Περίληψη ιπλωµατικής Εργασίας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περίληψη ιπλωµατικής Εργασίας"

Transcript

1 Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός της θέσης ενός κινητού µπορεί να επιτευχθεί µε ποικίλους τρόπους, οι οποίοι διαφέρουν σε ακρίβεια ως προς τον εντοπισµό της θέσης, σε κόστος, ευκολία υλοποίησης και ταχύτητα. Στις περισσότερες από αυτές τις µεθόδους, ο εντοπισµός της θέσης του κινητού απαιτεί ως προϋπόθεση την ύπαρξη server στον οποίο ο χρήστης απευθύνει ένα ερώτηµα που σχετίζεται µε τη θέση του. Η παρούσα διπλωµατική παρουσιάζει µια διαφορετική προσέγγιση σε ότι αφορά την εύρεση της θέσης ενός κινητού, η οποία αναφέρεται ως αυτόνοµος εντοπισµός θέσης ενός κινητού τηλεφώνου. Με τον όρο αυτό εννοούµε τη δυνατότητα που έχει ένα κινητό τηλέφωνο να εντοπίζει τη θέση του χωρίς να στηρίζεται στην ύπαρξη κάποιου τρίτου (δικτύου κινητής τηλεφωνίας, εξυπηρετητή, κτλ). Η παραπάνω προσέγγιση για την εκτίµηση της θέσης ενός κινητού στηρίζεται στη χρήση του δικτύου GSM της κινητής τηλεφωνίας, το οποίο αποτελείται από κυψέλες κάθε µια εκ των οποίων χαρακτηρίζεται µε µοναδικό τρόπο από έναν κωδικό (cell-id). Σηµαντικό στοιχείο αποτελεί το γεγονός ότι το κινητό έχει τη δυνατότητα σε κάθε χρονική στιγµή να γνωρίζει τους κωδικούς των κυψελών µε τις οποίες επικοινωνεί. Η εκτίµηση της θέσης ενός κινητού καθίσταται εφικτή αν για κάθε σηµείο του χώρου διαθέτουµε δύο πληροφορίες, που αποτελούν και το χάρτη κάλυψης µιας περιοχής: την κυψέλη που είναι ορατή σε αυτό και την ισχύ που λαµβάνει το κινητό από την κυψέλη αυτή. Η εκτίµηση θα γίνει µε την εφαρµογή αλγορίθµων πάνω στα δεδοµένα που αποτελούν το χάρτη κάλυψης. Αν αποθηκεύσουµε το χάρτη κάλυψης σε κάποιο εξυπηρετητή (server), τότε ο χρήστης θα έχει τη δυνατότητα να γνωρίζει τη θέση του, αν στείλει στον server, τον κωδικό της κυψέλης µε την οποία είναι συνδεδεµένη η κινητή συσκευή του καθώς και την λαµβανόµενη ισχύ. Ορισµένα µειονεκτήµατα της παραπάνω προσέγγισης είναι τα εξής: ηµιουργούνται ζητήµατα σχετικά µε την προστασία των προσωπικών δεδοµένων του χρήστη, καθώς η εύρεση της θέσης γίνεται µε τη βοήθεια server. Το γεγονός αυτό συνεπάγεται επίσης την επιβάρυνση του χρήστη µε κάποιο κόστος. Επιπλέον, υπάρχουν προβλήµατα σχετικά µε το διαθέσιµο εύρος ζώνης καθώς και την ανάγκη αναβαθµίσεων του δικτύου. Αντίθετα, µε τον αυτόνοµο εντοπισµό θέσης ενός κινητού, τα παραπάνω θέµατα παύουν να υφίσταται. Ωστόσο, η ανάγκη αποθήκευσης όλης της απαιτούµενης πληροφορίας στο κινητό, αποτελεί σηµαντικό µειονέκτηµα καθώς υπάρχει περιορισµός ως προς το χώρο µνήµης των κινητών τηλεφώνων. Η διαπίστωση αυτή καθιστά αναγκαία τη συµπίεση των αρχικών δεδοµένων, η οποία όµως, σε περίπτωση που είναι απωλεστική θα έχει επίπτωση στην ακρίβεια του αποτελέσµατος. Έτσι γίνεται κατανοητό ότι η επιλογή της µεθόδου συµπίεσης των δεδοµένων αποτελεί σηµαντικό παράγοντα για την ακρίβεια του αποτελέσµατος.

2 2. Παραγωγή Περιλήψεων Στην παρούσα διπλωµατική εργασία, η συµπίεση του αρχικού όγκου των δεδοµένων θα γίνει χρησιµοποιώντας τρεις βασικές δοµές: 1. Grids (απωλεστική συµπίεση) 2. Inverted grids (µη απωλεστική συµπίεση) 3. Precomputed δοµή (µη απωλεστική συµπίεση) Με τα grids ουσιαστικά επιχειρούµε να διαιρέσουµε την περιοχή κάλυψης µιας κυψέλης σε µικρότερα τµήµατα τα οποία θα ονοµάζουµε buckets. Αν θεωρήσουµε ως τιµή ενός bucket το µέσο όρο της ισχύος των σηµείων που ανήκουν σε αυτό, τότε ουσιαστικά έχουµε τεµαχίσει το χώρο που καλύπτει µια κυψέλη σε µικρότερες περιοχές, κάθε µια από τις οποίες χαρακτηρίζεται από µια τιµή ισχύος. Αν για κάθε µία κυψέλη που έχει καταγραφεί στα αρχικά δεδοµένα, κατασκευάσουµε το δικό της grid, τότε αντί του αρχικού όγκου δεδοµένων, διαθέτουµε ένα σύνολο από grids, τόσα όσα και ο αριθµός των κυψελών, τα οποία ουσιαστικά περιέχουν τα αρχικά δεδοµένα σε συµπιεσµένη µορφή, οπότε και καταλαµβάνουν πολύ µικρότερο χώρο. Πιο συγκεκριµένα στη διπλωµατική αυτή θα χρησιµοποιηθούν τέσσερα διαφορετικά είδη grids για καθένα από τα οποία θα διατεθούν τρία µεγέθη αποθηκευτικού χώρου (10, 50 και 100 kb). Η δοµή των Inverted grid διαφέρει από τα grids µόνο στον τρόπο που αποθηκεύονται τα δεδοµένα. Ενώ στην περίπτωση των grids αρκεί να αποθηκεύουµε για κάθε bucket του grid την τιµή της ισχύος, στα inverted grids αποθηκεύουµε για κάθε διαφορετική τιµή ισχύος που συναντάµε στο grid, τις τιµές των buckets που µας ενδιαφέρουν. Η ακρίβεια στον υπολογισµό της θέσης που παρέχει µια τέτοια δοµή είναι προφανώς η ίδια µε την ακρίβεια του αποτελέσµατος στα κανονικά grid. Η µόνη διαφορά που αναµένεται να υπάρξει είναι στον χρόνο απόκρισης, καθώς δίνει προτεραιότητα στην ταχύτατη απάντηση ερωτηµάτων που αφορούν σε δεδοµένες τιµές της ισχύος. Σε ότι αφορά στην precomputed δοµή, για κάθε τιµή ισχύος στα αρχικά δεδοµένα προϋπολογίζουµε τη θέση όπως επιστρέφεται από το επίπεδο 0 του αλγορίθµου εντοπισµού θέσης. Έτσι για κάθε κυψέλη έχουµε µια δοµή στην οποία βρίσκονται αποθηκευµένες οι συντεταγµένες της εκτιµωµένης θέσης για κάθε τιµή της ισχύος που λαµβάνει το κινητό τηλέφωνο. Μια τέτοια δοµή παρουσιάζει το πλεονέκτηµα της γρήγορης απόκρισης καθώς η θέση είναι ήδη υπολογισµένη. Το µειονέκτηµά της µεθόδου είναι πως δεν λαµβάνει υπόψη την ιστορικότητα της κίνησης του κινητού τηλεφώνου, µε αποτέλεσµα να έχει µικρότερη ακρίβεια από τις υπόλοιπες µεθόδους. 3. Αλγόριθµοι Εκτίµησης Θέσης Η ακρίβεια στον προσδιορισµό της θέσης δεν εξαρτάται µόνο από τη χρησιµοποιούµενη δοµή για τη συµπίεση των δεδοµένων αλλά και από τον αλγόριθµο εντοπισµού. Στην παρούσα υλοποίηση θα χρησιµοποιήσουµε τρία επίπεδα ακρίβειας, τα οποία είναι κατά σειρά αυξανόµενης πολυπλοκότητας και ακρίβειας τα παρακάτω: 1. Αλγόριθµος επιπέδου 0 2. Αλγόριθµος επιπέδου 1 3. Αλγόριθµος επιπέδου 2

