Υπολογιστική Φυσική Ι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Υπολογιστική Φυσική Ι"

Transcript

1 Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Φυσική Ι Κεφάλαιο 7: Ο Αρμονικός Ταλαντωτής Αναγνωστόπουλος Κωνσταντίνος

2 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης rea%ve ommons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναγράφεται ρητώς.

3 ΚΕΦΑΛΑΙΟ 7 Ο Αναρμονικός Ταλαντωτής Στο κεφάλαιο αυτό θα εφαρμόσουμε μεθόδους πινάκων για τη λύση του κβαντομηχανικού προβλήματος του προσδιορισμού των ενεργειακών επιπέδων του αναρμονικού ταλαντωτή. Το πρόβλημα αυτό δεν μπορεί να λυθεί ακριβώς αναλυτικά οπότε πρέπει να προσφύγουμε σε διαταρακτικές ή αριθμητικές μαθόδους. Εμείς θα αντιμετωπίσουμε το πρόβλημα αριθμητικά. Για το σκοπό αυτό θα προσδιορίσουμε κατάλληλη βάση για να εκφράσουμε τη Χαμιλτονιανή H υπό μορφή πίνακα και θα τον διαγωνιοποιήσουμε αριθμητικά. Φυσικά ο πίνακας αυτός είναι απείρου μεγέθους και θα χρησιμοποιήσουμε την προσέγγιση η βάση που θα επιλέξουμε να έχει πεπερασμένο αριθμό από μέλη. Για να ελέγξουμε την ακρίβεια των αποτελεσμάτων μας, θα πρέπει να βεβαιωθούμε πως οι υπολογιζόμενες τιμές συγκλίνουν με την επιθυμητή ακρίβεια στις πραγματικές τιμές καθώς θα υπολογίζουμε με συνεχώς αυξανόμενο μέγεθος της βάσης στο χώρο Hilbert. Για τον υπολογισμό των ιδιοτιμών θα χρησημοποιήσουμε τις υπορουτίνες που βρίσκουμε στην βιβλιοθήκη LAPAK, θα είναι λοιπόν μια άσκηση για το πώς να συνδέουμε το πρόγραμμά μας με υπάρχουσες βιβλιοθήκες. Το κεφάλαιο αυτό βασίζεται στα Mathematica Notebooks του Peter West ( και στις σημειώσεις omputational Physics των U. Wolff, B. Bunk και F. Knechtli. Ο φοιτητής που εν-διαφέρεται μπορεί να ανατρέξει σε αυτές και να δει πώς λύνονται τα προβλήματα με τη χρήση Mathematica και Matlab αντίστοιχα. 7.1 Εισαγωγή Η Χαμιλτονιανή του αρμονικού ταλαντωτή δίνεται από τη σχέση: 311

4 31 ΚΕΦΑΛΑΙΟ 7. Ο ΑΝΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ H 0 = p m + 1 mω x (7.1) και ορίζοντας x 0 = /(mω), p 0 = mω παίρνουμε την εξίσωση αδιάστατων μεγεθών: H 0 ω = 1 ( p p 0 ) + 1 ( x x 0 ). (7.) Μετρώντας την ενέργεια σε μονάδες ω, τις αποστάσεις σε μονάδες x 0 και τις ορμές σε μονάδες p 0 παίρνουμε H 0 = 1 p + 1 x (7.3) Ο τελεστής H 0 μπορεί να διαγωνιοποιήθει εύκολα με τη βοήθεια των τελέστων δημιουργίας/καταστροφής: x = 1 (a + a) p = i (a a) (7.4) ή a = 1 (x + ip) a = 1 (x ip) (7.5) που ικανοποιούν τη σχέση μετάθεσης [a, a ] = 1 (7.6) και τότε H 0 = a a + 1. (7.7) Οι ιδιοκαταστάσεις της H 0 ικανοποιούν τις σχέσεις (n = 0, 1,,...) a n = n + 1 n + 1 a n = n n 1 a 0 = 0 (7.8) οπότε και a a n = n n (7.9) H 0 n = E n n, E n = n + 1. (7.10) Η αναπαράσταση θέσης των ιδιοκαταστάσεων n είναι: ψ n (x) = x n = 1 n n! π e x / H n (x) (7.11)

5 7.. ΥΠΟΛΟΓΙΣΜΟΣ ΙΔΙΟΤΙΜΩΝ H NM 313 όπου H n (x) τα πολυώνυμα Hermite. Από τις σχέσεις (7.4), (7.8) προκύπτει ότι x nm = n x m = 1 m + 1 δn,m m δn,m 1 (7.1) = 1 n + m + 1 δ n m,1 (7.13) p nm = n p m = i m + 1 δn,m+1 + i m δn,m 1 (7.14) Από την παραπάνω σχέση μπορούμε εύκολα να υπολογίσουμε την Χαμιλτονιανή του αναρμονικού ταλαντωτή και τα στοιχεία του πίνακα: H = H 0 + λx 4 (7.15) H nm n H m = n H 0 m + λ n x 4 m (7.16) = (n + 1 )δ n,m + λ(x 4 ) nm (7.17) όπου το (x 4 ) nm μπορούμε να υπολογίσουμε από τη σχέση (7.1) : (x 4 ) nm = i 1,i,i 3 =0 x ni1 x i1 i x i i 3 x i3 m. (7.18) Το πρόβλημα ανάγεται στον υπολογισμό των ιδιοτιμών του πίνακα H nm. 7. Υπολογισμός Ιδιοτιμών H nm Αρχικά επιλέγουμε το μέγεθος της βάσης/πινάκων, έστω N. Χρησιμοποιούμε τις σχέσεις που αναφέραμε στην προηγούμενη παράγραφο για να υπολογίσουμε τους πίνακες x, H 0, H. Για παράδειγμα, όταν N = 4 έχουμε: x = (7.19)

