ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ
|
|
- Ανδρόνικα Γιαννακόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ιατµηµατικό Μεταπτυχιακό Πρόγραµµα Σπουδών ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Τελική Εργασία στο µάθηµα Αλγόριθµοι Εξόρυξης Πληροφορίας Μουτσανά Βασιλική
2 Τα δεδοµένα που έχουµε προς επεξεργασία αποτελούνται από 2528 υποδείγµατα (instances) και 39 αριθµητικά χαρακτηριστικά ή αλλιώς µεταβλητές που επηρεάζουν την τιµή του χαρακτηριστικού προς εξέταση, εδώ output. Στόχος µας είναι να καταλήξουµε σε ένα σύνολο attribute το οποίο θα µας δώσει τις απαιτούµενες πληροφορίες µε το µικρότερο υπολογιστικό κόστος. Το πρώτο βήµα είναι να διαπιστώσουµε εάν κάποιες από τις µεταβλητές µας δεν συµβάλλουν σηµαντικά στην εξαγωγή συµπερασµάτων οπότε µπορούµε να τις αφαιρέσουµε από την περαιτέρω ανάλυση χωρίς να χάνουµε σε ακρίβεια και αξιοπιστία. Μία πρώτη ιδέα µπορούµε να πάρουµε παρατηρώντας τα χαρακτηριστικά συνολικά (επιλέγοντας visualize all). Παρατηρούµε ότι το attribute 38 θα µπορούσε ίσως να αφαιρεθεί αφού δεν παρουσιάζει ιδιαίτερο ενδιαφέρον. Προκειµένου να καταλήξουµε στο σωστό σύνολο attribute προς επεξεργασία δοκιµάζουµε διαφορετικές µεθόδους αποτίµησης και αναζήτησης χαρακτηριστικών ή υποσυνόλου χαρακτηριστικών. Εάν επιλέξουµε τους συνδυασµούς CfsSubsetEval BestFirst, CfsSubsetEval SubsetForwardSelection, CfsSubsetEval ScatterSearch καταλήγουµε σε 10 χαρακτηριστικά έναντι των 39 που είχαµε αρχικά. Στις 2 πρώτες περιπτώσεις τα χαρακτηριστικά αυτά συµπίπτουν ενώ στην 3 η είναι
3 διαφορετικά. Με το συνδυασµό CfsSubsetEval- GeneticSearch φαίνεται ότι τελικά καταλήγουµε σε 9 attribute ενώ µε τον CfsSubsetEval GreedyStepwise σε 11. Στη συνέχεια µπορούµε να εφαρµόσουµε διάφορους αλγορίθµους και να παρατηρήσουµε το ποσοστό επιτυχηµένης πρόβλεψης που µας δίνει καθένας από αυτούς καθώς και τα αντίστοιχα σφάλµατα. Αρχικά εφαρµόζουµε τον M5Rules στο σύνολο των attribute 6,7,12,19,23,24,27,28,32. Τα αποτελέσµατα που παίρνουµε προκύπτουν χρησιµοποιώντας τη µέθοδο Cross - Validation: Correlation coefficient Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Στη συνέχεια εφαρµόζουµε τον Conjunctive Rule στο ίδιο σύνολο µεταβλητών Correlation coefficient Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % οκιµάζουµε τον M5Rules χωρίς αυτή τη φορά να αφαιρέσουµε κάποια από τις µεταβλητές µας. Οπότε θα πάρουµε:
4 Correlation coefficient Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Τα αποτελέσµατα είναι πολύ καλύτερα και το σφάλµα αρκετά µικρότερο. Τα ίδια ακριβώς αποτελέσµατα θα παρατηρήσουµε και µε τη χρήση των Bagging και RandomSubspace. Εδώ αξίζει να σηµειώσουµε ότι αφαιρώντας το attribute 38 - για το οποίο είχαµε διαπιστώσει αρχικά ότι µπορεί να µην συνεισέφερε ουσιαστικά στην ανάλυση µας - τα εξαγόµενα είναι τα ίδια. Μέχρι τώρα όλα τα attribute ήταν numeric µε αποτέλεσµα να µην µπορούµε να εφαρµόσουµε κάποιους αλγορίθµους που απαιτούν nominal χαρακτηριστικά. Για το λόγο αυτό θα µετατρέψουµε το output σε nominal για να δούµε εάν τα ποσοστά επιτυχούς πρόβλεψης βελτιώνονται και κατά πόσο. οκιµάζουµε τους αλγορίθµους Jrip και J48graft οπότε έχουµε αντίστοιχα: Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error %