3 Το επίπεδο 0 είναι το απλούστερο επίπεδο του αλγορίθµου. Ενεργοποιείται όταν δεν έχουµε διαθέσιµο πρόσφατο ιστορικό για το χρήστη. Ο αλγόριθµος αυτός θεωρεί ως θέση του κινητού τον µέσο όρο των σηµείων της κυψέλης µε την οποία έχει συνδεθεί το κινητό τηλέφωνο του χρήστη, µε παρόµοια ισχύ. Το επίπεδο 1, για να βελτιώσει την εκτίµηση της θέσης, λαµβάνει υπόψη του την τελευταία καταχώρηση του χρήστη, εφόσον αυτή είναι σχετικά πρόσφατη. Η βελτίωση της εκτίµησης γίνεται κυρίως όταν συµβαίνει αλλαγή κυψέλης. Τέλος το επίπεδο 2 βελτιώνει περαιτέρω την εκτίµηση από το επίπεδο 1, λαµβάνοντας υπόψη όχι µόνο την τελευταία καταχώρηση, αλλά όλες τις καταχωρήσεις των τελευταίων 5 λεπτών. 4. Πειραµατικά Αποτελέσµατα Για την εξαγωγή συµπερασµάτων σχετικά µε την καταλληλότερη δοµή συµπίεσης, εκτελέστηκε µια σειρά πειραµάτων σε αυτοκινητόδροµο και αστική περιοχή. Στα πειράµατα αυτά, στόχος ήταν η εκτίµηση του µέσου απόλυτου σφάλµατος και η σύγκρισή του µε το αντίστοιχο σφάλµα αν αντί των περιληπτικών χαρτών κάλυψης είχαν χρησιµοποιηθεί τα αρχικά δεδοµένα. Τα αποτελέσµατα για τον αυτοκινητόδροµο φαίνονται στα γραφήµατα που έπονται. Μετά από τη µελέτη των παραπάνω γραφηµάτων προκύπτει ότι στη γενική περίπτωση για τα επίπεδα 0 και 1, τα grid συµπεριφέρονται κατά τον αναµενόµενο τρόπο. Αυτό σηµαίνει ότι για κάθε τιµή διαθέσιµου αποθηκευτικού χώρου το µέσο απόλυτο σφάλµα µειώνεται καθώς αυξάνεται η πολυπλοκότητα του grid. Σχετικά µε το επίπεδο 2 προκύπτει ότι το grid τύπου 2 δίνει σε κάθε περίπτωση χώρου το µικρότερο σφάλµα. Συγκρίνοντας τώρα τα αποτελέσµατα αυτά µε τα αντίστοιχα στην περίπτωση που τα δεδοµένα µας δεν έχουν υποστεί κάποια συµπίεση, παρατηρούµε ότι για το επίπεδο 0 τα σφάλµατα είναι περίπου τα ίδια, οπότε έχουµε επιτύχει ελάχιστα µικρότερη ακρίβεια, χρησιµοποιώντας µικρότερο όγκο δεδοµένων. Τα ίδια ισχύουν και για το επίπεδο 1, ενώ για το

4 επίπεδο 2 η διαφορά στο σφάλµα ανάµεσα στα grid και την πλήρη κατανοµή είναι ελαφρώς µεγαλύτερη. Σχετικά µε την precomputed δοµή, η οποία χρησιµοποιείται µόνο για το επίπεδο πρόβλεψης 0, το σφάλµα είναι ίδιο µε αυτό της αρχικής κατανοµής, κάτι το οποίο ήταν αναµενόµενο λόγω του τρόπου κατασκευής της precomputed δοµής. Παρακάτω ακολουθούν τα αποτελέσµατα των πειραµάτων στην περίπτωση της αστικής περιοχής. Από τα παραπάνω γραφήµατα συµπεραίνουµε ότι για το επίπεδο 0 τα grid τύπου 1 παρουσιάζουν την καλύτερη επίδοση µέχρι τα 70kb, ενώ για µεγαλύτερες τιµές χώρου υπερτερούν τα grid τύπου 2, τα οποία έχουν επίσης τη βέλτιστη συµπεριφορά όταν εφαρµόσουµε τα επίπεδα 1 και 2. Παρατηρούµε επίσης ότι τα σφάλµατα στην περίπτωση της αστικής περιοχής δε µεταβάλλονται σηµαντικά για τα διάφορα επίπεδα πολυπλοκότητας του αλγορίθµου εντοπισµού. Τέλος, η χρήση της precomputed δοµής, που χρησιµοποιείται µόνο για το επίπεδο πρόβλεψης 0, επιφέρει σφάλµα µικρότερο από όλες τις περιπτώσεις των grid. Στο σηµείο αυτό θα µελετήσουµε τους χρόνους απόκρισης για τα διάφορα επίπεδα πρόβλεψης.

