Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών
|
|
- Ευστάθιος Γεωργιάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 2: Θεωρία Κίνησης Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών
2 Κλήσεις σε εξέλιξη 22/6/2013 ΘΕΩΡΙΑ ΚΙΝΗΣΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ Θ. ΣΦΗΚΟΠΟΥΛΟΣ 1 ΓΕΝΙΚΑ ΠΕΡΙ ΚΙΝΗΣΗΣ - 1 Ο σχεδιασμός ενός τηλεπικοινωνιακού συστήματος απαιτεί την λήψη μιας απόφασης ως προς το μέγεθός του με σκοπό τη σωστή διακίνηση της κίνησης Ζευκτικό κύκλωμα: Περιγράφει κάθε οντότητα που μεταφέρει μια κλήση π.χ. Διεθνές κύκλωμα με μήκος χιλιάδων km Μερικά μέτρα καλωδίων μεταξύ μεταγωγέων του ίδιου τηλεφωνικού κέντρου κ.α. Ο αριθμός των κλήσεων σε εξέλιξη μεταβάλλεται με έναν τυχαίο τρόπο καθώς κάθε κλήση ξεχωριστά αρχίζει και τελειώνει με τυχαίο τρόπο Χρόνος σε min 2 1
3 Κλήσεις σε εξέλιξη 22/6/2013 ΓΕΝΙΚΑ ΠΕΡΙ ΚΙΝΗΣΗΣ - 2 Η τυχαία μεταβολή των κλήσεων σε εξέλιξη εξομαλύνεται παίρνοντας τον τρέχοντα μέσο όρο (running average) Κατά τη διάρκεια της νύχτας υπάρχει γενικά μικρότερη δραστηριότητα Αύξηση της κίνησης παρατηρείται προς το μέσο του πρωινού (επαγγελματικές δραστηριότητες), το απόγευμα και το βράδυ (κοινωνικές δραστηριότητες). Στα ενδιάμεσα υπάρχει ύφεση Το μέγεθος της κίνησης εξαρτάται και από το κέντρο το οποίο μελετάμε (π.χ. σε ένα κέντρο που εξυπηρετεί ένα ολόκληρο προάστιο η βραδινή κίνηση θα είναι μεγαλύτερη Ο αριθμός των κλήσεων μπορεί να μεταβάλλεται και με την εποχή του χρόνου (παραθεριστικά ή μη κέντρα) Ώρες αιχμής πμ μμ Χρόνος της ημέρας 3 ΓΕΝΙΚΑ ΠΕΡΙ ΚΙΝΗΣΗΣ - 3 Ώρα αιχμής ή ώρα μέγιστης απασχόλησης: Καλείται η περίοδος μιας ώρας που αντιστοιχεί στην αιχμή του φόρτου κίνησης Το πλήθος των αναγκαίων ζευκτικών κυκλωμάτων εξαρτάται από τη μεταφερόμενη κίνηση και πρέπει να είναι επαρκές για να καλύψει τις ανάγκες που προκύπτουν κατά την ώρα αιχμής Σε ώρες μη αιχμής το μεγαλύτερο ποσοστό του εξοπλισμού παραμένει αδρανές Οι τηλεπικοινωνιακοί οργανισμοί με σκοπό την ανακατανομή της κίνησης και κατ επέκταση τη μείωση των δαπανών δίνουν κίνητρα στους πελάτες τους (π.χ. φθηνότερες κλήσεις τις βραδινές ώρες) 4 2
4 22/6/2013 ΜΟΝΑΔΑ ΚΙΝΗΣΗΣ - 1 Ένταση κίνησης ή απλά κίνηση: Καθορίζεται από τον μέσο αριθμό κλήσεων που βρίσκονται σε εξέλιξη Η μονάδα κίνησης καλείται erlang (E) Σε μία ομάδα ζευκτικών κυκλωμάτων, ο μέσος αριθμός των κλήσεων εν εξελίξει εξαρτάται: από το ρυθμό άφιξης των κλήσεων από τη μέση διάρκειά τους Χρόνος κράτησης: Διάρκεια μιας κλήσης (Διάρκεια κατάληψης ενός ζευκτικού κυκλώματος). Ζευκτικό κέντρο Ε 1Ε 1Ε 3 0 Τ Χρόνος Ελεύθερο Απασχολημένο 5 C h T ΜΟΝΑΔΑ ΚΙΝΗΣΗΣ - 2 Μία ομάδα ζευκτικών κυκλωμάτων διακινεί κίνηση, η οποία δίνεται από τη σχέση: C h Α = κίνηση σε erlangs C = μέσος όρος αφίξεων κλήσεων κατά τη διάρκεια Τ T h = μέση διάρκεια κλήσεων Η κίνηση σε erlangs ισούται με το μέσο αριθμό των κλήσεων που φτάνουν κατά τη διάρκεια μίας περιόδου ίσης με τη μέση διάρκεια των κλήσεων (αν T = h τότε = C) Πρέπει Α1 για ένα μόνο κύκλωμα, αφού αυτό δεν μπορεί να διακινεί περισσότερες από μία κλήσεις Τότε η κίνηση είναι ένα κλάσμα του erlang ίσο με το μέσο ποσοστό του χρόνου για το οποίο το κύκλωμα είναι απασχολημένο. Το κλάσμα αυτό καλείται απασχόληση Η πιθανότητα να βρεθεί το κύκλωμα απασχολημένο, είναι ίση με το κλάσμα της μονάδας του χρόνου για το οποίο είναι απασχολημένο, δηλαδή ίση με την απασχόληση (Α) του κυκλώματος 6 3