6 314 ΚΕΦΑΛΑΙΟ 7. Ο ΑΝΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ H = H 0 = λ 4 0 3λ (7.0) λ λ 4 3λ λ λ λ 4 (7.1) Σκοπός μας είναι να γράψουμε ένα πρόγραμμα που θα υπολογίζει τις ιδιοτιμές E n (λ). Για το λόγο αυτό είναι αναγκαίο ο αναγνώστης να ανατρέξει στο 5ο και 6ο κεφάλαιο των σημείωσεων. Αντί όμως να γράψουμε τον δικό μας κώδικα για τον υπολογισμό των ιδιοτιμών και ιδιοδιανυσμάτων των πινάκων που μας ενδιαφέρουν θα χρησιμοποιήσουμε τις έτοιμες ρουτίνες που υπάρχουν στη βιβλιοθήκη LAPAK. Η βιβλιοθήκη αυτή υπάρχει στον δικτυακό τόπο και λεπτομέρειες για τη χρήση της μπορούν να βρεθούν στο Επισκευτήτε το δικτυακό τόπο και αναζητήστε ρουτίνες που σας ενδιαφέρουν. Ως απλοί άπειροι χρήστες, θα αναζητήσουμε ρουτίνες οδηγούς (driver routines) που κάνουν μια δουλειά ολοκληρωμένα. Εχουμε να διαγωνιποιήσουμε πίνακα συμμετρικό και διαλέγουμε την ρουτίνα DSYEV (D = double precision, SY = symmetric, EV = eigenvalues with optional eigenvectors). Οι συναρτήσεις της LAPAK έχουν βοήθεια online από τα man pages του συστήματος (Unix/Linux). Η εντολή που δίνουμε είναι η man dsyev Από εκεί μαθαίνουμε ότι η χρήση της είναι: SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO ) HARATER JOBZ, UPLO INTEGER INFO, LDA, LWORK, N DOUBLE PREISION A( LDA, * ), W( * ), WORK( * ) ARGUMENTS JOBZ UPLO (input) HARATER*1 = 'N': ompute eigenvalues only; = 'V': ompute eigenvalues and eigenvectors. (input) HARATER*1

7 7.. ΥΠΟΛΟΓΙΣΜΟΣ ΙΔΙΟΤΙΜΩΝ H NM 315 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) DOUBLE PREISION array, dimension (LDA, N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, if JOBZ = 'V', then if INFO = 0, A contains the orthonormal eigenvectors of the matrix A. If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,n). W WORK (output) DOUBLE PREISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. (workspace/output) DOUBLE PREISION array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The length of the array WORK. LWORK >= max(1,3*n-1). For optimal efficiency, LWORK >= (NB+)*N, where NB is the blocksize for DSYTRD returned by ILAENV. INFO If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the algorithm failed to converge; i offdiagonal elements of an intermediate tridiagonal form did not converge to zero.

8 316 ΚΕΦΑΛΑΙΟ 7. Ο ΑΝΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Οδηγούμαστε λοιπόν στο να γράψουμε τον εξής κώδικα για να δοκιμάσουμε τη χρήση της σε ένα πίνακα A(N,N): PROGRAM TEST_EVS IMPLIIT NONE INTEGER P,LWORK! P= megisth diastash pinaka PARAMETER(P=100,LWORK=3*P-1) DOUBLE PREISION A(P,P),W(P),WORK(LWORK) INTEGER N!the dimension of the **used** part of the matrix A(N,N) INTEGER I,J HARATER *1,JOBZ,UPLO INTEGER LDA,INFO Orizoume ton **symmetriko** pinaka pou 0a diagwniopoihsoume. H routina xrhsimopoiei mono to anw trigwniko meros tou (UPLO='U') opote to katw trigwniko den xreiazetai na oristei. N=4 A(1,1)=-7.7 A(1,)=.1 A(1,3)=-3.7 A(1,4)= 4.4 A(,)= 8.3 A(,3)=-16. A(,4)= 4.6 A(3,3)=-1. A(3,4)=-1.04 A(4,4)=-3.7 Ton Typwnoume gia elegxo: (prin na kalesoume th routina giati meta katastrefetai!!) DO I=1,N DO J=i,N PRINT *,'A( ',I,', ',J,' )=',A(I,J) ENDDO ENDDO Orizoume na ypologistoun kai ta idiodianysmata: JOBZ='V' UPLO='U' PRINT *,'OMPUTING WITH DSYEV:' LDA=P!notice that LDA-> P>N!! ALL DSYEV(JOBZ,UPLO,N,A,LDA,W,WORK,LWORK,INFO)

9 7.. ΥΠΟΛΟΓΙΣΜΟΣ ΙΔΙΟΤΙΜΩΝ H NM 317 PRINT *,'DSYEV: DONE. HEKING NOW:' An to INFO den einai 0 tote exoyme sfalma: IF(INFO.NE. 0)THEN PRINT *,'DSYEV FAILED. INF0= ',INFO STOP ENDIF Typwnoume ta apotelesmata, W(I) exei tis idiotimes: PRINT *,'DSYEV: DONE.:' PRINT *,'EIGENVALUES OF MATRIX:' DO I=1,N PRINT *,'LAMBDA(',I,')=',W(I) ENDDO O pinakas A exei ta idiodianysmata **stis sthles tou**: (giati h fortran "trexei" ton mesa deikth grhgorotera anti0eta apo thn...) PRINT *,'EIGENVETORS OF MATRIX' DO J=1,N PRINT*,'EIGENVETOR ',J,' FOR EIGENVALUE ',W(J) DO I=1,N PRINT*,'V_',J,'(',I,')= ',A(I,J) ENDDO ENDDO END Το επόμενο βήμα είναι να μεταγλωττίσουμε τον κώδικα. Το σημείο που πρέπει να προσέξουμε είναι ότι στο στάδιο της σύνδεσης (linking) πρέπει να δώσουμε οδηγίες στον loader ld πού βρίσκονται οι βιβλιοθήκες LAPAK και η BLAS (η βασικές υπολογιστικές ρουτίνας γραμμικής άλγεβρας είναι στην BLAS). Ολες οι συναρτήσεις είναι μεταγλωττισμένες και τα object files τους είναι αρχειοθετημένα στα αρχεία liblapack.a libblas.a που μπορούμε να αναζητήσουμε με τις εντολές: locate libblas locate liblapack Για να δούμε τα περιεχόμενά τους δίνουμε τις εντολές: ar -t /usr/lib/libblas.a ar -t /usr/lib/liblapack.a (ή αντικαθιστούμε το /usr/lib με τη διαδρομή που αντιστοιχεί στο σύστημά μας). Αν ο κώδικάς μας είναι στο αρχείο test.f για τη μεταγλώττιση δίνουμε την εντολή:

