορεστικού. 6 - Δεκ. - 1014 Φυσική Θέμα: Μέτρηση επιτάχυνσης. 1] Θεωρητική εισαγωγή Κίνηση είναι η αλλαγή της θέσης ενός
Διαβάστε περισσότεραΕΚΦΕ Χανίων «Κ. Μ. Κούμας» Νίκος Αναστασάκης Γιάννης Σαρρής
ΕΚΦΕ Χανίων «Κ. Μ. Κούμας» Νίκος Αναστασάκης Γιάννης Σαρρής Σκοπός Στόχοι Άσκησης Οι μαθητές να: Αναγνωρίζουν τις δυνάμεις που ασκούνται στα σώματα και αντιλαμβάνονται τις σχέσεις μεταξύ τους,
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ-ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΝΙΚΟΣ ΣΑΜΑΡΑΣ ΝΙΚΟΣ ΚΟΥΝΕΛΗΣ ΘΕΜΑ Α
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ-ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 28-2-2015 ΕΙΣΗΓΗΤΕΣ ΝΙΚΟΣ ΣΑΜΑΡΑΣ ΝΙΚΟΣ ΚΟΥΝΕΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το
Διαβάστε περισσότεραΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 3 να γράψετε στο τετράδιό
Διαβάστε περισσότεραΥπό Γεωργίου Κολλίντζα
ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ Υπό Γεωργίου Κολλίντζα
Διαβάστε περισσότεραΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.
ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται
Διαβάστε περισσότεραΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 23/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ο.Π ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο
Διαβάστε περισσότεραΓ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ
Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει
Διαβάστε περισσότεραΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ
ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ 16118 Δύο σφαιρίδια Σ 1 και Σ 2 βρίσκονται σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου φαίνεται στο
Διαβάστε περισσότερα7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.
ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου
Διαβάστε περισσότερα