5 22/6/2013 ΣΥΜΦΟΡΗΣΗ - 1 Το κόστος ικανοποίησης της ταυτόχρονης κλήσης όλων των συνδρομητών ενός κέντρου είναι απαγορευτικό, αλλά και η πιθανότητα για να συμβεί κάτι τέτοιο είναι αμελητέα Συμφόρηση: Είναι η κατάσταση κατά την οποία όλα τα κυκλώματα μιας ζευκτικής ομάδας είναι απασχολημένα και επομένως δεν μπορούν να δεχθούν άλλες κλήσεις Τα συστήματα μεταγωγής, ανάλογα με το πώς χειρίζονται τις καταστάσεις συμφόρησης, μπορούν να καταταχθούν στις εξής κατηγορίες: Συστήματα με ουρά ή καθυστέρηση (μεταγωγή μηνύματος): οι κλήσεις που φτάνουν κατά τη διάρκεια συμφόρησης, περιμένουν στην ουρά, έως ότου ελευθερωθεί ένα εξερχόμενο ζευκτικό κύκλωμα Συστήματα με απώλεια κλήσεων: όλες οι προσπάθειες αποκατάστασης των κλήσεων μέσω μίας ζευκτικής ομάδας κυκλωμάτων που παρουσιάζει συμφόρηση αποτυγχάνουν (μεταγωγή κυκλώματος τηλεφωνικά κέντρα) 7 ΣΥΜΦΟΡΗΣΗ - 2 Σε ένα σύστημα απώλειας κλήσεων ισχύει: Μεταφερόμενη κίνηση=προσφερόμενη κίνηση Απολεσθείσα κίνηση Βαθμός εξυπηρέτησης: Ποσοστό των κλήσεων που χάνονται ή που καθυστερούνται λόγω συμφόρησης (τρόπος μέτρησης εξυπηρέτησης). Σε ένα σύστημα με απώλεια κλήσεων ορίζεται ως: Αριθμός των κλήσεων που χάνονται Απωλεσθείσ α κίνηση B Αριθμός των κλήσεων που προσφέροντ αι Προσφερόμενη κίνηση = ποσοστό του χρόνου κατά τη διάρκεια του οποίου υπάρχει συμφόρηση = πιθανότητα συμφόρησης = πιθανότητα απώλειας κλήσεως λόγω συμφόρησης 8 4
6 22/6/2013 ΣΥΜΦΟΡΗΣΗ - 3 Αν προσφέρονται Α erlangs κίνησης σε μία ομάδα ζευκτικών κυκλωμάτων, που έχουν βαθμό εξυπηρέτησης Β, τότε η απώλεια κίνησης είναι ΑΒ, και η μεταφερόμενη κίνηση είναι Α(1 Β) erlangs. Όσο μεγαλύτερος είναι ο βαθμός εξυπηρέτησης, τόσο χειρότερη είναι η εξυπηρέτηση που προσφέρεται. Ο βαθμός εξυπηρέτησης κανονικά καθορίζεται για την κίνηση στην ώρα αιχμής και μπορεί να μεταβάλλεται από π.χ για τα φτηνά ζευκτικά κυκλώματα ενός κέντρου σε 0.01 για τις συνδέσεις μεταξύ κέντρων και σε 0.1 για τους δαπανηρούς διεθνείς δρόμους. 9 ΜΕΤΡΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ Οι εταιρίες τηλεπικοινωνιών χρειάζεται να γνωρίζουν πότε ένα σύστημα υπερφορτώνεται και πρέπει να εγκατασταθεί επιπρόσθετος εξοπλισμός Συνεπώς, η κίνηση θα πρέπει να μετράται τακτικά, και να φυλάσσονται οι καταγραφές Η μέτρηση της μεταφερόμενης κίνησης ανάγεται σε μία μέτρηση ανά τακτά διαστήματα των κλήσεων που βρίσκονται σε εξέλιξη, κατά τη διάρκεια της ώρας αιχμής, και εξαγωγή του μέσου όρου των αποτελεσμάτων Με βάση τα στοιχεία της παρούσας κίνησης γίνεται πρόβλεψη για την μελλοντική κίνηση 10 5