10 318 ΚΕΦΑΛΑΙΟ 7. Ο ΑΝΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ f77 test.f -o test -L/usr/lib -llapack -lblas Η επιλογή -L/usr/lib λέει στον loader να αναζητήσει τις βιβλιοθήκες στο /usr/lib (άχρηστο στην περίπτωσή μας γιατί το ψάχνει έτσι και αλλιώς, χρήσιμο αν έχουμε βιβλιοθήκες σε μη συμβατικά μέρη) ενώ οι -llapack -lblas του λένε να ζητήσει όποια σύμβολα δεν έχουν ξεκαθαριστεί πρώτα στη βιβλιοθήκη liblapack.a και μετά στην libblas.a Η παραπάνω εντολή έχει ως αποτέλεσμα το εκτελέσιμο αρχείο test που όταν το τρέξουμε παίρνουμε το αποτέλεσμα: EIGENVALUES OF MATRIX: LAMBDA( 1)= LAMBDA( )= LAMBDA( 3)= LAMBDA( 4)= EIGENVETORS OF MATRIX EIGENVETOR 1 FOR EIGENVALUE V_ 1( 1)= V_ 1( )= V_ 1( 3)= V_ 1( 4)= EIGENVETOR FOR EIGENVALUE V_ ( 1)= V_ ( )= V_ ( 3)= V_ ( 4)= EIGENVETOR 3 FOR EIGENVALUE V_ 3( 1)= V_ 3( )= V_ 3( 3)= V_ 3( 4)= EIGENVETOR 4 FOR EIGENVALUE V_ 4( 1)= V_ 4( )= V_ 4( 3)= V_ 4( 4)= Τώρα είμαστε έτοιμοι να λύσουμε το πρόβλημα του αναρμονικού ταλαντωτή. Το πρόγραμμα βρίσκεται στην ιστοσελίδα του μαθήματος από όπου μπορείτε να το κατεβάσετε. Στην κύρια ρουτίνα του προγράμματος ο χρήστης εισάγει τις βασικές παραμέτρους, τη διάσταση του χώρου Hilbert

11 7.. ΥΠΟΛΟΓΙΣΜΟΣ ΙΔΙΟΤΙΜΩΝ H NM 319 DIM και τις τιμές του λ για τις οποίες επιθυμεί να υπολογιστούν οι ιδιοτιμές του τελεστή H(λ). Οι τελευταίες ορίζονται από τις μεταβλητές lambda0, lambdaf, dlambda που αντιστοιχουν στις μέγιστες και ελάχιστες τιμές λ min, λ max και το βήμα δλ αντίστοιχα (Ερώτηση: Στο πρόγραμμα που δίνεται παρακάτω, θα συμπεριλαμβάνεται το λ max στις τιμές που γίνεται ο υπολογισμός ή οχι;). Το πρόγραμμα καλεί την υπορουτίνα calculate_x4 για να υπολογίσει τον πίνακα (x 4 ) nm του τελεστή x 4 στην { } αναπαράσταση. Ο υπολογισμός στην υπορουτίνα αυτή είναι ακριβή και μπορεί να γίνει πολύ γρηγορότερα υπολογίζοντας εύκολα τα (x 4 ) nm αναλυτικά. Αυτό αφήνεται σαν άσκηση στον αναγνώστη. Ο υπολογισμός γίνεται μία φορά αφού ο πίνακας είναι αναξάρτητος του λ. Στη συνέχεια για κάθε τιμή του λ υπολογίζονται οι ιδιοτιμές του H(λ) καλώντας την υπορουτίνα calculate_evs και τα αποτελέσματα τυπώνονται στο stdout (standard output). Η υπορουτίνα calculate_evs καλεί την calculate_h να υπολογίσει τον πίνακα H(λ) nm η οποία κάνει χρήση των σχέσεων (7.16). Στη συνέχεια καλείται η DSYEV της LAPAK να κάνει τη διαγωνιοποίηση. Προσέχουμε στο όρισμα LDA της DSYEV να βάλουμε τη σωστή διάσταση του πίνακα H που είναι P και όχι DIM. Στη συνέχεια παρατίθεται ο κώδικας: program anharmonic_elevels implicit none integer P,LWORK parameter(p=1000,lwork=3*p-1) double precision H (P,P),X(P,P)!telestes: Hamiltonian,Position double precision X4(P,P)!telesths: X^4 double precision E(P)!energeiakes idiotimes double precision WORK(LWORK)!boh0htikos xwros ergasias LAPAK double precision lambda,lambda0,lambdaf,dlambda integer DIM integer i O xrhsths ka0orizei to mege0os ths bashs: print *,'Enter Hilbert Space dimension:' read(5,*)dim O Xrhsths dinei elaxisth/megisth timh sto lambda kai bhma ypologismou: print *,'Enter lambda0,lambdaf,dlambda:' read(5,*)lambda0,lambdaf,dlambda print *,'lambda0= ',lambda0 Print Message:

12 30 ΚΕΦΑΛΑΙΟ 7. Ο ΑΝΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ print *,'# ######################################################' print *,'# alculation of energy levels of anharmonic oscillator' print *,'# using matrix methods.' print *,'# Hilbert Space Dimension = ',DIM print *,'# lambda coupling = ',lambda0,' - ',lambdaf, * ' step= ',dlambda print *,'# ######################################################' print *,'# Outpout: lambda E_0 E_1... E_{N-1}' print *,'# ' Ypologizoume ton telesth X^4: call calculate_x4(x,x4,dim) Kai twra tis idiotimes synarthsei toy lambda: do lambda=lambda0,lambdaf,dlambda call calculate_evs(h,x4,e,work,lambda,dim) Prosexte to format gia na mhn typwnontai oi idiotimes se diaforetikh grammh an to N einai megalo write(6,100)'ev ',lambda,(e(i),i=1,dim) 100 FORMAT(A3,1000G5.15) end subroutine calculate_evs(h,x4,e,work,lambda,dim) implicit none integer P,LWORK parameter(p=1000,lwork=3*p-1) double precision H(P,P)!telestes: Hamiltonian,Position double precision X4(P,P)!telesths: X^4 double precision E(P)!energeiakes idiotimes double precision WORK(LWORK)!boh0htikos xwros ergasias LAPAK integer DIM double precision lambda character *1,JOBZ,UPLO integer LDA,INFO,i,j call calculate_h(h,x4,lambda,dim) JOBZ='V' UPLO='U' call dsyev(jobz,uplo,dim,h,p,e,work,lwork,info)