5 Είναι προφανές πως οι αλγόριθµοι για την εκτίµηση της θέσης ευνοούνται από τη χρήση των inverted grids και άρα αποδεικνύεται η αρχική θεωρητική εκτίµησή µας πως κατά την εκτέλεσή τους (και σε συνδυασµό µε την ειδική κατανοµή του χάρτη κάλυψης) ωφελούνται από την προτεραιότητα που δίνεται στην ανεύρεση περιοχών που χαρακτηρίζονται από κοντινές τιµές ισχύος. Συγκρίνοντας τώρα την απόκριση των αλγορίθµων επί των συµπιεσµένων και ασυµπίεστων δεδοµένων παρατηρούµε, όπως ήταν αναµενόµενο, ότι οι αλγόριθµοι αποκρίνονται ταχύτερα µε τη χρήση grid και ακόµα πιο γρήγορα µε τη χρήση inverted grids. Συµπερασµατικά µπορούµε να ισχυριστούµε ότι τα grid αποτελούν κατάλληλη δοµή για τη συµπίεση όλης της πληροφορίας που πρέπει να αποθηκευτεί στην κινητή συσκευή ώστε να καταστεί δυνατός ο αυτόνοµος προσδιορισµός της θέσης ενός χρήστη χωρίς τη µεσολάβηση κάποιου εξυπηρετητή. Και αυτό γιατί µε τη σωστή επιλογή του τύπου του grid, είναι δυνατό να εκτιµήσουµε τη θέση του χρήστη µε την ίδια ακρίβεια εκτιµώµενης θέσης που θα παρείχαν και τα αρχικά δεδοµένα, έχοντας ταυτόχρονα επιτύχει σηµαντική συµπίεση αυτών. Πιο συγκεκριµένα, ο βαθµός συµπίεσης για τα 10kb, 50kb και 100kb είναι αντίστοιχα: 1: (~0,1%) 1: (~0,5%) και 1: (~1%) Στην περίπτωση της αστικής περιοχής προτείνεται η χρήση των grid τύπου 2 καθώς παρουσιάζουν τη βέλτιστη συµπεριφορά για όλα τα επίπεδα πρόβλεψης του αλγορίθµου, ενώ για την περίπτωση του αυτοκινητόδροµου βέλτιστη συµπεριφορά σηµειώνουν τα grid τύπου 4 για τα επίπεδα 0 και 1 ενώ τα grid τύπου 2 είναι τα καλύτερα στην περίπτωση εφαρµογής του επιπέδου 0. Συνεπώς, θεωρώντας ένα παράδειγµα χρήσης όπου οι αλγόριθµοι για την εκτίµηση της θέσης εκτελούνται διαρκώς στη φορητή συσκευή, οπότε και θα έχουµε συνέχεια εκτίµηση επιπέδου 2, προκύπτει πως το grid τύπου 2 είναι σε κάθε περίπτωση βέλτιστο.

Εναλλακτικές Τεχνικές Εντοπισμού Θέσης

Εναλλακτικές Τεχνικές Εντοπισμού Θέσης Εναλλακτικές Τεχνικές Εντοπισμού Θέσης Στρίγκος Θεόδωρος Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο el01222@mail.ntua.gr Σκοπός της διπλωματικής εργασίας είναι η

Διαβάστε περισσότερα

ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ

ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Η ταχύτητα συνήθως δεν παραµένει σταθερή Ας υποθέσουµε ότι ένα αυτοκίνητο κινείται σε ευθύγραµµο δρόµο µε ταχύτητα k 36. Ο δρόµος είναι ανοιχτός και ο οδηγός αποφασίζει

Διαβάστε περισσότερα

Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη

Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη Τεχνικές ταξινόµησης αποτελεσµάτων µηχανών αναζήτησης µε βάση την ιστορία του χρήστη Όνοµα: Νικολαΐδης Αντώνιος Επιβλέπων: Τ. Σελλής Περίληψη ιπλωµατικής Εργασίας Συνεπιβλέποντες: Θ. αλαµάγκας, Γ. Γιαννόπουλος

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 15/1/2008 Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοηµοσύνη Ι» 7ο Φροντιστήριο 5//008 Πρόβληµα ο Στα παρακάτω ερωτήµατα επισηµαίνουµε ότι perceptron είναι ένας νευρώνας και υποθέτουµε, όπου χρειάζεται, τη χρήση δικτύων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΖΩΓΡΑΦΟΥ 157 73, ΑΘΗΝΑ ΕΒΓ - ΙΠΛ-2003-1 20 Ιανουαρίου 2003 Σύγκριση Αλγορίθµων

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Τεχνικές κατασκευής δένδρων επιθεµάτων πολύ µεγάλου µεγέθους και χρήσης

Διαβάστε περισσότερα

Περίληψη ιπλωµατικής Εργασίας

Περίληψη ιπλωµατικής Εργασίας Περίληψη ιπλωµατικής Εργασίας Θέµα: Πρότυπη Εφαρµογή ιαλειτουργικότητας για Φορητές Συσκευές Όνοµα: Κωνσταντίνος Χρηστίδης Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο Αντικείµενο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ

ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 3 ΜΕΛΕΤΗ ΑΠΟ ΟΣΗΣ ΚΑΙ ΕΠΙΤΥΧΙΑΣ ΗΜΕΡΗΣΙΩΝ ΗΜΟΣΙΩΝ ΚΑΙ Ι ΙΩΤΙΚΩΝ ΛΥΚΕΙΩΝ ΕΙΣΑΓΩΓΗ Στο κεφάλαιο αυτό θα εξετάσουµε την απόδοση και την επιτυχία των υποψηφίων η µερησίων δηµοσίων και ιδιωτικών λυκείων

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalma Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ακολουθιακή Επεξεργασία Τα δείγµατα

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών

Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών 1 Αλγόριθµοι δροµολόγησης µε µέσα µαζικής µεταφοράς στο µεταφορικό δίκτυο των Αθηνών ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ της Κωτσογιάννη Μαριάννας Περίληψη 1. Αντικείµενο- Σκοπός Αντικείµενο της διπλωµατικής αυτής εργασίας

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ /5/007 η Οµάδα Ασκήσεων ΑΣΚΗΣΗ (Θεωρία). α) Έστω fl() x η παράσταση

Διαβάστε περισσότερα

Κεφάλαιο 10 ο Υποπρογράµµατα

Κεφάλαιο 10 ο Υποπρογράµµατα Κεφάλαιο 10 ο Υποπρογράµµατα Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Η αντιµετώπιση των σύνθετων προβληµάτων και η ανάπτυξη των αντίστοιχων προγραµµάτων µπορεί να γίνει µε την ιεραρχική σχεδίαση,

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Η έννοια πρόβληµα Ανάλυση προβλήµατος Με τον όρο πρόβληµα εννοούµε µια κατάσταση η οποία χρήζει αντιµετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή ούτε προφανής. Μερικά προβλήµατα είναι τα εξής:

Διαβάστε περισσότερα

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο

Διαβάστε περισσότερα

Μεθοδολογίες παρεµβολής σε DTM.