7 22/6/2013 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 1 Ένα απλό μαθηματικό μοντέλο κίνησης βασίζεται στις εξής υποθέσεις: Η κίνηση είναι καθαρά τυχαία οι αφίξεις και οι τερματισμοί των κλήσεων είναι ανεξάρτητα τυχαία γεγονότα η εμφάνιση των κλήσεων δεν επηρεάζεται από τις προηγούμενες κλήσεις. (κίνηση χωρίς μνήμη) ο αριθμός των πηγών που δημιουργούν τις κλήσεις είναι πολύ μεγάλος Η κίνηση χαρακτηρίζεται από στατιστική ισορροπία η παραγωγή κίνησης είναι μία στατική τυχαία διαδικασία, δηλαδή οι πιθανότητες δεν αλλάζουν κατά τη διάρκεια της θεωρούμενης περιόδου ο μέσος αριθμός των κλήσεων που βρίσκονται σε εξέλιξη, παραμένει σταθερός η στατιστική ισορροπία δεν ισχύει αμέσως πριν και αμέσως μετά την ώρα αιχμής 11 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 2 Η υπόθεση των τυχαίων αφίξεων και τερματισμών των κλήσεων οδηγεί στα εξής αποτελέσματα: Το πλήθος των αφίξεων των κλήσεων δίνεται από μία κατανομή Poisson, δηλαδή: P(x) x μ e x! όπου x το πλήθος των αφίξεων κλήσεων μέσα σε χρόνο Τ και μ ο μέσος αριθμός των αφίξεων κλήσεων μέσα στο χρόνο Τ Τα διαστήματα, Τ, μεταξύ των αφίξεων των κλήσεων είναι διαστήματα μεταξύ ανεξάρτητων τυχαίων γεγονότων και έχουν μία αρνητική εκθετική κατανομή: t / T P(T t) e όπου T είναι το μέσο διάστημα μεταξύ των αφίξεων των κλήσεων Εφόσον η άφιξη και ο τερματισμός κάθε κλήσης είναι ανεξάρτητα τυχαία γεγονότα, η διάρκεια κάθε κλήσης, Τ, είναι επίσης ένα διάστημα μεταξύ δύο τυχαίων γεγονότων, που έχει μία αρνητική εκθετική κατανομή: t /h P(T t) e - x 12 6
8 22/6/2013 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 3 Για μία ομάδα Ν ζευκτικών κυκλωμάτων ο αριθμός των εξελισσόμενων κλήσεων είναι πάντα από 0 ως Ν Απλή αλυσίδα Markov: Η διαδικασία έχει Ν+1 καταστάσεις, και η συμπεριφορά της εξαρτάται από την πιθανότητα μετάβασης της κάθε κατάστασης στην ακριβώς επόμενη ή στην ακριβώς προηγούμενη Πιθανότητες κατάστασης P(j): Είναι η πιθανότητα της κατάστασης j Πιθανότητες μετάβασης P j,k : Είναι η πιθανότητα μετάβασης στην κατάσταση k δεδομένου ότι βρισκόμαστε στην κατάσταση j Κανονική αλυσίδα Markov: Οι παραπάνω πιθανότητες δεν αλλάζουν δηλαδή υπάρχει στατιστική ισορροπία P 0,1 P j,k P N-1,N 0 1 j k N-1 N P 1,0 P k,j P N,N-1 P(0) P(1) P(j) P(k) P(N-1) P(N) 13 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 4 Σε ένα πολύ μικρό χρονικό διάστημα δt ισχύουν: Η πιθανότητα να συμβεί ένα γεγονός είναι μικρή Η πιθανότητα να συμβούν δύο ή περισσότερα γεγονότα είναι αμελητέα Τα γεγονότα που μπορούν να συμβούν στο διάστημα δt είναι: Μία κλήση φτάνει, με πιθανότητα P(α) Μία κλήση τερματίζεται, με πιθανότητα Ρ(e) Καμία μεταβολή, με πιθανότητα 1 - Ρ(α) - Ρ(e) 14 7
9 22/6/2013 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 5 Μέσος αριθμός των αφίξεων κλήσεων κατά τη χρονική διάρκεια Τ: C = T/h Για δt πολύ μικρό, ο μέσος αριθμός των αφίξεων κλήσεων κατά τη διάρκεια του δt ισούται με την πιθανότητα, Ρ(α), μία κλήση να αφιχθεί στο διάστημα αυτό: Pj,k = P(α) = δt/h Για δt πολύ μικρό ο μέσος αριθμός των κλήσεων που τερματίζονται στο διάστημα δt ισούται με την πιθανότητα, P(e), μία κλήση να τερματιστεί στο διάστημα αυτό: Pk,j = P(e) = kδt/h 15 ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ - 6 Πιθανότητες μετάβασης: P(jk) = P(j) P(α) = P(j) δt/h P(kj) = P(k) P(e) = P(k) kδt/h Η παραδοχή της στατιστικής ισορροπίας επιβάλλει ότι: P(jk) = P(kj) P(k)=P(j)/k Γενικά: Όμως: Άρα τελικά: x P( x) P( 0) x! x 1 P( x) P( 0) e P( 0) P( 0 x0 x0 x! x P( x) e x! ) e 16 8