13 7.. ΥΠΟΛΟΓΙΣΜΟΣ ΙΔΙΟΤΙΜΩΝ H NM 31 print *,'# ********************** EVE *******************' do j=1,dim write(6,101)'# EVE ',lambda,(h(i,j), i=1,dim) print *,'# ********************** EVE *******************' 101 FORMAT(A7,F6.4,1000G14.6) An to INFO den einai 0 tote exoyme sfalma: if(info.ne. 0)then print *,'dsyev failed. INFO= ',INFO stop endif end subroutine calculate_h(h,x4,lambda,dim) implicit none integer P,LWORK parameter(p=1000,lwork=3*p-1) double precision H(P,P)!telestes: Hamiltonian,Position double precision X4(P,P)!telesths: X^4 integer DIM double precision lambda integer i,j,n,m do j=1,dim do i=1,dim H(i,j)=lambda*X4(i,j) H(j,j) = H(j,j) + DBLE(j) - 0.5D0!E_n=n+1/,n=j-1 => E_n=j-1/ print *,'# ********************** H *******************' do j=1,dim write(6,10)'# HH ',(H(i,j), i=1,dim) print *,'# ********************** H *******************' 10 FORMAT(A5,1000G14.6) end

14 3 ΚΕΦΑΛΑΙΟ 7. Ο ΑΝΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ subroutine calculate_x4(x,x4,dim) implicit none integer P parameter(p=1000) double precision X(P,P),X4(P,P) integer DIM!telesths: X, X^4 integer i,j,m,n,i1,i,i3 double precision isqrt! 1/sqrt() parameter(isqrt= d0) Arxika ypologizoume ton telesth 0eshs: do j=1,dim do i=1,dim X (i,j)=0.0d0 X4(i,j)=0.0D0 Kai twra ta mh mhdenika stoixeia: do i=1,dim n=i-1!deiktes 0,...,DIM-1 O oros delta_{n,m+1}, dhladh m=n-1 m=n-1!to energeiako epipedo n -> i=n+1, m-> j=m+1 j=m+1 if(j.ge.1) X(i,j)=isqrt*dsqrt(DBLE(m+1)) O oros delta_{n,m-1}, dhladh m=n+1 m=n+1 j=m+1 X(i,j)=isqrt*dsqrt(DBLE(m)) Kai twra ypologizoume ton telesth H: Arxizoume me ton oro X^4: do j=1,dim do i=1,dim do i1=1,dim do i=1,dim do i3=1,dim X4(i,j)=X4(i,j)+X(i,i1)*X(i1,i)*X(i,i3)*X(i3,j)

15 7.3. ΤΟ ΔΙΠΛΟ ΠΗΓΑΔΙ ΔΥΝΑΜΙΚΟΥ 33 Parathrhsh: Xanoume adiko xrono gia ton ypologismo toy X4 giati ta perissotera stoixeia tou einai 0. Efoson o analytikos ypologismos einai eykolos, systhnetai na ginei kai na ypologizontai mono ta mh mhdenika stoixeia!! (na ginei san askhsh) end Στη συνέχεια παρουσιάζουμε ένα υπολογισμό για N = 10, 0, 30. Στο σχήμα φαίνεται καλά ότι οι 3 πρώτες ενεργειακές στάθμες έχουν συγκλίνει καλά για τις τιμές αυτές. Επίσης γίνεται φανερό ότι αποκλίσεις παρουσιάζονται για μεγάλες τιμές του λ και του Ν N10 N0 N30 E Σχήμα 7.1: Οι πρώτες 1 ενεργειακές στάθμες του αναρμονικού ταλαντωτή για τιμές του 0 λ < 1 για N = 10, 0, 30. Η σύγκλιση μιάς συγκεκριμένης ιδιοτιμής E n καθώς N για κάποια τιμή του λ φαίνεται στα παρακάτω σχήματα όπου φαίνεται ότι η σύγκλιση είναι γρήγορη για μικρά λ και n ενώ αργή για μεγάλα. 7.3 Το Διπλό Πηγάδι Δυναμικού Θα χρησιμοποιήσουμε τις μεθόδους πινάκων που αναφέραμε για να υπολογίσουμε τα ενεργειακά επίπεδα σωματιδίου μέσα στο διπλό πηγάδι δυναμικού. Αυτό δίνεται από τη Χαμιλτονιανή: λ H = p x + λx4 4 (7.)

16 34 ΚΕΦΑΛΑΙΟ 7. Ο ΑΝΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ n = 0 λ=0.9 λ=0. E n Σχήμα 7.: Η ενεργειακή στάθμη E 0 για λ = 0., 0.9 σαν συνάρτηση της (αντίστροφης) διάστασης του χώρου Hilbert 1/ Σύγκλιση επιτυγχάνεται για μικρές τιμές του Ν ενώ φαίνεται ότι για λ=0. γίνεται ελαφρά γρηγορότερα από ότι για λ=0.9. 1/N και τα σημεία ισορροπίας στην κλασσική κίνηση βρίσκονται στα ελάχιστα: x 0 = ± 1, V min = 1 (7.3) λ 4λ Οταν το πηγάδι είναι πολύ βαθύ τότε για τις χαμηλότερες στάθμες μπορούμε να θεωρήσουμε ότι το δυναμικό προσεγγίζεται καλά από αυτό του αρμονικού ταλαντωτή με συχνότητα ω = V (x 0 ) οπότε E min V min + 1 ω (7.4) Στην περίπτωση αυτή το φαινόμενο σύραγγας είναι πολύ ασθενές με αποτέλεσμα τα ενεργειακά επίπεδα να χωρίζονται ελαφρά μεταξύ τους ανά ζεύγη. Αυτό γίνεται γιατί οι αντίστοιχες ιδιοκαταστάσεις είναι συμμετρικοί και αντισυμμετρικοί συνδυασμοί κυματοσυναρτήσεων που αντιστοιχούν σε καταστάσεις εντοπισμένες στο αριστερό ή δεξιό ελάχιστο της δυναμικής ενέργειας. Π.χ. για τα δύο χαμηλότερα ενεργειακό επίπεδα περιμένουμε ότι E 0,1 = E min ± (7.5) όπου E min.