5 Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % δηλαδή τα αποτελέσµατα βελτιώνονται σηµαντικά. Εδώ είχαµε αφαιρέσει το attribute 38. Συνεχίζουµε µε nominal output οπότε εφαρµόζοντας τον αλγόριθµο Ladtree παίρνουµε: Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error 0.17 Relative absolute error % Root relative squared error % και τα συγκεκριµένα αποτελέσµατα βελτιώνονται ακόµη περισσότερο όταν µετά από δοκιµές αφαιρούµε τα χαρακτηριστικά 8, 13 και 37, δηλαδή:
6 Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Μέχρι στιγµής ο συγκεκριµένος αλγόριθµος µας δίνει το µεγαλύτερο ποσοστό επιτυχίας και το µικρότερο σφάλµα. Αυτό που κάνουµε στη συνέχεια είναι να χρησιµοποιήσουµε µετα αλγορίθµους για να βελτιώσουµε το ποσοστό επιτυχηµένης πρόβλεψης. Έτσι επιλέγουµε Bagging Ladtree οπότε: Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Μετά από κάποιες ακόµη δοκιµές καταλήγουµε στο συνδυασµό Bagging Adaboost - Ladtree τον οποίο θα χρησιµοποιήσουµε επιλέγοντας ως supply test set το αρχείο test, ευελπιστώντας να πάρουµε αντίστοιχα καλά αποτελέσµατα µε αυτά που παίρνουµε µε την cross validation µέθοδο.
7 Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error %
squared error, Mean absolute error, Root mean squared error) µεγάλωσαν,
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣ ΣΤΙΣ ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΈΤΟΣ 2009 ΌΝΟΜΑ : ΚΑΤΣΑΒΡΙΑΣ ΕΥΑΓΓΕΛΟΣ Α.Μ. : 09480014 ΕΞΑΜΗΝΟ
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Δ.Π.Μ.Σ. ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΧΟΥΧΟΥΜΗΣ ΙΩΑΝΝΗΣ Το σύνολο των
ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ
DATA MINING ΗΜΕΡΟΜΗΝΙΑ: 25/05/2009 TΕΛΙΚΗ ΕΡΓΑΣΙΑ ΝΙΚΗ ΜΟΣΧΟΥ 1 ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ Αφού δεν γνωρίζουμε κάποιο τρόπο για να επιλέξουμε εκ των προτέρων την πιο κατάλληλη και αποδοτική μέθοδο μάθησης
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ: ΣΤΑΤΙΣΤΙΚΗ-ΠΙΘΑΝΟΤΗΤΕΣ ΜΑΘΗΜΑ: ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΔΗΜΗΤΡΑ ΤΑΤΣΙΟΥ ΠΡΟΕΠΙΣΚΟΠΗΣΗ ΚΑΙ ΕΞΕΡΕΥΝΗΣΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ Τα προς επεξεργασία
Ι. Preprocessing (Επεξεργασία train.arff):
Ονοματεπώνυμο: Κατερίνα Αργύρη Δ.Π.Μ.Σ: Εφαρμοσμένες Μαθηματικές Επιστήμες Ακαδ. Έτος: 2008-2009 1 Για την παρούσα εργασία διατίθενται τρία σύνολα δεδομένων: Δεδομένα Εκπαίδευσης (train set αρχείο train.arff):
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ : ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΡΟΗ ΠΙΘΑΝΟΝΤΗΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΓΑΣΙΑ 08: ΕΙΡΗΝΗ ΛΥΓΚΩΝΗ 1 Ο ΣΤΑΔΙΟ: Πριν εφαρμόσουμε οποιοδήποτε αλγόριθμο