10 22/6/2013 ΣΥΣΤΗΜΑΤΑ ΜΕ ΑΠΩΛΕΙΑ ΚΛΗΣΕΩΝ - 1 Ο Erlang προσδιόρισε το βαθμό εξυπηρέτησης ενός συστήματος με απώλεια κλήσεων. Η λύση εξαρτάται από τις παρακάτω υποθέσεις : Η κίνηση είναι καθαρά τυχαία Υπάρχει στατιστική ισορροπία Υπάρχει πλήρης διαθεσιμότητα: Κάθε κλήση που φθάνει έχει την δυνατότητα να συνδεθεί με οποιοδήποτε ελεύθερο εξερχόμενο κύκλωμα (επαρκής αριθμός των εξόδων ενός μεταγωγέα) Οι κλήσεις που συναντούν συμφόρηση χάνονται κάθε κλήση που συναντά συμφόρηση απορρίπτεται αμέσως από το σύστημα ο χρήστης πρέπει να ξανακαλέσει αργότερα Προσφερμόμενη κίνηση erlangs Ν εξερχόμενα κέντρα 17 ΣΥΣΤΗΜΑΤΑ ΜΕ ΑΠΩΛΕΙΑ ΚΛΗΣΕΩΝ - 2 Η κίνηση που προσφέρεται την ώρα αιχμής, είναι ελαφρώς μεγαλύτερη Η συνολικά προσφερόμενη κίνηση είναι το άθροισμα όλων των επιτυχών και ανεπιτυχών κλήσεων Αν υπάρχουν x κλήσεις σε εξέλιξη, τότε: x P( x) x P ( 0)! Δεν μπορεί να υπάρχει αρνητικός αριθμός κλήσεων ούτε περισσότερες κλήσεις από Ν δηλ. 0 x N N N x 1 P( x) 1 P( 0) P( 0) N x x! x0 x0 x0 x! 18 9
11 Μέση κίνηση ανά ζευκτικό κέντρο (Ε) Απαιτούμενος αριθμός ζευκτικών κέντρων 22/6/2013 Πρώτη κατανομή Erlang: Πιθανότητα συμφόρησης: ΣΥΣΤΗΜΑΤΑ ΜΕ ΑΠΩΛΕΙΑ ΚΛΗΣΕΩΝ - 3 P(N) B E () P( x) Η Ε 1,Ν (Α) δίνεται με επαναληπτική εφαρμογή της απλής σχέσης (Ε 1,0 = 1): E1, N1( ) E1, N ( ) N E1, N1( ) Υπάρχουν επίσης πίνακες που δίνουν τις τιμές της Ε 1,Ν (Α) 1,N N k0 N k N k0 / N! / k! x / x! k / k! 19 ΕΠΙΔΟΣΕΙΣ ΚΙΝΗΣΗΣ - 1 Αύξηση της κίνησης, Α, αντιστοιχεί σε μία ανάλογη αύξηση των απαιτούμενων κυκλωμάτων, Ν, προκειμένου ο βαθμός εξυπηρέτησης Β να παραμείνει σταθερός Αν ο βαθμός απασχόλησης των κυκλωμάτων παραμένει αμετάβλητος, τότε η πιθανότητα να βρεθούν όλα τα κυκλώματα απασχολημένα είναι μικρότερη, όσο μεγαλύτερη είναι η ομάδα κυκλωμάτων Για ένα δεδομένο βαθμό εξυπηρέτησης, μία μεγάλη ομάδα κυκλωμάτων έχει υψηλότερο βαθμό απασχόλησης σε σύγκριση με μία μικρή ομάδα και χαρακτηρίζεται ως αποδοτικότερη Είναι προτιμότερο η κίνηση να γίνεται σε μία μόνο μεγάλη ομάδα κυκλωμάτων, παρά να διακινείται από περισσότερες μικρές ομάδες Συνολική κίνηση (Ε) 20 10
12 Βαθμός εξυπηρέτησης 22/6/2013 Στις μεγάλες ομάδες ο βαθμός εξυπηρέτησης χειροτερεύει περισσότερο με την υπερφόρτωση της κίνησης (λόγω υψηλής αποδοτικότητας) Σαν λύση, οι περισσότεροι τηλεπικοινωνιακοί οργανισμοί υιοθετούν ένα διπλό κριτήριο δυο βαθμούς εξυπηρέτησης υπό κανονικό φορτίο κίνησης για δεδομένη ποσοστιαία υπερφόρτωση (μεγαλύτερος) Ο αριθμός των κυκλωμάτων που παρέχονται, προσδιορίζεται με βάση το κριτήριο που απαιτεί τον μεγαλύτερο αριθμό ΕΠΙΔΟΣΕΙΣ ΚΙΝΗΣΗΣ ζ. κέντρα 70 ζ. κέντρα 40 ζ. κέντρα 30 ζ. κέντρα 25 ζ. κέντρα 20 ζ. κέντρα 15 ζ. κέντρα 10 ζ. κέντρα 5 ζ. κέντρα Επί τοις εκατό υπερφόρτωση 21 ΣΥΣΤΗΜΑΤΑ ΑΠΩΛΕΙΑΣ ΣΕ ΣΥΖΕΥΞΗ Για μια σύνδεση με