Μεθοδολογίες παρεµβολής σε DTM. Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία

Διαβάστε περισσότερα

3.1 εκαδικό και υαδικό

3.1 εκαδικό και υαδικό Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και εδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 3.1 εκαδικό και υαδικό εκαδικό σύστηµα 2 1 εκαδικό και υαδικό υαδικό Σύστηµα 3 3.2 Μετατροπή Για τη µετατροπή

Διαβάστε περισσότερα

Η εφαρµογή ΕΦ.Υ.Ε.Σ. (ΕΦαρµογή Υποστήριξης Έρευνας Στατιστικής, άλφα έκδοση) και η ένταξή της στη διδασκαλία της Φυσικής Γυµνασίου - Λυκείου

Η εφαρµογή ΕΦ.Υ.Ε.Σ. (ΕΦαρµογή Υποστήριξης Έρευνας Στατιστικής, άλφα έκδοση) και η ένταξή της στη διδασκαλία της Φυσικής Γυµνασίου - Λυκείου Η εφαρµογή ΕΦ.Υ.Ε.Σ. (ΕΦαρµογή Υποστήριξης Έρευνας Στατιστικής, άλφα έκδοση) και η ένταξή της στη διδασκαλία της Φυσικής Γυµνασίου - Λυκείου Εµµανουήλ Κουσλόγλου, Ηλεκτρονικός Φυσικός ΠΕ12 Τηλ. 2510 250165

Διαβάστε περισσότερα

Φροντιστήριο 4. Άσκηση 1. Λύση. Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών Εαρινό Εξάµηνο

Φροντιστήριο 4. Άσκηση 1. Λύση. Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών Εαρινό Εξάµηνο Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2007-2008 Εαρινό Εξάµηνο Άσκηση 1 Φροντιστήριο 4 Θεωρείστε ένα έγγραφο με περιεχόμενο «αυτό είναι ένα κείμενο και

Διαβάστε περισσότερα

Εισαγωγή στα Προσαρµοστικά Συστήµατα

Εισαγωγή στα Προσαρµοστικά Συστήµατα ΒΕΣ 06 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Εισαγωγή στα Προσαρµοστικά Συστήµατα Νικόλας Τσαπατσούλης Επίκουρος Καθηγητής Π..407/80 Τµήµα Επιστήµη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου

Διαβάστε περισσότερα

Λειτουργικά. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Σιώζιος Κων/νος - Πληροφορική Ι

Λειτουργικά. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Σιώζιος Κων/νος - Πληροφορική Ι Λειτουργικά Συστήματα 1 Λογισμικό του Υπολογιστή Για να λειτουργήσει ένας Η/Υ εκτός από το υλικό του, είναι απαραίτητο και το λογισμικό Το σύνολο των προγραμμάτων που συντονίζουν τις λειτουργίες του υλικού

Διαβάστε περισσότερα

Όλες οι υπηρεσίες είναι διαθέσιμες μέσω διαδικτύου.

Όλες οι υπηρεσίες είναι διαθέσιμες μέσω διαδικτύου. ΚΕΦΑΛΑΙΟ 13 Όλες οι υπηρεσίες είναι διαθέσιμες μέσω διαδικτύου. Οι υπηρεσίες νέφους παρέχονται με τέτοιο τρόπο ώστε ο τελικός χρήστης δεν μπορεί να διακρίνει τεχνικές λεπτομέρειες. Η χρηστικότητα, η διαθεσιμότητα

Διαβάστε περισσότερα

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές:

Η ακρίβεια ορίζεται σαν το πηλίκο των ευρεθέντων συναφών εγγράφων προς τα ευρεθέντα έγγραφα. Άρα για τα τρία συστήµατα έχουµε τις εξής τιµές: Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY463 - Συστήµατα Ανάκτησης Πληροφοριών 2005-2006 Εαρινό Εξάµηνο 1 η Σειρά Ασκήσεων (Αξιολόγηση Αποτελεσµατικότητας Ανάκτησης) Άσκηση 1 (4 βαθµοί) Θεωρείστε

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 04 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΜΕΤΡΑ ΑΠΟ ΟΣΗΣ & ΕΞΙΣΟΡΡΟΠΗΣΗ ΦΟΡΤΟΥ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ ΕΠΙ ΟΣΕΩΝ ΒΑΘΜΟΣ ΠΑΡΑΛΛΗΛΙΣΜΟΥ Η υλοποίηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΩΤΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Τετάρτη 16 Ιουνίου 2004 Οδηγίες: Η διάρκεια της εξέτασης είναι 3,5 ώρες. Ισχύουν όσα αναφέρονται στους Κανονισµούς Εξετάσεων του ΕΑΠ γενικότερα και της ΘΕ ειδικότερα. Είναι υποχρεωτικό

Διαβάστε περισσότερα

(365)(364)(363)...(365 n + 1) (365) k

(365)(364)(363)...(365 n + 1) (365) k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ Εργ. Συστημάτων Βάσεων Γνώσεων & Δεδομένων LOCATION BASED SERVICES ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΜΩΜΑ

ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ Εργ. Συστημάτων Βάσεων Γνώσεων & Δεδομένων LOCATION BASED SERVICES ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΜΩΜΑ LOCATION BASED SERVICES ΕΙΣΑΓΩΓΙΚΟ ΣΗΜΕΙΜΩΜΑ ΠΛΗΡΟΦΟΡΙΕΣ: Σπύρος Αθανασίου, 210 772 1436, spathan@dblab.ece.ntua.gr Ντίνος Αρκουμάνης, +30972300110, dinosar@dblab.ece.ntua.gr Με τον όρο Location Based