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ (Data Mining) Πανδή Αθηνά Μάιος 2008 Τα δεδομένα που έχουμε προς επεξεργασία χωρίζονται σε τρία μέρη: 1. Τα δεδομένα εκπαίδευσης (training set) που αποτελούνται από 2528
ΑΝΔΡΟΥΛΑΚΗΣ ΜΑΝΟΣ A.M AΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΑΝΔΡΟΥΛΑΚΗΣ ΜΑΝΟΣ A.M. 09470015 AΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Διδάσκων: Γιώργος Τζιραλής ΔΠΜΣ ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Στάδιο 1 ο. Προεπισκόπηση-προεπεξεργασία δεδομένων: Δίδονται τα παρακάτω
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008
ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ: ΕΦΑΡΜΟΣΜΕΝΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΕΡΩΤΗΜΑ 1 ΕΡΩΤΗΜΑ 2. ELONGATEDNESS <= 41 AND MAX.LENGTH ASPECT RATIO <= 7 AND COMPACTNESS > 95: bus (70.0/1.0)
ΕΡΩΤΗΜΑ 1 Κάνοντας Visualize all στο παρατηρούμε ότι όλα τα 20 attributes είναι σημαντικά στο train set και το output είναι nominal Cross validation με δοκιμή διάφορων αλγορίθμων για το train set επιλογή
ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ: ΕΠΙΛΟΓΗ ΒΕΛΤΙΣΤΟΥ ΑΛΓΟΡΙΘΜΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΜΑΘΗΜΑΤΟΣ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΙΤΛΟ: ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ:
ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΤΞΗ ΠΛΗΡΟΦΟΡΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ χολι Εφαρμοςμζνων Μακθματικϊν και Φυςικϊν Επιςτθμϊν ΔΠΜΣ: Εφαρμοςμζνεσ Μακθματικζσ Επιςτιμεσ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΤΞΗ ΠΛΗΡΟΦΟΡΙΑ Θεϊνθ Αγάκου, ΑΜ: 09480006 Διδάςκων: Γιϊργοσ Τηιραλισ
ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ
ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ απόκλιση από την κανονικότητα µπορεί να σηµαίνει Ύπαρξη θετικής ή αρνητικής ασυµµετρίας Ύπαρξη λεπτοκύρτωσης, δηλαδή παρουσία ακραίων τιµών που δεν είναι συµβατές
1 Συνοπτική ϑεωρία. 1.1 Νόµοι του Προτασιακού Λογισµού. p p p. p p. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-180: Λογική Εαρινό Εξάµηνο 2016 Κ. Βάρσος Πρώτο Φροντιστήριο 1 Συνοπτική ϑεωρία 1.1 Νόµοι του Προτασιακού Λογισµού 1. Νόµος ταυτότητας : 2. Νόµοι αυτοπάθειας
Τεχνικές Προβλέψεων. Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Προετοιμασία & Ανάλυση Χρονοσειράς http://www.fsu.gr
ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00
Αριθµητική Παραγώγιση και Ολοκλήρωση
Ιαν. 9 Αριθµητική Παραγώγιση και Ολοκλήρωση Είδαµε στο κεφάλαιο της παρεµβολής συναρτήσεων πώς να προσεγγίζουµε µια (συνεχή) συνάρτηση f από ένα πολυώνυµο, όταν γνωρίζουµε + σηµεία του γραφήµατος της συνάρτησης:
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:
ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Ιανουάριος-Φεβρουάριος 7 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυχία! Θέµα ο α Χρησιµοποιείστε