δύο ζεύξεις, βαθμών εξυπηρέτησης Β 1 και Β 2 αντίστοιχα, ισχύουν: Κίνηση που προσφέρεται στη δεύτερη ζεύξη: Α(1 - Β 1 ) Κίνηση που καταλήγει στον προορισμό της: Α(1 - Β 1 )(1 - Β 2 )= Α(1 + Β 1 Β 2 - Β 1 - Β 2 ) Συνολικός βαθμός εξυπηρέτησης: Β = Β 1 + Β 2 - Β 1 Β 2 Στην πράξη Β 1, Β 2 1, οπότε το Β 1 Β 2 είναι αμελητέο και επομένως Β = Β 1 + Β 2 n Γενικά, για μία σύνδεση n ζεύξεων ισχύει: B B k k1 Η παραπάνω σχέση είναι προσεγγιστική για τους εξής λόγους: οι βαθμοί εξυπηρέτησης καθορίζονται για τις ώρες αιχμής, και οι ώρες αυτές μπορεί να μην συμπίπτουν σε όλες τις ζεύξεις Συνήθως η συνολική απώλεια είναι μόνον ελαφρώς μεγαλύτερη από εκείνη της ζεύξης που βρίσκεται στην ώρα αιχμής Οι προβλέψεις που γίνονται για την εγκατάσταση νέου εξοπλισμού είναι λανθασμένες και ο βαθμός εξυπηρέτησης υπερβαίνει την καθορισμένη τιμή του πριν το τέλος της περιόδου πρόβλεψης 22 11
13 22/6/2013 ΣΥΣΤΗΜΑΤΑ ΜΕ ΟΥΡΑ η ΚΑΤΑΝΟΜΗ ERLNG Εξυπηρετητές (servers): Είναι τα κυκλώματα στα συστήματα ουράς Σύστημα Μ/ Μ/ Ν: Η κίνηση είναι καθαρά τυχαία Υπάρχει στατιστική ισορροπία Υπάρχει πλήρης διαθεσιμότητα Οι κλήσεις που αντιμετωπίζουν συμφόρηση εισάγονται σε μία ουρά και αποθηκεύονται εκεί μέχρις ότου ελευθερωθεί ένας εξυπηρετητής Η 2 η υπόθεση προϋποθέτει ότι Α Ν. Στην αντίθετη περίπτωση το μήκος της ουράς διαρκώς αυξάνεται προς το άπειρο (κατάργηση στατιστικής ισορροπίας) Δεύτερη κατανομή του Erlang: Είναι η πιθανότητα να συναντήσουμε καθυστέρηση σε ένα σύστημα Μ / Μ / Ν στο οποίο προσφέρεται κίνηση Α Προσφερμόμενη κίνηση erlangs Ουρά. Ν εξυπηρετητές 23 ΣΥΣΤΗΜΑΤΑ ΜΕ ΟΥΡΑ η ΚΑΤΑΝΟΜΗ ERLNG Όταν ο συνολικός αριθμός των κλήσεων που υπάρχουν στο σύστημα x < N, τότε εξυπηρετούνται x κλήσεις και δε συμβαίνει καμία καθυστέρηση Όταν x > Ν, τότε υπάρχουν Ν κλήσεις που εξυπηρετούνται και x N κλήσεις στην ουρά (όλοι οι εξυπηρετητές είναι απασχολημένοι) Αν x N τότε δεν υπάρχει ουρά, και όπως και στα συστήματα με απώλεια κλήσεων χωρίς συμφόρηση ισχύει: x P(x) P(0), 0 x Ν x! 24 12
14 Πιθανότητα καθυστέρησης, Ε2,Ν (Α) 22/6/2013 ΣΥΣΤΗΜΑΤΑ ΜΕ ΟΥΡΑ η ΚΑΤΑΝΟΜΗ ERLNG Αν x > N. Λόγω της στατιστικής ισορροπίας: Ν κλήσεις μπορούν να Μια άφιξη στο δt τερματιστούν στο δt t t P(x 1 x) P(x x 1) P(x)N P(x 1) P(x) P(x 1) h h N Χρησιμοποιώντας την σχέση για x N έχουμε: P N N ( ) N P ( 0)! Με την βοήθεια των παραπάνω καταλήγουμε στην γενική σχέση: Χωρίς όριο στο μήκος της ουράς το x μπορεί να πάρει τιμές μεταξύ 0 και οπότε: P( x) 1 x0 N N1 x N Με βάση τα παραπάνω έχουμε: P( 0) N!( N ) x 0 x! x N P x N N P N ( ) ( 0) N N P ( ) x N 0!! x 1 25 ΣΥΣΤΗΜΑΤΑ ΜΕ ΟΥΡΑ - 4 ΠΙΘΑΝΟΤΗΤΑ ΚΑΘΥΣΤΕΡΗΣΗΣ Κίνηση ανά εξυπηρετητή (Α/Ν) Για x N παρουσιάζεται καθυστέρηση Η πιθανότητα να υπάρχουν στο σύστημα τουλάχιστον z κλήσεις (όπου z N) είναι: N x N z N N P(x z) P(x) P( 0) P( 0) xz N! xz N N! N k0 N Άρα z N N N N N P(x z) P( 0) P( ) N! N 1 0 N N! N N Η πιθανότητα καθυστέρησης, P(x>N) (τύπος καθυστέρησης του Erlang) είναι: N N PD P( 0) E2, N() N! N Η πιθανότητα καθυστέρησης αυξάνεται τείνοντας στο 1.0 όσο το Α τείνει στο Ν. Για Α > Ν, το μήκος της ουράς μεγαλώνει απρόβλεπτα 1 z 26 k 13