Διαβάστε περισσότερα

Η Έρευνα στα Ελληνικά Πανεπιστήµια και η Ευρωπαϊκή Πραγµατικότητα

Η Έρευνα στα Ελληνικά Πανεπιστήµια και η Ευρωπαϊκή Πραγµατικότητα Η Έρευνα στα Ελληνικά Πανεπιστήµια και η Ευρωπαϊκή Πραγµατικότητα Ιωάννης Π. Γεροθανάσης Καθηγητής Πανεπιστηµίου Ιωαννίνων Πρώην Πρύτανης Πανεπιστηµίου Ιωαννίνων Μέλος της Α ΙΠ Η ανώτατη εκπαίδευση, η

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Αυτόνομες Τεχνικές Εντοπισμού Θέσης ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ της ΚΑΤΕΡΙΝΑΣ

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Εισαγωγή στον προγραµµατισµό Η έννοια του προγράµµατος Ο προγραµµατισµός ασχολείται µε τη δηµιουργία του προγράµµατος, δηλαδή του συνόλου εντολών που πρέπει να δοθούν στον υπολογιστή ώστε να υλοποιηθεί

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

Παλαιότερες ασκήσεις

Παλαιότερες ασκήσεις Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών HY6 - Συστήµατα Ανάκτησης Πληροφοριών Παλαιότερες ασκήσεις η Σειρά Ασκήσεων (Αξιολόγηση της Αποτελεσµατικότητας της Ανάκτησης) Άσκηση ( η σειρά ασκήσεων

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Initialize each person to be free. while (some man is free and hasn't proposed to every woman) { Choose such a man m w = 1 st woman on m's list to

Initialize each person to be free. while (some man is free and hasn't proposed to every woman) { Choose such a man m w = 1 st woman on m's list to Κεφάλαιο 2 Δοµές Δεδοµένων Ι Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Δοµές Δεδοµένων Ι Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε

Διαβάστε περισσότερα

Περιεχόµενα. Μέρος I Βασικά στοιχεία των Microsoft Windows XP Professional. Ευχαριστίες... 17 Εισαγωγή... 19

Περιεχόµενα. Μέρος I Βασικά στοιχεία των Microsoft Windows XP Professional. Ευχαριστίες... 17 Εισαγωγή... 19 Περιεχόµενα Ευχαριστίες... 17 Εισαγωγή... 19 Μέρος I Βασικά στοιχεία των Microsoft Windows XP Professional 1 Εισαγωγή στη διαχείριση των Microsoft Windows XP Professional... 25 Ξεκίνηµα µε τα Windows XP

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 - ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΚΕΦΑΛΑΙΟ 6 - ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΚΕΦΑΛΑΙΟ 6 - ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Προγραµµατισµός Η/Υ Ο προγραµµατισµός είναι η διατύπωση του αλγορίθµου σε µορφή κατανοητή από τον Η/Υ ώστε να τον εκτελέσει («τρέξει» όπως λέµε στην ορολογία της

Διαβάστε περισσότερα

Εισαγωγή στις Βάσεις εδοµένων και την Access

Εισαγωγή στις Βάσεις εδοµένων και την Access Μάθηµα 1 Εισαγωγή στις Βάσεις εδοµένων και την Access Τι είναι οι βάσεις δεδοµένων Μία βάση δεδοµένων (Β..) είναι µία οργανωµένη συλλογή πληροφοριών, οι οποίες είναι αποθηκευµένες σε κάποιο αποθηκευτικό

Διαβάστε περισσότερα

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ

α) Κύκλος από δύο δοσµένα σηµεία Α, Β. Το ένα από τα δύο σηµεία ορίζεται ως κέντρο αν το επιλέξουµε πρώτο. β) Κύκλος από δοσµένο σηµείο και δοσµένο ευ ΕΙΣΑΓΩΓΗ ΣΤΟ ΛΟΓΙΣΜΙΚΟ SKETCHPAD ΜΕΡΟΣ Α Μιλώντας για ένα λογισµικό δυναµικής γεωµετρίας καλό θα ήταν να διακρίνουµε αρχικά 3 οµάδες εργαλείων µε τα οποία µπορούµε να εργαστούµε µέσα στο συγκεκριµένο περιβάλλον.

Διαβάστε περισσότερα

Οπτική αντίληψη. Μετά?..

Οπτική αντίληψη. Μετά?.. Οπτική αντίληψη Πρωτογενής ερεθισµός (φυσικό φαινόµενο) Μεταφορά µηνύµατος στον εγκέφαλο (ψυχολογική αντίδραση) Μετατροπή ερεθίσµατος σε έννοια Μετά?.. ΓΙΑ ΝΑ ΚΑΤΑΝΟΗΣΟΥΜΕ ΤΗΝ ΟΡΑΣΗ ΠΡΕΠΕΙ ΝΑ ΑΝΑΛΟΓΙΣΤΟΥΜΕ

Διαβάστε περισσότερα

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x. 3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την

Διαβάστε περισσότερα

Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσµατικότητας της Ανάκτησης)

Λύσεις 1 ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσµατικότητας της Ανάκτησης) Πανεπιστήµιο Κρήτης, Τµήµα Επιστήµης Υπολογιστών ΗΥ-6 Συστήµατα Ανάκτησης Πληροφοριών 7-8 Εαρινό Εξάµηνο Άσκηση Λύσεις ης Σειράς Ασκήσεων (Αξιολόγηση της Αποτελεσµατικότητας της Ανάκτησης) Θεωρείστε µια

Διαβάστε περισσότερα

Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18

Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18 Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου 2017 1 / 18 Βέλτιστα (στατικά) δυαδικά δένδρα αναζήτησης Παράδειγµα: Σχεδιασµός προγράµµατος

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Διαβάζοντας το βιβλίο του Θρασύβουλου εγώ εστιάζω στο εξής:

Διαβάζοντας το βιβλίο του Θρασύβουλου εγώ εστιάζω στο εξής: Φίλε Λάµπρο σε κάποια θα συµφωνήσω και σε κάποια θα διαφωνήσω. Θα συµφωνήσω ότι στις περιπτώσεις που αναφέρεις και οι τρεις κινήσεις έχουν τα χαρακτηριστικά της ευθύγραµµης οµαλά µεταβαλλόµενης κίνησης

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης. Βασίζεται στις διαφάνειες των R. Sedgewick K.