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η
Α. ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΜΕ ΚΟΙΝΟ ΠΑΡΟΝΟΜΑΣΤΗ
ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.: Πράξεις Ρητών Παραστάσεων. Θεµατικές Ενότητες:. Πρόσθεση - Αφαίρεση Ρητών Παραστάσεων µε Κοινό Παρονοµαστή.. Πρόσθεση - Αφαίρεση Ρητών Παραστάσεων
ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ Επιστήµη και Τεχνολογία των Υπολογιστών Α.Μ.: 403. Πρώτη Οµάδα Ασκήσεων
ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΘΕΜΕΛΙΩΣΕΩΝ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΙΒΑΘΙΝΟΣ ΝΙΚΟΛΑΟΣ LIBATI@CEIDUPATRASGR Επιστήµη και Τεχνολογία των Υπολογιστών ΑΜ: Πρώτη Οµάδα Ασκήσεων 8// Να βρεθούν οι OGF για καθεµία από τις
τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n
2. Missing Data mechanisms
Κεφάλαιο 2 ο 2. Missing Data mechanisms 2.1 Εισαγωγή Στην προηγούµενη ενότητα περιγράψαµε κάποια από τα βασικά µοτίβα εµφάνισης των χαµένων τιµών σε σύνολα δεδοµένων. Ένα άλλο ζήτηµα που µας απασχολεί
Πρόβληµα 2 (12 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον
Τεχνικές Προβλέψεων. 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 (α) Ο αλγόριθµος χρησιµοποιεί τη διαδικασία DFS(v) η οποία, ως γνωστό, επισκέπτεται όλους τους κόµβους που είναι συνδεδεµένοι µε τον κόµβο v. Για να µετρήσουµε
) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή
Ανάλυση Συνδιακύµανσης Alsis of Covrice Η ανάλυση συνδιακύµανσης είναι µία άλλη τεχνική για να βελτιώσουµε την ακρίβεια της προσέγγισης του µοντέλου µας στο πείραµα. Ας υποθέσουµε ότι σ ένα πείραµα εκτός
HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή
Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University
Μεθοδολογίες παρεµβολής σε DTM.
Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία
Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss
Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και
3D-Deconvolution. Πριν την εφαρµογή του λογισµικού για 3D deconvolution: 1. Λήψη της εικόνας
3D-Deconvolution Το λογισµικό 3D deconvolution είναι µία µέθοδος ανάλυσης ψηφιακής εικόνας µε την οποία αποµακρύνεται σήµα που οφείλεται σε φθορισµό εκτός εστίασης (out-of-focus light) από εικόνες που
Α. ΤΕΙ ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής και Πολυµέσων Εργαστήριο Νευρωνικών Δικτύων
Α. ΤΕΙ ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής και Πολυµέσων Εργαστήριο Νευρωνικών Δικτύων 5 BACKPROPAGATION MULTILAYER FEEDFORWARD ΔΙΚΤΥΑ Α. ΕΙΣΑΓΩΓΗ Τα νευρωνικά δίκτυα που εξετάσαµε µέχρι τώρα είχαν
Οικονοµετρικό Υπόδειγµα. Γράφηµα Ροής 1.
ΕΙΣΑΓΩΓΗ. Μία από τις βασικότερες λειτουργίες της οικονοµετρικής µεθοδολογίας είναι η Συγκεκριµενοποίηση των αλληλεπιδράσεων µεταξύ των διαφόρων οικονοµικών µεγεθών. Η Συγκεκριµενοποίηση αυτή αναφέρεται
ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:
ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται
Το θεώρηµα πεπλεγµένων συναρτήσεων
57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. (i Υποθέτοντας ότι επιτρέπονται επαναλήψεις
Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:
Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας
Α. ΑΝΙΣΟΤΗΤΕΣ - ΚΑΝΟΝΕΣ ΑΝΙΣΟΤΗΤΩΝ
Κεφάλαιο o : Εξισώσεις - Ανισώσεις ΜΑΘΗΜΑ Υποενότητα.: Ανισώσεις ου Βαθµού Θεµατικές Ενότητες:. Ανισότητες - Κανόνες Ανισοτήτων.. Η έννοια της ανίσωσης.. Τρόπος επίλυσης ανισώσεων ου βαθµού. Α. ΑΝΙΣΟΤΗΤΕΣ
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R
Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΙ ΠΑΤΡΑΣ ΤΕΙ ΠΑΤΡΑΣ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Α Κ Α Η Μ Α Ι Κ Ο Ε Τ Ο Σ 2 0 1 1-2 0 1 2 ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΕΠΙΧΕΙΡΗΣΙΑΚΏΝ ΠΑΙΓΝΙΩΝ- ΠΡΟΓΡΑΜΜΑ GAMBIT Ο συγκεκριµένος οδηγός για το πρόγραµµα
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε
ΠΡΟΒΛΗΜΑ ΑΝΑΘΕΣΗΣ Ή ΑΝΤΙΣΤΟΙΧΗΣΗΣ Ή ΕΚΧΩΡΗΣΗΣ Ή ΚΑΤΑΝΟΜΗΣ (ASSIGNMENT PROBLEM)
ΠΡΟΒΛΗΜΑ ΑΝΑΘΕΣΗΣ Ή ΑΝΤΙΣΤΟΙΧΗΣΗΣ Ή ΕΚΧΩΡΗΣΗΣ Ή ΚΑΤΑΝΟΜΗΣ (ASSIGNMENT PROBLEM) Η διαµόρφωση και το µοντέλο του προβλήµατος ανάθεσης (π.χ. εργασιών σε µηχανές ή δραστηριοτήτων σε άτοµα) περιγράφεται στις
2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008
2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης
Περίληψη ιπλωµατικής Εργασίας
Περίληψη ιπλωµατικής Εργασίας Θέµα: Εναλλακτικές Τεχνικές Εντοπισµού Θέσης Όνοµα: Κατερίνα Σπόντου Επιβλέπων: Ιωάννης Βασιλείου Συν-επιβλέπων: Σπύρος Αθανασίου 1. Αντικείµενο της διπλωµατικής Ο εντοπισµός
Μέτρηση κατανοµής ηλεκτρικού πεδίου
ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 31 3. Άσκηση 3 Μέτρηση κατανοµής ηλεκτρικού πεδίου 3.1 Σκοπός της Εργαστηριακής Άσκησης Σκοπός της άσκησης είναι η µέτρηση της κατανοµής του ηλεκτρικού πεδίου Ε, µπροστά
4.2 Μέθοδος Απαλοιφής του Gauss
4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί
ειγµατοληπτική κατανοµή
Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 ειγµατοληπτική κατανοµή 1. Εισαγωγή Με την ενότητα αυτή, µπαίνουµε στις έννοιες της επαγωγικής
Ζήτημα 1ο. Ζήτημα 2o. Τρέχουμε κάποιους αλγόριθμους. Ο OneR δίνει τους παρακάτω κανόνες
Ζήτημα 1ο Επιλογή χαρακτηριστικών (οπτικοί έλεγχοι, select attributes, Remove useless) Από το select attributes οι πιο σημαντικές μεταβλητές είναι οι (1, 2, 3, 6, 20) Με τους οπτικούς έλεγχους παρατηρώ
Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata
Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕ ΙΑΣΜΟΥ & xcvbnmσγqwφertyuioσδφpγρaηsόρ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ωυdfghjργklαzxcvbnβφδγωmζqwert ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ
qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzxcvλοπbnαmqwertyuiopasdfghjklz ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕ ΙΑΣΜΟΥ & xcvbnmσγqwφertyuioσδφpγρaηsόρ
Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.
. ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης
3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)
3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» ΑΝΑΛΥΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» ΑΝΑΛΥΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Γκριζιώτη Μαρία ΜSc Ιατρικής Ερευνητικής Μεθοδολογίας Αναλυτική στατιστική Σύγκριση ποιοτικών
ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ
ΜΕΛΕΤΗ ΣΤΑΣΙΜΩΝ ΚΥΜΑΤΩΝ ΣΕ ΣΩΛΗΝΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ ΗΧΟΥ ΣΤΟΝ ΑΕΡΑ ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ
Κρυπτογραφία και Πολυπλοκότητα
Απόδειξη του Αλγορίθµου Tonelli - Shanks Σχολή Εφαρµοσµένων και Φυσικών Επιστηµών ευτέρα 13 Φεβρουαρίου 2011 Το Πρόβληµα Να ϐρούµε x 1, x 2 Z p τέτοια ώστε: για κάποιο a Z p. x 2 i a (mod p) i 1, 2 (1)
Ανάλυση ιακύµανσης Μονής Κατεύθυνσης
24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 20 Ιανουαρίου 2005 ιάρκεια: 3 ώρες (15:00-18:00)
Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange
64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από
TSA1233FW-00 ΓΙΑ ΤΗΝ ΙΚΗ ΣΑΣ ΑΣΦΑΛΕΙΑ: ΠΡΟ ΙΑΓΡΑΦΕΣ: ΕΓΚΑΤΑΣΤΑΣΗ - ΣΥΝ ΕΣΗ:
ΗΛΕΚΤΡΟΝΙΚΟΣ ΕΠΙΤΟΙΧΟΣ ΘΕΡΜΟΣΤΑΤΗΣ ΧΩΡΟΥ ΨΥΞΗΣ ΘΕΡΜΑΝΣΗΣ ΜΕ ΙΑΧΕΙΡΗΣΗ FAN TSA1233FW-00 Ο ΗΓΙΕΣ ΕΓΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΛΕΙΤΟΥΡΓΙΑΣ ΓΙΑ ΤΗΝ ΙΚΗ ΣΑΣ ΑΣΦΑΛΕΙΑ: 1) Η εγκατάσταση πρέπει να γίνει από εξειδικευµένο
LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης
Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός
1 Υποθέσεις και Θεωρήµατα
Υποθέσεις και Θεωρήµατα Στο Λύκειο αλλά πολλές ϕορές και στο Πανεπιστήµιο τα µαθηµατικά µας παρουσιάζονται σαν έτοιµο προΐόν. Βλέπουµε συνήθως τη µια πλευρά των πραγµάτων, τη ϕωτεινή πλευρά όπου ϐρίσκονται
Α. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
ΜΑΘΗΜΑ 9 Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.9: Ρητές Αλγεβρικές Παραστάσεις. Θεµατικές Ενότητες:. Ρητές Αλγεβρικές Παραστάσεις. Α. ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Ρητή αλγεβρική παράσταση
Ο είκτης Συσχέτισης. Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών
Κεφάλαιο 8 Ο είκτης Συσχέτισης 1 Η έννοια της Αλληλεξάρτησης Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών ηλαδή, µας ενδιαφέρει να
Heapsort Using Multiple Heaps
sort sort Using Multiple s. Λεβεντέας Χ. Ζαρολιάγκης Τµήµα Μηχανικών Η/Υ & Πληροφορικής 29 Αυγούστου 2008 sort 1 Ορισµός ify Build- 2 sort Πως δουλεύει Ιδιότητες 3 4 Προβλήµατα Προτάσεις Ανάλυση Κόστους
Επιστηµονικός Υπολογισµός Ι Ενότητα 1 - Εισαγωγή. Ευστράτιος Γαλλόπουλος
Ενότητα 1 - Εισαγωγή Ευστράτιος Γαλλόπουλος c Ε. Γαλλόπουλος 201-2015 Ασκηση 1 Τι ονοµάζουµε υπολογιστικούς πυρήνες ; πυρήνων. Να δώσετε 3 παραδείγµατα τέτοιων Απάντηση ιαδικασίες (που µπορεί να είναι
Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: ιανυσµατικοί χώροι Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Στατιστικό κριτήριο χ 2
18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία
ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος"
ΕπίλυσηΠροβληµάτων Αναθέσεων: Η "Ουγγρική Μέθοδος" Τοπλήθος των εφικτών λύσεων σε ένα πρόβληµα ανάθεσης µε m δραστηριότητες και mπόρους είναι ίσο µε m! 6 Αυτό σηµαίνει ότι ο αριθµός των εφικτών λύσεων
ΚΕ.ΠΛΗ.ΝΕ.Τ. ΖΑΚΥΝΘΟΥ 2013 ΜΕΡΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΛΥΣΕΙΣ ΓΙΑ ΟΛΟΥΣ WINDOWS 8
ΜΕΡΙΚΕΣ ΠΡΑΚΤΙΚΕΣ ΛΥΣΕΙΣ ΓΙΑ ΟΛΟΥΣ WINDOWS 8 Πολλοί συνάδελφοι αγοράζοντας ένα νέο υπολογιστή (κυρίως φορητό) έρχονται αντιµέτωποι µε τις αλλαγές που υλοποιήθηκαν στα WINDOWS 8 και δυσκολεύονται πολύ να
Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων.
Αρχίστε αµέσως το πρόγραµµα xline Εσόδων Εξόδων. Βήµα 1 ο ηµιουργία Εταιρείας Από την Οργάνωση\Γενικές Παράµετροι\ ιαχείριση εταιρειών θα δηµιουργήσετε την νέα σας εταιρεία, επιλέγοντας µέσω των βηµάτων
ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΜΑΘΗΜΑ : ΜΕΘΟ ΟΙ ΕΚΤΙΜΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ ΘΕΜΑ : ΜΕΛΕΤΕΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΠΙΠΤΩΣΕΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΜΟΝΤΕΛΑ ΥΠΕΥΘΥΝΟΣ
2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς. -
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 2η Ενότητα Προετοιμασία & Ανάλυση Χρονοσειράς
ΑΝΩΣΗ µε λογισµικό PheT ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Πείραµα. (εικονικό). http://phet.colorado.edu/sims/density-and-buoyancy/buoyancy_el.html
ΑΩΣΗ µε λογισµικό PheT ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Πείραµα. (εικονικό). http://phet.colorado.edu/sims/density-and-buoyancy/buoyancy_el.html Παίρνω στο ένα µου χέρι τα 2 kg σίδερο και στο άλλο τα 2 kg ξύλο. Αισθάνοµαι
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από
Σχολικός Σύµβουλος ΠΕ03
Ασκήσεις Μαθηµατικών Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις
Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές
2.7.4 Πως οι εικόνες καταγράφονται στο γεωγραφικό χώρο
2.7.3 Γεωαναφορά raster αρχείου Τα φηφιδωτά (raster) δεδοµένα προέρχονται κυρίως από σαρωµένους χάρτες, αεροφωτογραφίες και δορυφορικές εικόνες. Οι σαρωµένοι χάρτες δεν περιέχουν καµία πληροφορία συντεταγµένων,
Πρόβληµα 2 (15 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε
Τεχνολογία και Κοινωνία
1 Τεχνολογία και Κοινωνία Μάθηµα 5 ο Δηµήτρης Τσέλιος Επίκουρος Καθηγητής ΤΕΙ Θεσσαλίας 2 Περιεχόµενο του µαθήµατος Η Τεχνητή και η Ανθρώπινη Νοηµοσύνη Όπως είδαµε στα προηγούµενα µαθήµατα τα κύρια χαρακτηριστικά
3. Στο Block Diagram αναπτύσουµε το υπολογιστικό µέρος του προγράµµατος. Σχήµα 1.1: Το Front Panel του LabVIEW.
Front Panel και Block Diagram 1. Το LAbVIEW αποτελείται από δύο καρτέλες. Το Front Panel και το Block Diagram. Εναλλασσόµαστε ανάµεσα στις δύο καρτέλες µε τη συντόµευση CTRL+E ή µε το µενού Windows / Show
Κώδικας σχεδίασης Λογισµικής ιαγραµµατικής Οντολογίας
Κώδικας σχεδίασης Λογισµικής ιαγραµµατικής Οντολογίας Αρχιµήδης ΙΙΙ Υποέργο 18 2013 Ενα µάγµα µπορεί να εξελιχθεί κάτω από την επίδραση τριών ειδών επιρροών. Την εξέλιξη αυτή συµβολίζουµε µε ένα απλό τόξο
e 5t (sin 5t)u(t)e st dt e st dt e 5t e j5t e st dt s j5 j10 (s + 5 j5)(s j5)
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Εφαρµοσµένα Μαθηµατικά για Μηχανικούς ιδάσκων : Α. Μουχτάρης Εφαρµοσµένα Μαθηµατικά για Μηχανικούς-Λύσεις 4ης Σειράς Ασκήσεων 7/5/ Λύσεις 4ης Σειράς Ασκήσεων
1 Ορισµός ακολουθίας πραγµατικών αριθµών
ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών
Ορισµοί και εξισώσεις κίνησης
Ορισµοί και εξισώσεις κίνησης Σκοπός του κειµένου είναι να υποστηριχθούν οι παρακάτω θέσεις εν έχουν κανένα απολύτως νόηµα φράσεις του τύπου «η φάση της ταλάντωσης είναι» ή «η αρχική φάση της ταλάντωσης
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex
Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε
Η εφαρµογή xsortlab. Οπτικός τρόπος ταξινόµησης
Η εφαρµογή xsortlab Η ταξινόµηση µιας λίστας πραγµάτων είτε σε αύξουσα είτε σε φθίνουσα σειρά είναι µια πολύ σηµαντική λειτουργία. Η εφαρµογή xsortlab περικλείει 5 διαφορετικές µεθόδους ταξινόµησης. Την
Συναρτησιακές Εξαρτήσεις
Εισαγωγή Θεωρία για το πότε ένας σχεδιασµός είναι «καλός» Η θεωρία βασίζεται στις Τι είναι; Εξαρτήσεις ανάµεσα σε σύνολα από γνωρίσµατα S1 S2 (όπου S1, S2 σύνολα γνωρισµάτων): αν ίδιες τιµές στα γνωρίσµατα
Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο
Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ
ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΣΤΑΣΙΜΕΣ ΔΙΑΔΙΚΑΣΙΕΣ-ΥΠΟΔΕΙΓΜΑΤΑ SARIMA (sp,sd,qs) ARIMA (p,d,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου
ροµολόγηση πακέτων σε δίκτυα υπολογιστών
ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου
Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)
ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ
«Πρόβλεψη» «Forecasting»
«Πρόβλεψη» «Forecasting» Σηµειώσεις για το µάθηµα του 6 ου εξαµήνου «Αρχές ιοίκησης και Οργάνωση Παραγωγής» 2005 Μιχάλης Βαϊδάνης 1 I. Πρόβλεψη (Forecasting) Η πρόβλεψη είναι µια από τις σηµαντικότερες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις 30 Σεπτεµβρίου 2005 ιάρκεια: 17:00-20:00 Υποθέστε
Συναρτησιακές Εξαρτήσεις. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1
Συναρτησιακές Εξαρτήσεις Βάσεις εδοµένων 2011-2012 Ευαγγελία Πιτουρά 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασµός είναι «καλός» Η θεωρία βασίζεται στις Συναρτησιακές Εξαρτήσεις (Functional Dependencies)
H ΓΛΩΣΣΑ C. Μάθηµα 7: Πίνακες. ηµήτρης Ψούνης
H ΓΛΩΣΣΑ C Μάθηµα 7: Πίνακες ηµήτρης Ψούνης 2 Περιεχόµενα Μαθήµατος Α. Πίνακες 1. Μονοδιάστατοι Πίνακες 1. ήλωση Πίνακα 2. Παράδειγµα Χρήσης Πίνακα 3. Αρχικοποίηση πίνακα κατά τη δήλωση 4. Στατική έσµευση
HY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1
ΟΜΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ... 3 ΕΡΩΤΗΣΕΙΣ... 5 ΕΡΕΥΝΕΣ... 8
Εγχειρίδιο Χρήσης Συστήµατος Έρευνες Στατιστικών Στοιχείων ΠΕΡΙΕΧΟΜΕΝΑ ΟΜΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ... 3 Λογική Ανάλυση Χρήσης Εφαρµογής... 3 ΕΡΩΤΗΣΕΙΣ... 5 ΠΡΟΣΘΗΚΗ ΕΡΩΤΗΣΗΣ... 6 Επεξεργασία Ερώτησης... 7 ιαγραφή
ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ
ΕΠΙΤΑΧΥΝΣΗ- ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Η ταχύτητα συνήθως δεν παραµένει σταθερή Ας υποθέσουµε ότι ένα αυτοκίνητο κινείται σε ευθύγραµµο δρόµο µε ταχύτητα k 36. Ο δρόµος είναι ανοιχτός και ο οδηγός αποφασίζει
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ανάλυση και κατηγοριοποίηση χρηστών Twitter ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ της ΔΑΝΑΗΣ