17 7.3. ΤΟ ΔΙΠΛΟ ΠΗΓΑΔΙ ΔΥΝΑΜΙΚΟΥ n = 9 λ=0.9 λ=0. E n Σχήμα 7.3: Η ενεργειακή στάθμη E 9 για λ = 0., 0.9 σαν συνάρτηση της (αντίστροφης) διάστασης του χώρου Hilbert 1/. 1/N Ως βάση για τον υπολογισμό της Χαμιλτονιανής (7.) θα χρησιμοποιήσουμε τις σχέσεις (7.1). Οι απαραίτητες μεταβολές στον κώδικα μας είναι ελάχιστες. Απλά θα προσθέσουμε μία ρουτίνα που να υπολογίζει τους πίνακες p nm. Παίρνουμε έτσι τον κώδικα που αποθηκεύουμε στο αρχείο doublewell.f: program doublewell_elevels implicit none integer P,LWORK parameter(p=1000,lwork=3*p-1) double precision H (P,P),X(P,P)!telestes: Hamiltonian,Position double precision X4(P,P)!telesths: X^4 double precision X(P,P)!telesths: X^ double precision ip(p,p),p(p,p)!telestes: i P, P^ double precision H0(P,P)!telesths: H_0=1/ P^-1/ X^ double precision E(P)!energeiakes idiotimes double precision WORK(LWORK)!boh0htikos xwros ergasias LAPAK double precision lambda,lambda0,lambdaf,dlambda integer DIM0,DIMF,dDIM,DIM integer i O xrhsths ka0orizei to mege0os ths bashs: print *,'Enter Hilbert Space dimensions (DIM0,DIMF,DDIM):' read(5,*)dim0,dimf,ddim O Xrhsths dinei elaxisth/megisth timh sto lambda kai bhma

18 36 ΚΕΦΑΛΑΙΟ 7. Ο ΑΝΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ E n n = /N λ=0.9 λ=0. Σχήμα 7.4: Η ενεργειακή στάθμη E 0 για λ = 0., 0.9 σαν συνάρτηση της (αντίστροφης) διάστασης του χώρου Hilbert 1/. Η σύγκλιση δεν έχει επιτευχθεί για τις προβαλλόμενες τιμές του Ν με την ακρίβεια των παραπάνω σχημάτων. ypologismou: print *,'Enter lambda0,lambdaf,dlambda:' read(5,*)lambda0,lambdaf,dlambda print *,'lambda0= ',lambda0 Print Message: print *,'# ######################################################' print *,'# alculation of energy levels of double well potential' print *,'# using matrix methods.' print *,'# Hilbert Space Dimensions = ',DIM0,' - ',DIMF, $ ' step= ',ddim print *,'# lambda coupling = ',lambda0,' - ',lambdaf, $ ' step= ',dlambda print *,'# ######################################################' print *,'# Outpout: DIM lambda E_0 E_1... E_{N-1}' print *,'# ' do DIM=DIM0,DIMF,dDIM Ypologizoume telestes: call calculate_operators(x,x,x4,ip,p,h0,dim) Ypologizoume thn Hamiltonian H_0 xwris oro X^4 Kai twra tis idiotimes synarthsei toy lambda: do lambda=lambda0,lambdaf,dlambda

19 7.3. ΤΟ ΔΙΠΛΟ ΠΗΓΑΔΙ ΔΥΝΑΜΙΚΟΥ 37 V(x) x λ=0. λ=0.1 Σχήμα 7.5: Η δυναμική ενέργεια V (x) για λ = 0.1, 0.. call calculate_evs(h,h0,x4,e,work,lambda,dim) Prosexte to format gia na mhn typwnontai oi idiotimes se diaforetikh grammh an to N einai megalo write(6,100)'ev ',DIM,lambda,(E(i),i=1,DIM) 100 FORMAT(A3,I5,1000G5.15) end subroutine calculate_evs(h,h0,x4,e,work,lambda,dim) implicit none integer P,LWORK parameter(p=1000,lwork=3*p-1) double precision H(P,P)!telestes: Hamiltonian,Position double precision X4(P,P)!telesths: X^4 double precision H0(P,P)!telesths: H_0=1/ P^-1/ X^ double precision E(P)!energeiakes idiotimes double precision WORK(LWORK)!boh0htikos xwros ergasias LAPAK integer DIM double precision lambda character *1,JOBZ,UPLO integer LDA,INFO,i,j

20 38 ΚΕΦΑΛΑΙΟ 7. Ο ΑΝΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ call calculate_h(h,h0,x4,lambda,dim) JOBZ='V' UPLO='U' call dsyev(jobz,uplo,dim,h,p,e,work,lwork,info) print *,'# ********************** EVE *******************' do j=1,dim write(6,101)'# EVE ',DIM,lambda,(H(i,j), i=1,dim) print *,'# ********************** EVE *******************' 101 FORMAT(A7,I5,F8.4,1000G14.6) An to INFO den einai 0 tote exoyme sfalma: if(info.ne. 0)then print *,'dsyev failed. INFO= ',INFO stop endif end subroutine calculate_h(h,h0,x4,lambda,dim) implicit none integer P,LWORK parameter(p=1000,lwork=3*p-1) double precision H(P,P)!telestes: Hamiltonian,Position double precision H0(P,P)!telesths: H_0=1/ P^-1/ X^ double precision X4(P,P)!telesths: X^4 integer DIM double precision lambda integer i,j,n,m do j=1,dim do i=1,dim H(i,j)=H0(i,j)+0.5D0*lambda*X4(i,j) print *,'# ********************** H *******************' do j=1,dim write(6,10)'# HH ',(H(i,j), i=1,dim)

21 7.3. ΤΟ ΔΙΠΛΟ ΠΗΓΑΔΙ ΔΥΝΑΜΙΚΟΥ 39 print *,'# ********************** H *******************' 10 FORMAT(A5,1000G14.6) end subroutine calculate_operators(x,x,x4,ip,p,h0,dim) implicit none integer P parameter(p=1000) double precision X(P,P),X4(P,P)!telesths: X, X^4 double precision X(P,P)!telesths: X^ double precision ip(p,p),p(p,p)!telestes: i P, P^ double precision H0(P,P)!telesths: H_0=1/ P^-1/ X^ integer DIM integer i,j,m,n,i1 double precision isqrt! 1/sqrt() parameter(isqrt= d0) Arxika ypologizoume ton telesth 0eshs,i*ormhs: do j=1,dim do i=1,dim X (i,j)=0.0d0 X4(i,j)=0.0D0 X(i,j)=0.0D0 ip(i,j)=0.0d0 P(i,j)=0.0D0 Kai twra ta mh mhdenika stoixeia: do i=1,dim n=i-1!deiktes 0,...,DIM-1 O oros delta_{n,m+1}, dhladh m=n-1 m=n-1!to energeiako epipedo n -> i=n+1, m-> j=m+1 j=m+1 if(j.ge.1) X (i,j) = isqrt*dsqrt(dble(m+1)) if(j.ge.1) ip(i,j) = isqrt*dsqrt(dble(m+1)) O oros delta_{n,m-1}, dhladh m=n+1 m=n+1 j=m+1 X (i,j) = isqrt*dsqrt(dble(m)) ip(i,j) = -isqrt*dsqrt(dble(m))