Δοµές Δεδοµένων. 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης. Βασίζεται στις διαφάνειες των R. Sedgewick K. Δοµές Δεδοµένων 2η Διάλεξη Αλγόριθµοι Ένωσης-Εύρεσης (Union-Find) Ε. Μαρκάκης Βασίζεται στις διαφάνειες των R. Sedgewick K. Wayne Περίληψη Συνδετικότητα δικτύου Αφαιρέσεις Συνδεδεµένα συστατικά Αφηρηµένη

Διαβάστε περισσότερα

Εφαρµογές πλοήγησης για φορητές συσκευές µε τη χρήση Web Services

Εφαρµογές πλοήγησης για φορητές συσκευές µε τη χρήση Web Services Εφαρµογές πλοήγησης για φορητές συσκευές µε τη χρήση Web Services Γεώργιος Σταυρουλάκης gstavr@dblab.ece.ntua.gr ιπλωµατική εργασία στο Εργαστήριο Συστηµάτων Βάσεων Γνώσεων και εδοµένων Επιβλέπων: Καθηγητής

Διαβάστε περισσότερα

Μάθημα 3.8 Τεχνικές μεταφοράς δεδομένων Λειτουργία τακτικής σάρωσης (Polling) Λειτουργία Διακοπών DMA (Direct Memory Access)

Μάθημα 3.8 Τεχνικές μεταφοράς δεδομένων Λειτουργία τακτικής σάρωσης (Polling) Λειτουργία Διακοπών DMA (Direct Memory Access) Μάθημα 3.8 Τεχνικές μεταφοράς δεδομένων Λειτουργία τακτικής σάρωσης (Polling) Λειτουργία Διακοπών DMA (Direct Memory Access) Μελετώντας το μάθημα θα μπορείς να ξέρεις τη λειτουργία του Polling να ξέρεις

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Τεχνολογία και Κοινωνία

Τεχνολογία και Κοινωνία 1 Τεχνολογία και Κοινωνία Μάθηµα 5 ο Δηµήτρης Τσέλιος Επίκουρος Καθηγητής ΤΕΙ Θεσσαλίας 2 Περιεχόµενο του µαθήµατος Η Τεχνητή και η Ανθρώπινη Νοηµοσύνη Όπως είδαµε στα προηγούµενα µαθήµατα τα κύρια χαρακτηριστικά

Διαβάστε περισσότερα

Εφαρμογές Πληροφορικής

Εφαρμογές Πληροφορικής Εφαρμογές Πληροφορικής Εγκατάσταση λογισμικού (προγραμμάτων) Ορισμοί Ο ηλεκτρονικός υπολογιστής χωρίζεται σε δύο μέρη, το υλικό και το λογισμικό. Το υλικό αποτελείται από όλα τα εξαρτήματα τα οποία έχουν

Διαβάστε περισσότερα

Ανοικτά Ακαδηµα κά Μαθήµατα

Ανοικτά Ακαδηµα κά Μαθήµατα ΤΕΙ Ιονίων Νήσων Ανοικτά Ακαδηµα κά Μαθήµατα Ανάλυση Σχεδίαση Υλοποίηση Αξιολόγηση Ανάλυση: Πληροφορίες σχετικά µε τις ανάγκες της εκπαίδευσης Σχεδίαση: Καθορισµός χαρακτηριστικών του εκπαιδευτικού λογισµικού

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

ΑΝΑΣΚΟΠΗΣΗ ΤΩΝ ΠΟΛΙΤΙΚΩΝ ΚΑΙ ΤΩΝ ΠΡΑΚΤΙΚΩΝ ΤΗΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΠΟΥ ΥΠΟΣΤΗΡΙΖΕΤΑΙ ΑΠΟ ΤΠΕ

ΑΝΑΣΚΟΠΗΣΗ ΤΩΝ ΠΟΛΙΤΙΚΩΝ ΚΑΙ ΤΩΝ ΠΡΑΚΤΙΚΩΝ ΤΗΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΠΟΥ ΥΠΟΣΤΗΡΙΖΕΤΑΙ ΑΠΟ ΤΠΕ Leonardo da Vinci Leonardo Project: A EUROPEAN OBSERVATORY ON THE USE OF ICT-SUPPORTED LIFE LONG LEARNING BY SMES, MICRO-ENTERPRISES AND THE SELF-EMPLOYED IN RURAL AREAS ΑΝΑΣΚΟΠΗΣΗ ΤΩΝ ΠΟΛΙΤΙΚΩΝ ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος

Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος Ενότητα 1 - Εισαγωγή Ευστράτιος Γαλλόπουλος c Ε. Γαλλόπουλος 201-2015 Ασκηση 1 Τι ονοµάζουµε υπολογιστικούς πυρήνες ; πυρήνων. Να δώσετε 3 παραδείγµατα τέτοιων Απάντηση ιαδικασίες (που µπορεί να είναι

Διαβάστε περισσότερα

2. Missing Data mechanisms

2. Missing Data mechanisms Κεφάλαιο 2 ο 2. Missing Data mechanisms 2.1 Εισαγωγή Στην προηγούµενη ενότητα περιγράψαµε κάποια από τα βασικά µοτίβα εµφάνισης των χαµένων τιµών σε σύνολα δεδοµένων. Ένα άλλο ζήτηµα που µας απασχολεί

Διαβάστε περισσότερα

ΧΡΗΣΗ ΝΕΩΝ ΟΠΤΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΤΙΓΡΑΦΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΣΤΕΦΑΝΙΑ ΧΛΟΥΒΕΡΑΚΗ 2014

ΧΡΗΣΗ ΝΕΩΝ ΟΠΤΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΤΙΓΡΑΦΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΣΤΕΦΑΝΙΑ ΧΛΟΥΒΕΡΑΚΗ 2014 ΧΡΗΣΗ ΝΕΩΝ ΟΠΤΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΤΙΓΡΑΦΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ ΣΤΕΦΑΝΙΑ ΧΛΟΥΒΕΡΑΚΗ 2014 ΧΡΗΣΗ ΝΕΩΝ ΟΠΤΙΚΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΤΗΝ ΑΝΤΙΓΡΑΦΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ ΑΝΤΙΚΕΙΜΕΝΩΝ Η χρήση

Διαβάστε περισσότερα

Νανοτεχνολογίες: Οφέλη και Κίνδυνοι για τις Ανεπτυγµένες και Αναπτυσσόµενες Χώρες 1 1 Ο Μεγάλος ιάλογος για τη Νανοτεχνολογία: Γίνεται µεγάλη συζήτηση για το πώς η Νανοτεχνολογία διαθέτει τεράστιο τεχνολογικόκαι

Διαβάστε περισσότερα

Μάθημα 8: Επικοινωνία Συσκευών με τον Επεξεργαστή

Μάθημα 8: Επικοινωνία Συσκευών με τον Επεξεργαστή Μάθημα 8: Επικοινωνία Συσκευών με τον Επεξεργαστή 8.1 Τακτική σάρωση (Polling) Ας υποθέσουμε ότι έχουμε ένα πληκτρολόγιο συνδεδεμένο σε ένα υπολογιστικό σύστημα. Το πληκτρολόγιο είναι μια μονάδα εισόδου.

