(α) Ζητείται να αναπαρασταθεί η παραπάνω γνώση σε Prolog, ώστε να δημιουργηθεί αντίστοιχο πρόγραμμα.
|
|
- Ευγένεια Δασκαλοπούλου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 1. Δίνονται τα εξής γεγονότα «Ο Παύλος είναι πατέρας του Γιάννη και της Γεωργίας» και «Η Ελένη είναι μητέρα της Μαρίας και του Πέτρου». Επίσης, μας δίνεται και η εξής γνώση τύπου κανόνα, που αφορά το πότε δύο άνθρωποι είναι αδέλφια «Δύο άνθρωπο είναι αδέλφια αν είτε έχουν τον ίδιο πατέρα είτε έχουν την ίδια μητέρα». (α) Ζητείται να αναπαρασταθεί η παραπάνω γνώση σε Prolog, ώστε να δημιουργηθεί αντίστοιχο πρόγραμμα. (β) Τι θα απαντήσει η Prolog στο ερώτημα «Ποια είναι αδέλφια του Γιάννη;» (Υλοποιείστε το ερώτημα σε Prolog). (γ) Αν οι απαντήσεις στο (β) περιλαμβάνουν και τον Γιάννη (ως αδελφό του εαυτού του), τότε τροποποιείστε το πρόγραμμα που κάνατε στο (α) για να επαλειφθεί αυτή η περίπτωση. ΛΥΣΗ (α) Το πρόγραμμα θα έχει ως εξής is_father(paul, john). is_father(paul, georgia). is_mother(helen, mary). is_mother(helen, peter). siblings(x, Y) - is_father(z, X), is_father(z, Y). siblings(x, Y) - is_mother(z, X), is_mother(z, Y). (β) Αν θέσουμε στην Prolog το ερώτημα?- siblings(georgia, john). τότε θα εκτυπωθεί Yes Το ζητούμενο ερώτημα σε Prolog είναι siblings(x, john).αν θέσουμε αυτό το ερώτημα?- siblings(χ, john). τότε θα εκτυπωθεί X = john ; X = georgia ; Εδώ το σημαίνει ότι δεν υπάρχουν άλλες απαντήσεις-λύσεις. Όπως είναι φανερό, το πρόγραμμα εξάγει το συμπέρασμα ότι ο Γιάννης είναι αδελφός του εαυτού του, το οποίο δεν θα θέλαμε να εξάγεται. (γ) Για να αποτρέψουμε την προηγούμενη κατάσταση, κάνουμε τις εξής προσθήκες is_father(paul, john). is_father(paul, georgia).
2 is_mother(helen, maria). is_mother(helen, peter). equal(john, john). equal(georgia, georgia). equal(maria, maria). equal(peter, peter). siblings(x, Y) - is_father(z, X), is_father(z, Y),not(equal(X, Y)). siblings(x, Y) - is_mother(z, X), is_mother(z, Y),not(equal(X, Y)). Εναλλακτικά, κρατάμε το πρόγραμμα του (α) όπως έχει αλλάζοντας μόνο τους δύο κανόνες ως εξής siblings(x, Y) - is_father(z, X), is_father(z, Y), \+ Χ==Υ. siblings(x, Y) - is_mother(z, X), is_mother(z, Y), \+ Χ==Υ. Στη θέση του \+ Χ==Υ μπορεί να μπει και το not(x=y). Μπορεί ακόμα να χρησιμοποιηθεί το Χ \= Υ. Τώρα, αν θέσουμε το ερώτημα?- siblings(χ, john). θα εκτυπωθεί X = georgia ; 2. Δίνεται το παρακάτω δυαδικό δέντρο (α) Να γράψετε πρόγραμμα Prolog που να αναπαριστά το παραπάνω δέντρο με μια σειρά από γεγονότα, χρησιμοποιώντας το κατηγόρημα tree/3. (β) Να συμπληρώσετε το πρόγραμμα με κανόνα(ες) έτσι ώστε να διαπερνά το δέντρο κατά βάθος με ταυτόχρονη εκτύπωση των ονομάτων των κόμβων (δηλ. Giorgos-Giannis-Petros-Kyriakos-Eleni-Anna-Katerina). (γ) Το ίδιο με το (β) για διαπέραση κατά πλάτος (δηλ. Giorgos-Giannis-Eleni- Petros-Kyriakos-Anna-Katerina). ΛΥΣΗ (α) Να γράψετε πρόγραμμα Prolog που να αναπαριστά το παραπάνω δέντρο