22 330 ΚΕΦΑΛΑΙΟ 7. Ο ΑΝΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ do j=1,dim do i=1,dim do i1=1,dim X(i,j)=X(i,j)+ X(i,i1)* X(i1,j) P(i,j)=P(i,j)-iP(i,i1)*iP(i1,j) o oros X^4: do j=1,dim do i=1,dim do i1=1,dim X4(i,j)=X4(i,j)+X(i,i1)*X(i1,j) kai h hamiltonianh: do j=1,dim do i=1,dim H0(i,j)=0.5D0*( P(i,j)-X(i,j) ) Parathrhsh: Xanoume adiko xrono gia ton ypologismo toy X4,P4 giati ta perissotera stoixeia tou einai 0. Efoson o analytikos ypologismos einai eykolos, systhnetai na ginei kai na ypologizontai mono ta mh mhdenika stoixeia!! (na ginei san askhsh) end

23 7.4. ΑΣΚΗΣΕΙΣ Ασκήσεις 7.1 Υπολογίστε αναλυτικά τον πίνακα H(λ) για =, 3. Υπολογίστε τις ιδιοτιμές για N =. Συγκρίνετε με τις τιμές που υπολογίζει το πρόγραμμά σας ως επιβεβαίωση ότι τρέχει σωστά. 7. Αλλάξτε τη σειρά -llapack -lblas σε -lblas -llapack στην εντολή μεταγλώττισης. Τι παρατηρήτε; Γιατί; 7.3 Μεταβάλλετε τον κώδικα test.f έτσι ώστε να επιβεβαιώνει ότι τα ιδιοδιανύσματα ικανοποιούν τις σχέσεις A v i = λ i v i και ότι αποτελούν ορθοκανονική βάση v i v j = δ ij. 7.4 Υπολογίστε τον πίνακα του τελεστή x 4 αναλυτικά και προγραμματίστε τον στο πρόγραμμα σας. Συγκρίνετε τους χρόνους που τρέχει το πρόγραμμά σας σε σχέση με πριν σαν συνάρτηση του N. Τι συμπεραίνετε;

24 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικόυ έργου του διδάσκοντα Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα Ε.Μ.Π.» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικού πόρους.

Ο Αναρμονικός Ταλαντωτής

Ο Αναρμονικός Ταλαντωτής ΚΕΦΑΛΑΙΟ 9 Ο Αναρμονικός Ταλαντωτής Στο κεφάλαιο αυτό θα εφαρμόσουμε μεθόδους πινάκων για τη λύση του κβαντομηχανικού προβλήματος του προσδιορισμού των ενεργειακών επιπέδων του αναρμονικού ταλαντωτή. Το

Διαβάστε περισσότερα

Ενότητα 1 Διάλεξη 3. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 1 Διάλεξη 3. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 3 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Παρουσίαση συλλογών υποπρογραμμάτων για γραμμική άλγεβρα: blas lapack

Παρουσίαση συλλογών υποπρογραμμάτων για γραμμική άλγεβρα: blas lapack Παρουσίαση συλλογών υποπρογραμμάτων για γραμμική άλγεβρα: blas lapack Σταμάτης Σταματιάδης Τμήμα Επιστήμης και Τεχνολογίας Υλικών, Πανεπιστήμιο Κρήτης blas Basic Linear Algebra Subprograms Υποπρογράμματα

Διαβάστε περισσότερα

Θέµα 1 (15%): (απαιτούµενος χρόνος < 15 λεπτά)

Θέµα 1 (15%): (απαιτούµενος χρόνος < 15 λεπτά) Θέµα 1 (15%): (απαιτούµενος χρόνος < 15 λεπτά) Εκτελέστε µε το χέρι το παρακάτω πρόγραµµα και γράψτε όλες τις ενδιάµεσες τιµές και τις τιµές που τυπώνονται: int m,n; m=2; n=1; m=m+5; if (m>=9) m=m-8; n=n+7;

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την μελέτη

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003)

Εισαγωγή στον Προγραμματισμό Η/Υ (Fortran 90/95/2003) ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ () Ενότητα 7: Πολυδιάστατοι Πίνακες Νίκος Καραμπετάκης Τμήμα Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Κβαντική Φυσική Ι Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι

Διαβάστε περισσότερα

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN: Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 7 η : Εντολές Επανάληψης Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Εισαγωγή στην Αριθμητική Ανάλυση

Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον

Διαβάστε περισσότερα

ΕΠΛ031 - Εισαγωγή στον Προγραμματισμό

ΕΠΛ031 - Εισαγωγή στον Προγραμματισμό Εισαγωγή στην Fortran ΕΠΛ031 Εισαγωγή στον Προγραμματισμό Νέαρχος Πασπαλλής Επισκέπτης Ακαδημαϊκός (Λέκτορας) nearchos@cs.ucy.ac.cy Γραφείο #B120, Τηλ. ext. 2744 FORTRAN: Ιστορική Αναδρομή 1954 1957, πρώτος

Διαβάστε περισσότερα

Πίνακες. FORTRAN και Αντικειμενοστραφής Προγραμματισμός

Πίνακες. FORTRAN και Αντικειμενοστραφής Προγραμματισμός Πίνακες (i) Δομημένη μεταβλητή: αποθηκεύει μια συλλογή από τιμές δεδομένων Πίνακας (array): δομημένη μεταβλητή που αποθηκεύει πολλές τιμές του ίδιου τύπου INTEGER:: pinakas(100)ή INTEGER, DIMENSION(100)::pinakas

Διαβάστε περισσότερα

Υπο-προγράμματα στη Fortran

Υπο-προγράμματα στη Fortran ΦΥΣ 145 - Διαλ.05 1 Υπο-προγράμματα στη Fortran q Mέχρι τώρα τα προβλήματα και τα προγράμματα που έχουμε δεί ήταν αρκετά απλά και επομένως ένα και μόνο πρόγραμμα ήταν αρκετό για να τα λύσουμε q Όταν τα

Διαβάστε περισσότερα

1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB)

1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB) ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB) Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Υποπρογράμματα Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Σωμάτιο σε Ηλεκτρομαγνητικό Πεδίο Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

10 ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

10 ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Αθροίσματα Riemann Στο κεφάλαιο αυτό θα ασχοληθούμε με αριθμητικές μεθόδους υπολογισμού του ορισμένου ολοκληρώματος b a f ( d ) όπου τα a, b είναι γνωστά και η συνάρτηση f() είναι

Διαβάστε περισσότερα

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ Στέλιος Τζωρτζάκης Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ 1 3 4 Το δυναμικό του αρμονικού ταλαντωτή Η παραβολική προσέγγιση βρίσκει άμεση

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς

Εισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 7. Τμήματα Πινάκων Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική Πρόοδος 28 Μαρτίου 2009 Οµάδα 1 η Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Πρέπει να απαντήσετε σε όλα τα προβλήµατα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Προγραμματισμός Η/Υ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Προγραμματισμός Η/Υ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Προγραμματισμός Η/Υ Ενότητα 3 η : Η Γλώσσα Προγραμματισμού VB.NET (2 ο Μέρος) Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Ενότητα 1 Διάλεξη 2β

Ενότητα 1 Διάλεξη 2β Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 2β Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Βασικά σημεία της κβαντομηχανικής Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα

Διαβάστε περισσότερα

FORTRAN και Αντικειμενοστραφής Προγραμματισμός

FORTRAN και Αντικειμενοστραφής Προγραμματισμός FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Πολυδιάστατοι πίνακες. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Πολυδιάστατοι πίνακες. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Πολυδιάστατοι πίνακες Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Fortran και Αντικειµενοστραφής προγραµµατισµός.

Fortran και Αντικειµενοστραφής προγραµµατισµός. Fortran και Αντικειµενοστραφής προγραµµατισµός www.corelab.ntua.gr/courses/fortran_naval/naval δάσκοντες: ΆρηςΠαγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) ώρασούλιου (dsouliou@mail.ntua.gr)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ατομική και Μοριακή Φυσική

Ατομική και Μοριακή Φυσική Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Σύστημα με δύο ηλεκτρόνια Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό με C++

Εισαγωγή στον Προγραμματισμό με C++ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στον Προγραμματισμό με C++ Ενότητα # 6: Συναρτήσεις Κωνσταντίνος Κουκουλέτσος Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Μαθηματικά και Φυσική με Υπολογιστές

Μαθηματικά και Φυσική με Υπολογιστές ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Ενότητα 3 (μέρος 1 ο )

Ενότητα 3 (μέρος 1 ο ) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 3 (μέρος 1 ο ) Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Προγραμματισμός με FORTRAN Συνοπτικός Οδηγός Α. Σπυρόπουλος Α. Μπουντουβής

Προγραμματισμός με FORTRAN Συνοπτικός Οδηγός Α. Σπυρόπουλος Α. Μπουντουβής ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός με FORTRAN Συνοπτικός Οδηγός Α Σπυρόπουλος Α Μπουντουβής Αθήνα, 2015 v13_061015 Στον οδηγό αυτό θα χρησιμοποιηθούν

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 2ο Aντώνης Σπυρόπουλος v2_061015 Οροι που

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Ενότητα: ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΚΥΡΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ. Τμήμα Διοίκηση Επιχειρήσεων (Κοζάνη)

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Ενότητα: ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΚΥΡΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ. Τμήμα Διοίκηση Επιχειρήσεων (Κοζάνη) ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ενότητα: ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΚΥΡΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Τμήμα Διοίκηση Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Αστικά υδραυλικά έργα

Αστικά υδραυλικά έργα Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Τροχιακή Στροφορμή (Ορισμοί Τελεστών) Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες.

Πληροφορική. Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πληροφορική Ενότητα 1: Α. Οργάνωση μαθήματος. Β. Στοιχεία Προγραμματισμού -Προγραμματιστικές Δομές, Πρόγραμμα, Γλώσσες. Κωνσταντίνος Καρατζάς

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Μεταβλητές και πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Μεταβλητές και πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Μεταβλητές και πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Δομή του προγράμματος. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Δομή του προγράμματος Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #7: Ευφυής Ελεγκτής Μέρος Α Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές

Ηλεκτρονικοί Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Εντολές Αντικατάστασης, Συναρτήσεις και Σχόλια στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Τύποι δεδομένων Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στη Fortran. Μάθημα 3 ο. Ελευθερία Λιούκα

Εισαγωγή στη Fortran. Μάθημα 3 ο. Ελευθερία Λιούκα Εισαγωγή στη Fortran Μάθημα 3 ο Ελευθερία Λιούκα liouka.eleftheria@gmail.com Περιεχόμενα Loops External Functions Subroutines Arrays Common mistakes Loops Ανάγκη να εκτελέσουμε τις ίδιες εντολές πολλές

Διαβάστε περισσότερα

8 FORTRAN 77/90/95/2003

8 FORTRAN 77/90/95/2003 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: Εισαγωγή... 17 1.1. Ανασκόπηση της ιστορίας των υπολογιστών... 18 1.2. Πληροφορία και δεδομένα... 24 1.3. Ο Υπολογιστής... 26 1.4. Δομή και λειτουργία του υπολογιστή... 28 1.5.

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 1: Αριθμητικές μέθοδοι στα φαινόμενα μεταφοράς και στη θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Υπολογιστικά Συστήματα

Υπολογιστικά Συστήματα Υπολογιστικά Συστήματα Ενότητα 4: Visual Basic for Applications (VBA) Δομές Επανάληψης και Επιλογής Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Πρόοδος 26 Μαρτίου 2007 Ομάδα 1 η ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική Πρόοδος 6 Μαρτίου 007 Ομάδα 1 η Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 6 προβλήματα

Διαβάστε περισσότερα

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem

Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Το Πρόβλημα του Περιοδεύοντος Πωλητή - The Travelling Salesman Problem Έλενα Ρόκου Μεταδιδακτορική Ερευνήτρια ΕΜΠ Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Fortran και Αντικειμενοστραφής προγραμματισμός.

Fortran και Αντικειμενοστραφής προγραμματισμός. Fortran και Αντικειμενοστραφής προγραμματισμός www.corelab.ntua.gr/courses/fortran_naval/naval Διδάσκοντες: Άρης Παγουρτζής (pagour@cs.ntua.gr) (Επίκουρος Καθηγητής ΣΗΜΜΥ ) Δώρα Σούλιου (dsouliou@mail.ntua.gr)

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017

FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 M7 Δομές δεδομένων: Πίνακες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr ΕΜΠ/ΣΝΜΜ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,

Διαβάστε περισσότερα

242 -ΕισαγωγήστουςΗ/Υ

242 -ΕισαγωγήστουςΗ/Υ 1 242 -ΕισαγωγήστουςΗ/Υ ΤµήµαΜαθηµατικών, Πανεπιστήµιο Ιωαννίνων Άρτια Α.Μ. (0-2-4-6-8) Πίνακες σαν παράµετροι 2 Πίνακες σαν παράµετροι 3 Πίνακες σαν παράµετροι Περνάµε ένα πίνακα σαν παράµετρο σε µια

Διαβάστε περισσότερα

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι

ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ. Ασκήσεις Κεφαλαίου Ι ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου Ι Άσκηση 1: Θεωρήστε δύο ορθοκανονικά διανύσματα ψ 1 και ψ και υποθέστε ότι αποτελούν βάση σε ένα χώρο δύο διαστάσεων. Θεωρήστε επίσης ένα τελαστή T που ορίζεται στο χώρο

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Δομημένος Προγραμματισμός Ενότητα 9: Συναρτήσεις Εμβέλεια Κουκουλέτσος Κώστας Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστικών Συστημάτων

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Συστήματα Πολλών Σωματίων Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD ΕΙΣΑΓΩΓΗ Οι πίνακες είναι συλλογές δεδομένων που μοιράζονται τα ίδια χαρακτηριστικά.

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Είσοδος -Έξοδος. Άνοιγµα αρχείου:

Είσοδος -Έξοδος. Άνοιγµα αρχείου: Είσοδος -Έξοδος Άνοιγµα αρχείου: open (unit = αριθµός, file = "όνοµα_αρχείου") Αριθµός: θετικός ακέραιος (εκτός του 6) µε τον οποίο αναφερόµαστε στο αρχείο Όνοµα αρχείου: το όνοµα του αρχείου (καλύτερα

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 2: Εισαγωγή σε έννοιες προγραμματισμού με υπολογιστή Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 7

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 7 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 12 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 7 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Προσέγγιση και Ομοιότητα Σημάτων Επιμέλεια: Πέτρος Π. Γρουμπός Καθηγητής Γεώργιος Α. Βασκαντήρας Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 3: Αποκατάσταση Εικόνας.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ. Ενότητα 3: Αποκατάσταση Εικόνας. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ενότητα 3: Αποκατάσταση Εικόνας Ιωάννης Έλληνας Τμήμα Υπολογιστικών Συστημάτων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών Ενότητα 7: Υπορουτίνες Καθ. Γιάννης Γαροφαλάκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Ορισμός Αφαίρεση με χρήση υπορουτινών (subroutine abstraction)

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Κβαντική Φυσική Ι Ενότητα 6: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει

Διαβάστε περισσότερα

Ατομική και Μοριακή Φυσική

Ατομική και Μοριακή Φυσική Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Ατομική και Μοριακή Φυσική Θεωρία Προσεγγίσεων Λιαροκάπης Ευθύμιος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

"ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ" (ΕΜ102), ΕΡΓΑΣΙΑ 1η

ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ (ΕΜ102), ΕΡΓΑΣΙΑ 1η "ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Η/Υ" (ΕΜ102), ΕΡΓΑΣΙΑ 1η Σε αυτήν την εργασία καλείστε να κατασκευάσετε τον πηγαίο κώδικα γλώσσας C για το εκτελέσιµο αρχείο µε ό- νοµα ATM, που όταν εκτελείται σε κονσόλα προσοµοιώνει

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Κεντρικά Δυναμικά Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 6 η : Εντολές Λήψης Αποφάσεων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Διοίκησης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

. Να βρεθεί η Ψ(x,t).

. Να βρεθεί η Ψ(x,t). ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου II Άσκηση 1: Εάν η κυματοσυνάρτηση Ψ(,0) παριστάνει ένα ελεύθερο σωματίδιο, με μάζα m, στη μία διάσταση την χρονική στιγμή t=0: (,0) N ep( ), όπου N 1/ 4. Να βρεθεί η

Διαβάστε περισσότερα

6 η ΕΝΟΤΗΤΑ Δομές επανάληψης

6 η ΕΝΟΤΗΤΑ Δομές επανάληψης ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 6 η ΕΝΟΤΗΤΑ Δομές επανάληψης Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative Commons.

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακά Σ.Α.Ε: Περιγραφή στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 16: Αναπαράσταση τελεστών με μήτρες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναπτύξει την μεθοδολογία εύρεσης ιδιοτιμών

Διαβάστε περισσότερα

Υπόγεια Υδραυλική και Υδρολογία

Υπόγεια Υδραυλική και Υδρολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

Προγραμματισμός και Εφαρμογές Υπολογιστών

Προγραμματισμός και Εφαρμογές Υπολογιστών Προγραμματισμός και Εφαρμογές Υπολογιστών Ενότητα 3: Συνθήκες- Δομές απόφασης 1/2 Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Κ.Π. Γιαλούρης Μαθησιακοί Στόχοι Κατανόηση της εντολής ελέγχου & επιλογής

Διαβάστε περισσότερα

4 η ΕΝΟΤΗΤΑ Μητρώα και συνθήκες στο MATLAB

4 η ΕΝΟΤΗΤΑ Μητρώα και συνθήκες στο MATLAB ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 4 η ΕΝΟΤΗΤΑ Μητρώα και συνθήκες στο MATLAB Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Ενότητα: Τοπικές vs Καθολικές Μεταβλητές ΚΥΡΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ. Τμήμα Διοίκηση Επιχειρήσεων (Κοζάνη)

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Ενότητα: Τοπικές vs Καθολικές Μεταβλητές ΚΥΡΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ. Τμήμα Διοίκηση Επιχειρήσεων (Κοζάνη) ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ενότητα: Τοπικές vs Καθολικές Μεταβλητές ΚΥΡΟΠΟΥΛΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Τμήμα Διοίκηση Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 4: Σφάλματα περικοπής (truncation) και η σειρά Taylor Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 3 η Σειρά Ασκήσεων 07.12.2010 Άσκηση 1. Δίνονται τα

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή

, που, χωρίς βλάβη της γενικότητας, μπορούμε να θεωρήσουμε χρονική στιγμή μηδέν, δηλαδή Η ΚΥΜΑΤΟΣΥΝΑΡΤΗΣΗ ΣΤΗΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΘΕΣΗΣ ΑΝΑΠΑΡΑΣΤΑΣΗ ΟΡΜΗΣ p. Θα βρούμε πρώτα τη σχέση που συνδέει την p με την x. x ΚΑΙ ΣΤΗΝ Έστω η κατάσταση του συστήματός μας μια χρονική στιγμή t 0, που, χωρίς βλάβη

Διαβάστε περισσότερα

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:

Δύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης: Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται

Διαβάστε περισσότερα