15 22/6/2013 ΣΥΣΤΗΜΑΤΑ ΜΕ ΟΥΡΑ - 5 ΧΩΡΗΤΙΚΟΤΗΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΟΥΡΑΣ Ένα πραγματικό σύστημα δεν μπορεί να έχει άπειρη ουρά Αν η ουρά έχει τη δυνατότητα να κρατήσει μόνο μέχρι Q κλήσεις, τότε x Q + N Οι προηγούμενες εξισώσεις γίνονται: N1 x N N Q k N1 x N 1 N 1 0) x0 x! N! N k 0 N x0 x! N! 1 P( Αν η πιθανότητα απώλειας είναι μικρή, τότε το σφάλμα από τις προηγούμενες εξισώσεις είναι αμελητέο Η πιθανότητα απώλειας μπορεί να εκτιμηθεί, εάν πρώτα θεωρηθεί ότι η ουρά είναι άπειρη και μετά υπολογισθεί το Ρ(x Q + N): N QN Q N N P(x Q N) P( 0) PD N! N N N (/ N) / N Q
16 Τέλος Θεωρία Κίνησης
17 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Θεωρία Κίνησης 3
18 Σημειώματα
19 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Θεωρία Κίνησης 5
20 Σημείωμα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Βαρουτάς Δημήτρης, Σφηκόπουλος Θωμάς. «Τηλεπικοινωνιακά Ψηφιακά Δίκτυα. Θεωρία Κίνησης». Έκδοση: 1.0. Αθήνα Διαθέσιμο από τη δικτυακή διεύθυνση: Θεωρία Κίνησης 6
21 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Θεωρία Κίνησης 7
22 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. Θεωρία Κίνησης 8
Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 4: Εξέλιξη Συστημάτων Μεταγωγής, δίκτυα συστημάτων μεταγωγής και συστήματα μεταγωγής με διαίρεση χρόνου, Ψηφιακή μεταγωγή Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών
Κινητές επικοινωνίες. Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο
Κινητές επικοινωνίες Κεφάλαιο 3 Ένταση κίνησης σε δίκτυο 1 ΓΕΝΙΚΑ Ο αριθμός των κλήσεων σε εξέλιξη μεταβάλλεται με έναν τυχαίο τρόπο καθώς κάθε κλήση ξεχωριστά αρχίζει και τελειώνει με τυχαίο τρόπο. Κατά
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 10: Προσέγγιση μειωμένου φορτίου
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 0: Προσέγγιση μειωμένου φορτίου Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις : Παπασωτηρίου
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Συστήματα Αναμονής. Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 9: Ανέλιξη Γέννησης - Θανάτου Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Συστήματα Αναμονής. Ενότητα 7: Ουρά Μ/Μ/1. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 7: Ουρά Μ/Μ/1 Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
ίκτυα Επικοινωνίας Υπολογιστών
ίκτυα Επικοινωνίας Υπολογιστών Ενότητα: Ασκήσεις για την ενότητα 5 (Στοιχεία Θεωρίας Τηλεπικοινωνιακής Κίνησης) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σελίδα 2 Περιεχόμενα
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Γενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Θεωρία Τηλεπικοινωνιακής Κίνησης
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 3 4 (Μαρκοβιανά συστήματα απωλειών Εφαρμογή των τύπων Erlng και Enget) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Συστήματα Αναμονής. Ενότητα 6: Θεωρία Ουρών. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 6: Θεωρία Ουρών Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Συστήματα Αναμονής. Ενότητα 10: Ουρά Μ/Μ/s. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 10: Ουρά Μ/Μ/s Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