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Παραγώγιση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 21 εκεµβρίου 2015 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. Ο αλγόριθµος κτίζει όλες τις δυνατές αναθέσεις εργασιών στους φοιτητές (υπάρχουν n! διαφορετικές αναθέσεις) και επιστρέφει εκείνη µε το µέγιστο βαθµό καταλληλότητας.

Διαβάστε περισσότερα

Επιχειρηµατικές ιαδικασίες: Εισαγωγικές Έννοιες & Αρχικά στάδια µοντελοποίησης

Επιχειρηµατικές ιαδικασίες: Εισαγωγικές Έννοιες & Αρχικά στάδια µοντελοποίησης ΟΙΚΟΝΟΜΙΚΌ ΠΑΝΕΠΙΣΤΉΜΙΟ ΑΘΗΝΏΝ ΤΜΗΜΑ ΙΟΙΚΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Επιχειρηµατικές ιαδικασίες: Εισαγωγικές Έννοιες & Αρχικά στάδια µοντελοποίησης 1o φροντιστήριο στο µάθηµα Ανάλυση και µοντελοποίηση

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

7.3 Πρωτόκολλο TCP. 1. Το TCP πρωτόκολλο παρέχει υπηρεσίες προσανατολισµένες σε σύνδεση. Σ Λ

7.3 Πρωτόκολλο TCP. 1. Το TCP πρωτόκολλο παρέχει υπηρεσίες προσανατολισµένες σε σύνδεση. Σ Λ Ερωτήσεις 7.3 Πρωτόκολλο TCP 1. Τι είναι το τµήµα (segment) στο πρωτόκολλο TCP; Από ποια µέρη αποτελείται; 2. Για ποιο σκοπό χρησιµοποιείται ο Αριθµός ειράς στην επικεφαλίδα ενός segment TCP; 3. την περίπτωση

Διαβάστε περισσότερα

Η Carglass είναι Ready Business. Vodafone Power to you

Η Carglass είναι Ready Business. Vodafone Power to you Η Carglass είναι Ready Business Vodafone Power to you Με το Vodafone Business Cloud έχουµε γίνει πιο γρήγοροι, παραγωγικοί κι ευέλικτοι κι έτσι µπορούµε να εξυπηρετούµε αποτελεσµατικά περισσότερα περιστατικά,

Διαβάστε περισσότερα

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ

Διαβάστε περισσότερα

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ)

Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) Η ΤΕΧΝΗ ΤΟΥ ΙΑΒΑΣΜΑΤΟΣ ΜΕΤΑΞΥ ΤΩΝ ΑΡΙΘΜΩΝ (ΠΑΡΕΜΒΟΛΗ ΚΑΙ ΠΡΟΣΕΓΓΙΣΗ) ΜΙΧΑΛΗΣ ΤΖΟΥΜΑΣ ΕΣΠΟΤΑΤΟΥ 3 ΑΓΡΙΝΙΟ. ΠΕΡΙΛΗΨΗ Η έννοια της συνάρτησης είναι στενά συνυφασµένη µε τον πίνακα τιµών και τη γραφική παράσταση.

Διαβάστε περισσότερα

Εικονική Μνήµη. Κεφάλαιο 8. Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi

Εικονική Μνήµη. Κεφάλαιο 8. Dr. Garmpis Aristogiannis - EPDO TEI Messolonghi Εικονική Μνήµη Κεφάλαιο 8 Υλικό και δοµές ελέγχου Οι αναφορές στην µνήµη υπολογίζονται δυναµικά κατά την εκτέλεση Ηδιεργασίαχωρίζεταισετµήµατα τα οποία δεν απαιτείται να καταλαµβάνουν συνεχόµενες θέσεις

Διαβάστε περισσότερα

ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Τελική Εργασία στο µάθηµα Αλγόριθµοι Εξόρυξης

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

14/10/2005. <id, ts, x, y> (online). (single-pass). Potamias-abstract.pdf

14/10/2005. <id, ts, x, y> (online). (single-pass). Potamias-abstract.pdf Συµπίεση εδοµένων Τροχιάς Κινούµενων Αντικειµένων Μιχάλης Ποταµιάς mpotamias@dblab.ntua.gr ιπλωµατική εργασία στο Εργαστήριο Συστηµάτων Βάσεων Γνώσεων και εδοµένων Επιβλέπων: Καθηγητής Τ. Σελλής 1 Εισαγωγή

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

Search and Replication in Unstructured Peer-to-Peer Networks

Search and Replication in Unstructured Peer-to-Peer Networks Search and Replication in Unstructured Peer-to-Peer Networks Presented in P2P Reading Group in 11/10/2004 Abstract: Τα µη-κεντρικοποιηµένα και µη-δοµηµένα Peer-to-Peer δίκτυα όπως το Gnutella είναι ελκυστικά

Διαβάστε περισσότερα

Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή

Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Εισαγωγή στις έννοιες Αλγόριθµοι και Πολυπλοκότητα, Οργάνωση Δεδοµένων και Δοµές Δεδοµένων Χρήσιµοι µαθηµατικοί

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΦΘΙΝΟΠΩΡΟ 2006 Λύση ΑΣΚΗΣΗΣ #2 Τ. Σελλής

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 5) 1 / 17 Απόδοση προγραμμάτων Συχνά χρειάζεται να εκτιμηθεί η απόδοση

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

Χρήση του Ηλεκτρονικού Ταχυδροµείου µεαποµακρυσµένη σύνδεση

Χρήση του Ηλεκτρονικού Ταχυδροµείου µεαποµακρυσµένη σύνδεση Χρήση του Ηλεκτρονικού Ταχυδροµείου µεαποµακρυσµένη σύνδεση Η πιο κοινή µέθοδος για να διαβάσoυµε E-mail είναι η αποµακρυσµένη σύνδεση τερµατικού (telnet), κατά την οποία συνδέετε ο προσωπικός υπολογιστής

Διαβάστε περισσότερα

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης

Λύσεις Παλιών Θεµάτων. Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Λύσεις Παλιών Θεµάτων Συστήµατα Παράλληλης Επεξεργασίας, 9ο εξάµηνο Υπεύθ. Καθ. Νεκτάριος Κοζύρης Θέµα Φεβρουάριος 2003 1) Έστω ένας υπερκύβος n-διαστάσεων. i. Να βρεθεί ο αριθµός των διαφορετικών τρόπων