3 με μια σειρά από γεγονότα, χρησιμοποιώντας το κατηγόρημα tree/3. Για να αναπαραστήσουμε την λειτουργία του παραπάνω δέντρου στην Prolog ορίζουμε γεγονότα της μορφής tree(x, Y, Z) που δηλώνουν πως ο κόμβος Χ του δέντρου είναι γονέας των Υ και Ζ, με τον Υ να είναι το αριστερό παιδί του Χ και τον Ζ να είναι το δεξί παιδί του Χ. Εχουμε tree(giorgos, giannis, eleni). tree(giannis, petros, kyriakos). tree(eleni, anna, katerina). tree(petros,nil,nil). tree(kyriakos, nil, nil). tree(anna,nil,nil). tree(katerina,nil,nil). (β) Να συμπληρώσετε το πρόγραμμα με κανόνα(ες) έτσι ώστε να διαπερνά το δέντρο κατά βάθος με ταυτόχρονη εκτύπωση των ονομάτων των κόμβων (δηλ. Giorgos-Giannis-Petros-Kyriakos-Eleni-Anna-Katerina). Αυτό που χρειάζεται είναι ο παρακάτω αναδρομικός κανόνας print_tree(x)-tree(x,y,z), write(x), nl, print_tree(y), print_tree(z). print_tree(x)-tree(x,nil,nil). Προκειμένου η εκκίνηση του προγράμματος να γίνεται με το κατηγόρημα go (χωρίς ορίσματα), προσθέτουμε τον κανόνα go- write('give Root '), read(t), nl, print_tree(t). Τo πρόγραμμα αυτό μπορεί να εφαρμοστεί σε δέντρα οποιουδήποτε βάθους. (γ) Το ίδιο με το (β) για διαπέραση κατά πλάτος (δηλ. Giorgos-Giannis-Eleni- Petros-Kyriakos-Anna-Katerina). Χρησιμοποιούμε τους παρακάτω κανόνες print_br(x)-write(x), nl, print_tree(x). print_tree(x)-tree(x,nil,nil). print_tree(x)-tree(x,y,z), write(y), nl, write(z), nl, print_tree(y), print_tree(z). Προκειμένου η εκκίνηση του προγράμματος να γίνεται με το κατηγόρημα go (χωρίς ορίσματα), προσθέτουμε τον κανόνα go- write('give Root '), read(t), nl, print_br(t). Το πρόγραμμα αυτό μπορεί να διαπεράσει κατα πλάτος το συγκεκριμένο δέντρο και οποιοδήποτε υποδέντρο του αλλά δεν δουλεύει σωστά για δέντρα οποιουδήποτε βάθους. Για να επιτύχουμε διαπέραση κατα πλάτος σε δέντρα οποιουδήποτε βάθους, χρειάζεται να χρησιμοποιήσουμε λίστες. Η λύση με λίστα θα ήταν
4 print_br(x,l)-write(x), nl, print_tree(x,l). print_tree(x,l)-tree(x,nil,nil). print_tree(x,l)-tree(x,y,z),write(y),nl,write(z),nl, L=[X Rest], append(rest,[y,z],l2), L2=[Next Tail], print_tree(next,l2). go- write('give Root '), read(t), nl, append([],[t],l), print_br(t,l). 3. Τι θα τυπώσει τo παρακάτω πρόγραμμα; what. what - what. α) - what, write('one'), nl, fail. Αν αλλάζαμε τo goal σε β) -!, what, write('two'), nl, fail. γ) - what,!, write('three'), nl, fail. δ) - what, write('four'), nl,!, fail. ε) - what, write('five'), nl, fail,!. ΛΥΣΗ α) ONE ONE ONE β) TWO TWO TWO γ) THREE δ) FOUR ε) FIVE FIVE FIVE
5 4. Θεωρήστε τo παρακάτω πρόγραμμα Prolog f(x,y,_)- assert(g(x,y)), fail. f(_,_,y)- retract(g(x,z)), Y is X+Z. Τι θα απαντήσει η Prolog στην ερώτηση?- f(11,8,x). ΛΥΣΗ X = 19 Η κλήση f(11,8,x) πρoκαλεί τη δημιoυργία τoυ γεγoνότoς g(11,8) μέσω της assert. Οταν o πρώτoς κανόνας απoτύχει, ενεργoπoιείται o δεύτερoς πoυ σβήνει τo g(11,8) από τoν Prolog Workspace. Αλλά τώρα τo X έχει την τιμή 11 και τo Z την τιμή 8, έτσι Y=19 πoυ είναι τo απoτέλεσμα. 5. Δημιουργήστε αναδρομική συνάρτηση που θα μετράει πόσα στοιχεία έχει μια λίστα. Για παράδειγμα αν την καλέσετε size([a,a,b],x) θα επιστρέψει X=3 ΛΥΣΗ size([],0). size([h T],N) - size(t,n1), N is N1+1.
ΠΑΡΑ ΕΙΓΜΑΤΑ ΣΤΗ ΓΛΩΣΣΑ PROLOG ΠΑΡΑ ΕΙΓΜΑ 1
ΠΑΡΑ ΕΙΓΜΑΤΑ ΣΤΗ ΓΛΩΣΣΑ PROLOG ΠΑΡΑ ΕΙΓΜΑ 1 Έστω ότι µας ζητούν να γράψουµε ένα πρόγραµµα Prolog που να εκτυπώνει την οποιαδήποτε υπο-λίστα της παρακάτω λίστας: red blue green yellow gray χρησιµοποιώντας
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ31 (2005-6) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #1 Στόχος Η εργασία επικεντρώνεται σε θέματα προγραμματισμού για Τεχνητή Νοημοσύνη και σε πρακτικά θέματα εξάσκησης σε Κατηγορηματική Λογική. Θέμα 1: Απλές Αναζητήσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Λύση Ασκήσεων 2007-2008
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Λύση Ασκήσεων 2007-2008 Ιωάννης Χατζηλυγερούδης Αικατερίνη Μπαγουλή Όθων Μιχαήλ Πάτρα 2008 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ
Λογικός Προγραµµατισµός: Η Γλώσσα Prolog
Λογικός Προγραµµατισµός: Η Γλώσσα Prolog 1 Βασικά Στοιχεία Γλώσσας Prolog Ορισµοί (statements): Επιτελούν το ρόλο εντολών στις κλασσικές γλώσσες προγραµµατισµού Γεγονότα Κανόνες Ερωτήσεις Όροι (terms):
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ PROLOG Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ PROLOG Ι. ΧΑΤΖΗΛΥΓΕΡΟΥ ΗΣ ΓΕΝΙΚΑ PROLOG PROgramming in LOGic Πρώτη υλοποίηση: Alain Colmerauer, Μασσαλία (Αρχή Επίλυσης, Εργασία R. Kowalski) εύτερη υλοποίηση: D. Warren, Εδιµβούργο
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
Δομές Δεδομένων & Αλγόριθμοι
Σωροί 1 Ορισμοί Ένα δέντρο μεγίστων (δένδρο ελαχίστων) είναι ένα δένδρο, όπου η τιμή κάθε κόμβου είναι μεγαλύτερη (μικρότερη) ή ίση με των τιμών των παιδιών του Ένας σωρός μεγίστων (σωρός ελαχίστων) είναι
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
PROLOG Εισαγωγή (PROgramming in LOGic)
PROLOG Εισαγωγή (PROgramming in LOGic) Γλώσσα Λογικού Προγραμματισμού Βασίζεται στο Προτασιακό Λογισμό 1 ης τάξης Χρησιμοποιεί προτάσεις Horn αλγόριθμος = λογική + έλεγχος Μέσω της Prolog δίνουμε βάρος
Διασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1
Διασυνδεδεμένες Δομές Δυαδικά Δέντρα Προγραμματισμός II 1 lalis@inf.uth.gr Δέντρα Τα δέντρα είναι κλασικές αναδρομικές δομές Ένα δέντρο αποτελείται από υποδέντρα, καθένα από τα οποία μπορεί να θεωρηθεί
Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL
Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL Υλικό από τις σηµειώσεις Ν. Παπασπύρου, 2006 Δέντρα δυαδικής αναζήτησης Δενδρικές δοµές δεδοµένων στις οποίες Όλα τα στοιχεία στο αριστερό υποδέντρο της ρίζας είναι
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από
Περιεχόμενα Πρόλογος 1. Εισαγωγή 2. Τα Βασικά Μέρη ενός Προγράμματος Prolog
Περιεχόμενα Πρόλογος... xxv 1. Εισαγωγή... 1 1.1. Ιστορική Εξέλιξη της Prolog.... 2 1.2. Προστακτικός και Δηλωτικός Προγραμματισμός.... 2 1.3. Δηλωτική και διαδικαστική έννοια ενός προγράμματος Prolog....
ΗΥ360 Αρχεία και Βάσεις εδοµένων
ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Tutorial B-Trees, B+Trees Μπαριτάκης Παύλος 2018-2019 Ιδιότητες B-trees Χρήση για μείωση των προσπελάσεων στον δίσκο Επέκταση των Binary Search Trees
Printed November 5, 2012 at 8:37
OPEN -- Overall Stage Results Stage 1 -- One 1 79 13.21 5.9803 90.0000 100.00 86 ΜΑΔΑΡΟΣ, ΚΩΝ(ΟΑΠΣ) 2 86 15.03 5.7219 86.1108 95.68 14 ΤΥΡΑΚΗΣ, ΙΩΑΝ(Σ.Ο.ΑΡΚΑΛ) - 3 84 14.71 5.7104 85.9379 95.49 22 ΦΕΣΣΑΣ,
ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων
ΚΕΦΑΛΑΙΟ 8: Αφαίρεση δεδοµένων 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δοµών δεδοµένων 8.4 Μια σύντοµη µελέτη περίπτωσης 8.5 Προσαρµοσµένοι τύποι δεδοµένων 1 Βασικές δοµές
#include <stdlib.h> Α. [-128,127] Β. [-127,128] Γ. [-128,128]
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Α Περιόδου 2017 (27/1/2017) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
ιαφάνειες παρουσίασης #10 (β)
ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr)
Ασκήσεις Prolog. Άσκηση 1. Άσκηση 2
Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Διδάσκων: Γκόγκος Χρήστος Μάθημα: Τεχνητή Νοημοσύνη (εργαστήριο Δ εξαμήνου) Ακαδημαϊκό έτος 2016-2017 εαρινό εξάμηνο Ασκήσεις Prolog
Red-black δέντρα (Κεφ. 5)
Red-black δέντρα (Κεφ. ) Δομές Δεδομένων Παπαγιαννόπουλος Δημήτριος 30 Μαρτίου 07 30 Μαρτίου 07 papagianno@ceid.upatras.gr . Εισαγωγή Περιεχόμενα. Ορισμός red-black δέντρων 3. Αναζήτηση σε red-black δέντρα
Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Εισαγωγή σε δενδρικές δομές δεδομένων, -
Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους
Page 1 of 15 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2016-17 Οι ασκήσεις της ομάδας αυτής πρέπει
Βασικές δοµές δεδοµένων. Ορολογία λιστών. 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας
ΚΕΦΑΛΑΙΟ 8: Αφηρηµένοι τύποι δεδοµένων 8.1 οµές δεδοµένων (data structures) 8.1 Βασικές έννοιες δοµών δεδοµένων 8.2 Υλοποίηση δοµών δεδοµένων 8.3 Μια σύντοµη υπόθεση εργασίας Αδόµητα δεδοµένα οδός Ζέας
Δημιουργία Δυαδικών Δέντρων Αναζήτησης
Δημιουργία Δυαδικών Δέντρων Αναζήτησης Τα Δυαδικά δέντρα αναζήτησης είναι διατεταγμένα δυαδικά δέντρα όπου έχει σημασία η διάταξη των παιδιών κάθε κόμβου. Συγκεκριμένα για τα Δυαδικά δέντρα αναζήτησης,
Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18
Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου 2017 1 / 18 Βέλτιστα (στατικά) δυαδικά δένδρα αναζήτησης Παράδειγµα: Σχεδιασµός προγράµµατος
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση
Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων
Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Ορισμοί και πράξεις Αναπαράσταση δενδρικών δομών
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα
Α. unsigned int Β. double. Γ. int. unsigned char x = 1; x = x + x ; x = x * x ; x = x ^ x ; printf("%u\n", x); Β. unsigned char
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Β Περιόδου 2015 (8/9/2015) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 21: Εισαγωγή σε Δενδρικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Εισαγωγή σε δενδρικές δομές δεδομένων, -Ορισμοί και πράξεις - Αναπαράσταση δενδρικών δομών δεδομένων
Οντοκεντρικός Προγραμματισμός
Οντοκεντρικός Προγραμματισμός Ενότητα 8: C++ ΒΙΒΛΙΟΗΚΗ STL, ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Δομές Δεδομένων ΔΙΔΑΣΚΟΝΤΕΣ: Ιωάννης Χατζηλυγερούδης, Χρήστος Μακρής Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Δομές
Μη γράφετε στο πίσω μέρος της σελίδας
Διακριτά Μαθηματικά Ενδιάμεση εξέταση 1 Φεβρουάριος 2014 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις
Ισοζυγισμένα υαδικά έντρα Αναζήτησης
Ισοζυγισμένα υαδικά έντρα Αναζήτησης ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Ισοζυγισμένα υαδικά έντρα Αναζήτησης Ισοζυγισμένα Α είναι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 3-4 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητες 3 & 4: ένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε
Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ
Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά
Δέντρα Απόφασης (Decision(
Δέντρα Απόφασης (Decision( Trees) Το μοντέλο που δημιουργείται είναι ένα δέντρο Χρήση της τεχνικής «διαίρει και βασίλευε» για διαίρεση του χώρου αναζήτησης σε υποσύνολα (ορθογώνιες περιοχές) Ένα παράδειγμα
ΠΡΟΓΡΑΜΜΑ synartisi_se_diadikasia ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: A[10], max, i, C, S, B, maxmax ΑΡΧΗ
Από συνάρτηση σε διαδικασία 1. Εντοπίζουμε τις παραμέτρους που αναφέρονται και μετά την κλήση της συνάρτησης. 2. Μέσα στο πρόγραμμα, αλλάζουμε όνομα στις παραμέτρους αυτές, αφού προηγουμένως (πριν την
Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά
EPL231: Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά Αναδρομή Η αναδρομή εμφανίζεται όταν μία διεργασία καλεί τον εαυτό της Υπάρχουν
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή
Προγραμματισμός ΙI (Θ)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Προγραμματισμός ΙI (Θ) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Μάρτιος 2017 Δρ. Δημήτρης Βαρσάμης Μάρτιος 2017
Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ενώσεις δεδομένων Απαριθμητές Ψηφιακοί τελεστές Αναδρομικές συναρτήσεις
Ενώσεις δεδομένων Απαριθμητές Ψηφιακοί τελεστές Αναδρομικές συναρτήσεις Ενώσεις δεδομένων (union) τι και γιατί Συσκευές με μικρή μνήμη => ανάγκη εξοικονόμησης πόρων Παρατήρηση: αχρησιμοποίητη μνήμη. Έστω
Ευφυής Προγραμματισμός
Ευφυής Προγραμματισμός Ενότητα 1: Εισαγωγή στη Γλώσσα Lisp Ιωάννης Χατζηλυγερούδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ & Πληροφορικής Περιεχόμενα ενότητας Εισαγωγή στη Lisp : 1. Εισαγωγή 2. Θεμελιώδεις
Διάλεξη 14: Δέντρα IV - B-Δένδρα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 14: Δέντρα IV - B-Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - 2-3 Δένδρα, Εισαγωγή και άλλες πράξεις - Άλλα Δέντρα: Β-δένδρα, Β+-δέντρα,
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Εισαγωγή στον Προγραμματισμό Python Μάθημα 3: πίνακες και βρόγχος επανάληψης for (για) Νοέμβριος 2014 Χ. Αλεξανδράκη, Γ.
Εισαγωγή στον Προγραμματισμό Python Μάθημα 3: πίνακες και βρόγχος επανάληψης for (για) Νοέμβριος 2014 Χ. Αλεξανδράκη, Γ. Δημητρακάκης Πίνακες/Λίστες Σε πολλές περιπτώσεις στον προγραμματισμό υπάρχει η
Red- black δέντρα Εκτενείς Δομές Δεδομένων (Κεφ. 5)
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Red- black δέντρα Εκτενείς Δομές Δεδομένων (Κεφ. ) Δομές Δεδομένων Μπαλτάς Αλέξανδρος 4 Μαρτίου 0 ampaltas@ceid.upatras.gr Περιεχόμενα. Εισαγωγή. Ορισμός red- black
Γνωρίστε το Excel 2007
Εισαγωγή τύπων Γνωρίστε το Excel 2007 Πληκτρολογήστε το σύμβολο της ισότητας (=), χρησιμοποιήστε ένα μαθηματικό τελεστή (+,-,*,/) και πατήστε το πλήκτρο ENTER. Πρόσθεση, διαίρεση, πολλαπλασιασμός και αφαίρεση
Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
Μπαλτάς Αλέξανδρος 21 Απριλίου 2015
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ B- Trees Δομές Δεδομένων Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ampaltas@ceid.upatras.gr Περιεχόμενα 1. Εισαγωγή 2. Ορισμός B- tree 3. Αναζήτηση σε B- tree 4. Ένθεση σε
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,
ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research
ΑΛΓΟΡΙΘΜΟΙ ΜΕ C ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής CMOR Lab Computational Methodologies and Operations Research Δέντρα (5) Τ ένα δέντρο i ένας κόμβος στο επίπεδο k j ένας κόμβος στο επίπεδο k+1 } :
Διάλεξη 14: Δέντρα IV B Δένδρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 14: Δέντρα IV B Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: 2 3 Δένδρα, Εισαγωγή και άλλες πράξεις Άλλα Δέντρα: Β δένδρα, Β+ δέντρα, R δέντρα Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231
Λογικός Προγραμματισμός Ασκήσεις
Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Ασκήσεις "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2003-04... 3 1.1 Άσκηση 1 (0.2 μονάδες)...
8.6 Κλάσεις και αντικείμενα 8.7 Δείκτες σε γλώσσα μηχανής
ΚΕΦΑΛΑΙΟ 8: Αφαιρετικές έννοιες δεδομένων 8.1 Βασικές έννοιες δομών δεδομένων 8.2 Σχετικές έννοιες 8.3 Υλοποίηση δομών δεδομένων 8.4 Μια σύντομη μελέτη περίπτωσης 8.4 Προσαρμοσμένοι τύποι δεδομένων 8.6
ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΚΗ I. 3o ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑ ΜΕ ΤΟ WORD
ΠΕΡΙΕΧΟΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΠΛΗΡΟΦΟΡΙΚΗ I 3o ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑ ΜΕ ΤΟ WORD 1. Προσθήκη στηλών σε τμήμα εγγράφου 2. Εσοχή παραγράφου 3. Εισαγωγή Κεφαλίδας, Υποσέλιδου και Αριθμού Σελίδας 4. Εισαγωγή
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΞΗ: ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ημερομηνία: Σάββατο 20 Απριλίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ ΠΡΩΤΗ ΠΡΟΟΔΟΣ ΣΤΗΝ «ΟΡΓΑΝΩΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Η/Y» Σάββατο, 31 Οκτωβρίου 2015 ΔΙΑΡΚΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ 150 ΛΕΠΤΑ ΘΕΜΑ 1.
Εφαρμοσμένη Πληροφορική ΙΙ (Θ) Είσοδος/Έξοδος Μεταβλητές Τύποι Μεταβλητών Τελεστές και Προτεραιότητα Μετατροπές Μεταξύ Τύπων
Εφαρμοσμένη Πληροφορική ΙΙ (Θ) Είσοδος/Έξοδος Μεταβλητές Τύποι Μεταβλητών Τελεστές και Προτεραιότητα Μετατροπές Μεταξύ Τύπων 1 Είσοδος/Έξοδος Είσοδος/Έξοδος ανάλογα με τον τύπο του προγράμματος Πρόγραμμα
Α Β Γ static; printf("%c\n", putchar( A +1)+2); B DB BD. int i = 0; while (++i); printf("*");
ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εξετάσεις Α Περιόδου 2016 (1/2/2016) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:................................................................................ Α.Μ.:...............................................
Κύρια σηµεία για µελέτη. έντρα. Ορολογία δέντρων. Τι είναι δέντρο
Κύρια σηµεία για µελέτη έντρα Stock Fraud Make Money Fast! Ponzi Scheme ank Robbery Ο ΑΤ του δέντρου (..1) Preorder και postorder διασχίσεις (..) Ο ΑΤ του δυαδικού δέντρου(..) Inorder διάσχιση (..) Ηδιάσχισητουuler
Εντολές της LOGO (MicroWorlds Pro)
Εντολές της LOGO (MicroWorlds Pro) Εντολές εμφάνισης (εξόδου) και αριθμητικές πράξεις δείξε Εμφανίζει στην οθόνη έναν αριθμό, το αποτέλεσμα πράξεων, μια λέξη ή μια λίστα (ομάδα) λέξεων. δείξε 200 200 δείξε
ΕΡΓΑΣΙΕΣ ΟΝΤΟΚΕΝΤΡΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ
ΕΡΓΑΣΙΕΣ ΟΝΤΟΚΕΝΤΡΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ 2016-2017 ΕΡΓΑΣΙΑ 1 (JAVA) Παράδοση 26/4/2017 Στα πλαίσια της εργασίας θα υλοποιηθεί ένα απλοϊκό πρόγραμμα κρατήσεων Ξενοδοχείων. Για απλοποίηση θα περιοριστούμε
Κεφάλαιο Λύσεις των Ασκήσεων του Βιβλίου «PROγραµµατίζοντας στη LOGική» Ρεφανίδης Γιάννης
Κεφάλαιο 1 Άσκηση 1.1 πολύτιµο_µέταλλο(χρυσάφι). αρέσει(γιώργος, ποδόσφαιρο). πρωτεύουσα(αθήνα, ελλάδα). χώρα(ελλάδα). χάρισε(µαρία,γιώργος,βιβλίο). αρέσουν(εκδροµές,χ). Άσκηση 1.2?πολύτιµο_µέταλλο(ασήµι).?πρωτεύουσα(Χ,ελλάδα).?χώρα(αφρική).?χάρισε(Χ,Υ,Ζ).?αρέσουν(εκδροµές,νίκος).
1. Λογικά λάθη ονομάζονται αυτά που οφείλονται σε σφάλματα κατά την υλοποίηση του αλγόριθμου.
ΑΕσΠΠ-Κεφ 10.Υποπρογράμματα 1 1. Λογικά λάθη ονομάζονται αυτά που οφείλονται σε σφάλματα κατά την υλοποίηση του αλγόριθμου. ΣΩΣΤΟ ΛΑΘΟΣ 2. Συντακτικά λάθη ονομάζονται αυτά που οφείλονται σε αναγραμματισμούς
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Ακρότατα πίνακα, χωρίς min, max, μόνο με pos
Ακρότατα πίνακα, χωρίς min, max, μόνο με pos Θέμα εξετάσεων / 2010 Θέμα εξετάσεων / 2011 Θέμα εξετάσεων / 2013 Θέμα εξετάσεων / 2014 Θέμα εξετάσεων / 2014 ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.)
Μαθηματική Λογική και Λογικός Προγραμματισμός
Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων- Σημειώσεις έτους 2007-2008 Καθηγητής Γεώργιος Βούρος Μαθηματική Λογική και Λογικός Προγραμματισμός Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών
Εργαστήριο 5. Εαρινό Εξάμηνο
Τομέας Υλικού και Αρχιτεκτονικής Υπολογιστών ΗΥ134 - Εισαγωγή στην Οργάνωση και Σχεδίαση Η/Υ 1 Εργαστήριο 5 Εαρινό Εξάμηνο 2012-2013 Στό χόι τόυ εργαστηρι όυ Χρήση στοίβας Αναδρομή Δομές δεδομένων Δυναμική
HY Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο. Φροντιστήριο 6
HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Εαρινό Εξάμηνο 2015-2016 Φροντιστήριο 6 Α) ΘΕΩΡΙΑ Μέθοδος Επίλυσης (Resolution) Στη μέθοδο της επίλυσης αποδεικνύουμε την ικανοποιησιμότητα ενός συνόλου προτάσεων,
Υπολογιστική Λογική και Λογικός Προγραμματισμός
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Υπολογιστική Λογική και Λογικός Προγραμματισμός Ενότητα 7: Γλώσσα Prolog: Έλεγχος εκτέλεσης προγράμματος, Αποκοπή, Άρνηση Νίκος Βασιλειάδης,
φροντιστήρια Θέματα Ανάπτυξης Εφαρμογών σε Προγραμματιστικό Περιβάλλον Γ λυκείου Προσανατολισμός Σπουδών Οικονομίας και Πληροφορικής
Θέματα Ανάπτυξης Εφαρμογών σε Προγραμματιστικό Περιβάλλον Γ λυκείου Προσανατολισμός Σπουδών Οικονομίας και Πληροφορικής Θέμα Α Α1. Να γράψετε στο τετράδιο σας το γράμμα της κάθε πρότασης και δίπλα τη λέξη
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Διάλεξη 15η: Αναδρομή, μέρος 1ο
Διάλεξη 15η: Αναδρομή, μέρος 1ο Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αναδρομή I CS100, 2016-2017
Συγκρίσιμα Αντικείμενα (comparable)
Συγκρίσιμα Αντικείμενα (comparable) public class Student implements Comparable{ public String lastname; public String firstname; public int am; public int compareto(object s) throws ClassCastException{
Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων
Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται
Αναδρομικός αλγόριθμος
Αναδρομικός αλγόριθμος Ένας αναδρομικός αλγόριθμος επιλύει ένα πρόβλημα για κάποιες τιμές δεδομένων λύνοντας το ίδιο πρόβλημα για άλλες (σχετιζόμενες) τιμές δεδομένων Είναι απαραίτητο βέβαια να λύνεται
Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 7: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου Διδάσκων:
Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου
Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο
ΥΣ02 Τεχνητή Νοημοσύνη Χειμερινό Εξάμηνο 2014-2015 Πρώτη Σειρά Ασκήσεων (Υποχρεωτική, 25% του συνολικού βαθμού στο μάθημα) Ημερομηνία Ανακοίνωσης: 22/10/2014 Ημερομηνία Παράδοσης: Μέχρι 14/11/2014 23:59
Τελικός Κύκλος Διαγωνισμάτων Γ ΛΥΚΕΙΟΥ Κυριακή 17 Απριλίου 2016 Μάθημα: Α.Ε.Π.Π. KTIΡΙΟ ΤΜΗΜΑΤΑ ΚΑΛΟΚΑΙΡΙΝΑ ΑΡΓΥΡΟΥΠΟΛΗΣ - ΗΛΙΟΥΠΟΛΗΣ - ΓΛΥΦΑΔΑΣ
Τελικός Κύκλος Διαγωνισμάτων Γ ΛΥΚΕΙΟΥ Κυριακή 17 Απριλίου 2016 Μάθημα: Α.Ε.Π.Π. KTIΡΙΟ ΤΜΗΜΑΤΑ ΚΑΛΟΚΑΙΡΙΝΑ ΑΡΓΥΡΟΥΠΟΛΗΣ - ΗΛΙΟΥΠΟΛΗΣ - ΓΛΥΦΑΔΑΣ Ονοματεπώνυμο Τμήμα Καθηγητής Επιτηρητής Αίθουσα Διάρκεια:
Δέντρα (Trees) - Ιεραρχική Δομή
Δέντρα (Trees) - Ιεραρχική Δομή Εφαρμογές Δομή Οργάνωση Αρχείων Οργανογράμματα Ορισμός (αναδρομικός ορισμός): Ένα δέντρο είναι ένα πεπερασμένο σύνολο κόμβων το οποίο είτε είναι κενό είτε μη κενό σύνολο
- Το πρόγραµµα σας δίνει τα αναµενόµενα αποτελέσµατα.
Α.Μ. ΒΑΘΜΟΣ ΣΧΟΛΙΑ 1349 FAIL Δεν ελήφθη άσκηση 1482 1556 1559 1562 1563 1565 1566 FAIL - Στην initialize πρέπει να κάνετε έλεγχο αν η malloc αποτυγχάνει για κάθε κλήση της, άρα και για δέσµευση χώρου για
Προγραμματισμός Υπολογιστών με C++
Προγραμματισμός Υπολογιστών με C++ ( 2012-13 ) 15η διάλεξη Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Τι θα ακούσετε σήμερα Σχεδιότυπα συναρτήσεων και τάξεων. Αναπαράσταση δυαδικού δέντρου με
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε:
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι
PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης
Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:
Δένδρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, ορισμοί, πράξεις και αναπαράσταση στη μνήμη ΔυαδικάΔένδρακαιΔυαδικάΔένδραΑναζήτησης ΕΠΛ 231 Δομές
Λειτουργικά Συστήματα 7ο εξάμηνο, Ακαδημαϊκή περίοδος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ KΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ http://www.cslab.ece.ntua.gr Λειτουργικά
ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND)
ΕΝΟΤΗΤΑ 9 ΕΝΩΣΗ ΞΕΝΩΝ ΣΥΝΟΛΩΝ ( ΟΜΕΣ UNION-FIND) Ένωση Ξένων Συνόλων (Disjoint Sets with Union) S 1,, S k : ξένα υποσύνολα ενός συνόλου U δηλ., S i S j =, αν i j, και S 1 S k = U. Λειτουργίες που θέλουµε
Ασκήσεις Prolog. Άσκηση 1. Άσκηση 2
Σχολή Τεχνολογικών Εφαρμογών (ΣΤΕΦ) Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Διδάσκων: Γκόγκος Χρήστος Μάθημα: Τεχνητή Νοημοσύνη (εργαστήριο Δ εξαμήνου) Ακαδημαϊκό έτος 2016-2017 εαρινό εξάμηνο Ασκήσεις Prolog
έντρα ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη
έντρα 2-3-4 ομές εδομένων 3ο εξάμηνο ιδάσκων: Χρήστος ουλκερίδης ιαφάνειες προσαρμοσμένες από το υλικό της Μαρίας Χαλκίδη Σημερινό Μάθημα 2-3-4 έντρα Ισοζυγισμένα δέντρα αναζήτησης έντρα αναζήτησης πολλαπλών
ΟιβασικέςπράξειςπουορίζουντονΑΤΔ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:
Δυαδικά Δέντρα Αναζήτησης (Binary Search Trees) Ορισμός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόμενα στο αριστερό υποδέντρο του t είναι
Εργασία 3 Σκελετοί Λύσεων
Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τη δομή typedef struct TNode{ int key; struct TNode *left; struct TNode *right; tnode; και υποθέτουμε πως ένα δυαδικό δένδρο είναι υλοποιημένο ως δείκτης
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Δεντρικά Ευρετήρια. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1
Δεντρικά Ευρετήρια Βάσεις Δεδομένων 2017-2018 1 Δέντρα Αναζήτησης Ένα δέντρο αναζήτησης (search tree) τάξεως p είναι ένα δέντρο τέτοιο ώστε κάθε κόμβος του περιέχει το πολύ p - 1 τιμές αναζήτησης και ρ
Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης
Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 17: Λύση Προβλημάτων με Αναδρομή Οι πύργοι του Hanoi Δίνεται ένα χώρος με τρεις θέσεις αποθήκευσης. Δίνεται μια στοίβα από Ν πλάκες σε φθίνον μέγεθος, σε μια από τις τρεις