Ενότητα. Εισαγωγή στις βάσεις δεδομένων
Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.
Διδακτική των εικαστικών τεχνών Ενότητα 1
Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της
Διδακτική των εικαστικών τεχνών Ενότητα 3
Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1
Φιλοσοφία της Ιστορίας και του Πολιτισμού
Φιλοσοφία της Ιστορίας και του Πολιτισμού Ενότητα 1: Εισαγωγή στις έννοιες Ιστορίας και Πολιτισμού Λάζου Άννα Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Aθηνών Τμήμα Φιλοσοφίας Παιδαγωγικής και Ψυχολογίας Φιλοσοφία
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές
Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 5: Έλεγχος Συστημάτων Μεταγωγής και Σηματοδοσία
Τηλεπικοινωνιακά Ψηφιακά Δίκτυα Ενότητα 5: Έλεγχος Συστημάτων Μεταγωγής και Σηματοδοσία Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών 22/6/2013 ΜΕΤΑΓΩΓΗ ΜΕ ΔΙΑΙΡΕΣΗ ΧΡΟΝΟΥ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ Θ. ΣΦΗΚΟΠΟΥΛΟΣ
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 2: Εισοδηματικοί και άλλοι περιορισμοί στην επιλογή Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΟΠΤΙΚΗ (Ηλεκτροµαγνητισµός-Οπτική) Γεωµετρική Οπτική (Μάθηµα
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 12: Ελαχιστοποίηση κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Ελαχιστοποίηση κόστους
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 8: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ) για συστήματα διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν
Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. L d D F
Ηλεκτρονικά Ισχύος Ι 3 η Θεματική Ενότητα: Μετατροπείς Εναλλασσόμενης Τάσης σε Συνεχή Τάση Δρ. Μηχ. Εμμανουήλ Τατάκης, Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ασκήσεις Προς Επίλυση
Ηλεκτρονική. Ενότητα 5: DC λειτουργία Πόλωση του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρονική Ενότητα 5: D λειτουργία Πόλωση του διπολικού τρανζίστορ Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα ενότητας Μεθοδολογία D ανάλυσης των κυκλωμάτων με διπολικά τρανζίστορ
Συστήματα Αναμονής. Ενότητα 3: Στοχαστικές Ανελίξεις. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 3: Στοχαστικές Ανελίξεις Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Συστήματα Αναμονής. Ενότητα 5: Ανέλιξη Poisson. Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ
Συστήματα Αναμονής Ενότητα 5: Ανέλιξη Poisson Αγγελική Σγώρα Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης Ενότητα 5: Δρ. Θεοκλής-Πέτρος Ζούνης Σχολή : ΟΠΕ Τμήμα : Ε.Μ.Μ.Ε. Περιεχόμενα ενότητας Τι ορίζουμε ως Μάρκετινγκ ενός Πολιτιστικού Οργανισμού; Τα 4
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Ενότητα: Ασκήσεις Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σελίδα 2 1. Άσκηση 1... 5 2. Άσκηση 2... 5 3. Άσκηση 3... 7 4. Άσκηση 4...