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός

Εισαγωγή. Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση. υϊσµός Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Εισαγωγή Οπως είδαµε για την εκκίνηση της Simplex χρειαζόµαστε µια Αρχική Βασική Εφικτή Λύση Σε περιπτώσεις

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ

ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΜΝΗΜΗ Πρωτόκολλα Συνέπειας Μνήµης σε Πολυεπεξεργαστικά Υπολογιστικά Συστήµατα ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΨΗΛΩΝ ΕΠΙ

Διαβάστε περισσότερα

ΕΙ Η ΜΝΗΜΩΝ ΠΤΥΤΙΚΕΣ ΜΗ ΠΤΥΤΙΚΕΣ

ΕΙ Η ΜΝΗΜΩΝ ΠΤΥΤΙΚΕΣ ΜΗ ΠΤΥΤΙΚΕΣ ΜΝΗΜΕΣ ΕΙ Η ΜΝΗΜΩΝ ΠΤΥΤΙΚΕΣ ΜΗ ΠΤΥΤΙΚΕΣ 2 ΠΤΥΤΙΚΕΣ vs ΜΗ ΠΤΥΤΙΚΕΣ Πτητική είναι η µνήµη η οποία χάνει το περιεχόµενο της µε το σβήσιµο του ηλεκτρονικού υπολογιστή (διακοπή τροφοδοσίας), ενώ µη πτητική

Διαβάστε περισσότερα

Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών. (Geographical Information Systems GIS)

Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών. (Geographical Information Systems GIS) Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών (Geographical Information Systems GIS) ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ, ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΧΑΛΚΙΑΣ ΧΡΙΣΤΟΣ Εισαγωγή στα GIS 1 Ορισµοί ΣΓΠ Ένα σύστηµα γεωγραφικών πληροφοριών

Διαβάστε περισσότερα

1ο. Η αριθµητική του υπολογιστή

1ο. Η αριθµητική του υπολογιστή 1ο. Η αριθµητική του υπολογιστή 1.1 Τί είναι Αριθµητική Ανάλυση Υπάρχουν πολλά προβλήµατα στη µαθηµατική επιστήµη για τα οποία δεν υπάρχουν αναλυτικές εκφράσεις λύσεων. Στις περιπτώσεις αυτές έχουν αναπτυχθεί

Διαβάστε περισσότερα

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

Προγραμματισμός Ι (HY120)

Προγραμματισμός Ι (HY120) Προγραμματισμός Ι (HY20) # μνήμη & μεταβλητές πρόγραμμα & εκτέλεση Ψηφιακά δεδομένα, μνήμη, μεταβλητές 2 Δυαδικός κόσμος Οι υπολογιστές είναι δυαδικές μηχανές Όλη η πληροφορία (δεδομένα και κώδικας) κωδικοποιείται

Διαβάστε περισσότερα

2η Οµάδα Ασκήσεων. 250 km db/km. 45 km 0.22 db/km 1:2. T 75 km 0.22 db/km 1:2. 75 km db/km. 1:2 225 km 0.22 db/km

2η Οµάδα Ασκήσεων. 250 km db/km. 45 km 0.22 db/km 1:2. T 75 km 0.22 db/km 1:2. 75 km db/km. 1:2 225 km 0.22 db/km ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΙΚΤΥΑ ΟΠΤΙΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Καθηγητής Συβρίδης η Οµάδα Ασκήσεων Άσκηση 1η Στη ζεύξη που φαίνεται

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3)

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3) ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Πανελλήνιος προκαταρκτικός διαγωνισµός στη Φυσική 17-01-2009 Σχολείο: Ονόµατα των µαθητών της οµάδας: 1) 2) 3) Επισηµάνσεις από τη θεωρία Πάνω στον πάγκο

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος

Διαβάστε περισσότερα

Η ΕΞΕΛΙΞΗ ΤΩΝ ΑΠΟΘΕΣΕΩΝ ΦΕΡΤΩΝ ΥΛΙΚΩΝ ΣΕ ΤΑΜΙΕΥΤΗΡΕΣ ΩΣ ΥΝΑΜΙΚΟ ΦΑΙΝΟΜΕΝΟ: ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΤΑΜΙΕΥΤΗΡΑ ΚΡΕΜΑΣΤΩΝ

Η ΕΞΕΛΙΞΗ ΤΩΝ ΑΠΟΘΕΣΕΩΝ ΦΕΡΤΩΝ ΥΛΙΚΩΝ ΣΕ ΤΑΜΙΕΥΤΗΡΕΣ ΩΣ ΥΝΑΜΙΚΟ ΦΑΙΝΟΜΕΝΟ: ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΤΑΜΙΕΥΤΗΡΑ ΚΡΕΜΑΣΤΩΝ 6ο ο Πανελλήνιο Γεωγραφικό Συνέδριο της Ελληνικής Γεωγραφικής Εταιρείας, Θεσσαλονίκη, 3-63 6 Οκτωβρίου 2002 Η ΕΞΕΛΙΞΗ ΤΩΝ ΑΠΟΘΕΣΕΩΝ ΦΕΡΤΩΝ ΥΛΙΚΩΝ ΣΕ ΤΑΜΙΕΥΤΗΡΕΣ ΩΣ ΥΝΑΜΙΚΟ ΦΑΙΝΟΜΕΝΟ: ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΤΑΜΙΕΥΤΗΡΑ

Διαβάστε περισσότερα

Αριθµητική Παραγώγιση και Ολοκλήρωση

Αριθµητική Παραγώγιση και Ολοκλήρωση Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:

Διαβάστε περισσότερα

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001

Μηχανική ΙI. Λαγκρανζιανή συνάρτηση. Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 3/2001 Τµήµα Π Ιωάννου & Θ Αποστολάτου 3/2001 Μηχανική ΙI Λαγκρανζιανή συνάρτηση Είδαµε στο προηγούµενο κεφάλαιο ότι ο δυναµικός νόµος του Νεύτωνα είναι ισοδύναµος µε την απαίτηση η δράση ως το ολοκλήρωµα της

Διαβάστε περισσότερα

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Επισηµάνσεις από τη θεωρία

Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο: Επισηµάνσεις από τη θεωρία ΕΚΦΕ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2009 Προκαταρκτικός διαγωνισµός στη Φυσική Σχολείο: Ονόµατα των µαθητών της οµάδας 1) 2) 3) Επισηµάνσεις από τη θεωρία Παθητικό ηλεκτρικό δίπολο

Διαβάστε περισσότερα