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι Ενότητα 2: Παράλληλες θεωρητικές και εργαστηριακές προσεγγίσεις των τεχνικών και της δομής του κουκλοθέατρου, της κινούμενης εικόνας και ενός θέματος από
Σχεδίαση Μεικτών VLSI Κυκλωμάτων Ενότητα 9: Ευστάθεια και Αντιστάθμιση Συχνότητας
Σχεδίαση Μεικτών VLSI Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σύστημα αρνητικής ανάδρασης Y X s H(s) 1 H(s) Συνάρτηση μεταφοράς κλειστού βρόχου Ταλαντωτής
Βάσεις Περιβαλλοντικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι
Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενότητας 4 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διδακτική Μαθηματικών Ι Ενότητα 5: Διερευνητικές δραστηριότητες
Διδακτική Μαθηματικών Ι Ενότητα 5: Διερευνητικές δραστηριότητες Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό ΔΙΕΡΕΥΝΗΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Δραστηριότητα 1 Το εξωτερικό τετράγωνο αντιπροσωπεύει
Γενική Φυσική. Ενότητα 4: Εισαγωγή στην ειδική θεωρία της σχετικότητας. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών
Γενική Φυσική Ενότητα 4: Εισαγωγή στην ειδική θεωρία της σχετικότητας Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Εισαγωγή στη Eιδική Θεωρία της Σχετικότητας - Διδακτικοί στόχοι Οι Νόμοι
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5
Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ
Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 8: Αναδρομικός τύπος Kaufman Roberts
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα 8: Αναδρομικός τύπος aufma Roberts Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Συνιστώμενο Βιβλίο: Εκδόσεις : Παπασωτηρίου
Εισαγωγή στη Δικτύωση Υπολογιστών
Εισαγωγή στη Δικτύωση Υπολογιστών Ενότητα 4: Το Επίπεδο Δικτύου Δημήτριος Τσώλης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Στόχοι Μαθήματος
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Έλεγχος Ποιότητας Φαρμάκων
Έλεγχος Ποιότητας Φαρμάκων Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Συσκευές Αποσάθρωση Δισκίων (ενός καλαθιού (δεξιά) και δύο καλαθιών (αριστερά) 2 Συσκευή Αποσάθρωσης 4
Αερισμός. Ενότητα 1: Αερισμός και αιμάτωση. Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής
Αερισμός Ενότητα 1: Αερισμός και αιμάτωση Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Ολικός και κυψελιδικός αερισμός Η κύρια λειτουργία του αναπνευστικού συστήματος είναι
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Θεωρία Τηλεπικοινωνιακής Κίνησης
Θεωρία Τηλεπικοινωνιακής Κίνησης Ενότητα: Ασκήσεις για τις ενότητες 7 8 (Πολυδιάστατη Κίνηση Αναδρομικός τύπος Kaufman- Roberts) Ιωάννης Μοσχολιός Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 13: Καμπύλες κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Μορφές καμπυλών κόστους Καμπύλη
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας 5.7. ΔΕΙΓΜΑΤΟΛΗΨΙΑ (1) 5.7.1. Το Εργαστήριο πρέπει να διαθέτει σχέδιο και διαδικασία δειγματοληψίας,
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 1.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Βασιλική Λεβέντη.
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 15: Προσφορά κλάδου Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Προσφορά από ανταγωνιστικό
Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers)
Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers) Αναστασία Γεωργάκη Τμήμα Μουσικών Σπουδών Περιεχόμενα 5. Ελεγκτές MIDI μηνυμάτων (Midi Controllers)... 3 Σελίδα 2 5.
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 2: Εισαγωγή στον βέλτιστο έλεγχο Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 3: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Οδική ασφάλεια. Ενότητα 8: Αξιολόγηση επεμβάσεων Ασκήσεις Ενότητας 8. Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών
Οδική ασφάλεια Ενότητα 8: Αξιολόγηση επεμβάσεων Ασκήσεις Ενότητας 8 Ευτυχία Ναθαναήλ Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών Παράδειγμα #1 «Πριν» 10 ατυχήματα «Μετά» 5 ατυχήματα Επέμβαση: τοποθέτηση
Διαχείριση Έργων. Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας)
Διαχείριση Έργων Ενότητα 10: Χρονοπρογραμματισμός έργων (υπό συνθήκες αβεβαιότητας) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
P (B) P (B A) = P (AB) = P (B). P (A)
Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Διαισθητική έννοια ανεξαρτησίας Διαισθητική
Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες