Άσκηση 1. Οικογένεια Μέγιστη κλίση Φορά μέγιστης κλίσης Στρώση (J 1 ) 54 ο 60 ο Διακλάσεις (J 2 ) 46 ο 20 ο Διακλάσεις(J 3 ) 60 ο 168 ο
|
|
- Πάν Δημητρακόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Άσκηση 1 ρόμος πρόκειται να διατμήσει ασβεστολιθικό λόφο με διεύθυνση του άξονά του Β 65 ο Α. Επειδή πρόκειται να διανοιχθούν βαθιά ορύγματα έγινε λεπτομερής μελέτη της δομής και των τεχνικών ιδιοτήτων του πετρώματος. Από τη μελέτη αυτή βρέθηκε ότι υπάρχουν δυο οικογένειες διακλάσεων και μια στρώση με στοιχεία: Οικογένεια Μέγιστη κλίση Φορά μέγιστης κλίσης Στρώση (J 1 ) 54 ο 60 ο Διακλάσεις (J 2 ) 46 ο 20 ο Διακλάσεις(J 3 ) 60 ο 168 ο Η γωνία τριβής του πετρώματος βρέθηκε ίση με 36 ο (φ=36 ο ) (α) Να εξετάσετε πόση πρέπει να είναι η κλίση των πρανών του δρόμου για να αποφευχθεί κάθε είδους αστάθεια. (β) Αν υποθέσουμε ότι οι επιφάνειες των διακλάσεων είναι τραχείες με γωνία τραχύτητας 20 ο πόση πρέπει να είναι στην περίπτωση αυτή η κλίση των πρανών του δρόμου;
2 Α. Περίπτωση χωρίς τραχύτητα 1 ο ΣΤΑ ΙΟ ΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ ΤΟΠΟΘΕΤΗΣΗ-ΑΠΕΙΚΟΝΙΣΗ ΟΛΩΝ ΤΩΝ Ε ΟΜΕΝΩΝ ΤΗΣ ΑΣΚΗΣΗΣ ΣΤΟ ΙΚΤΥΟ SCHMIDT: α) Απεικόνιση του άξονα του δρόμου β) Απεικόνιση στρώσης - διακλάσεων (ασυνεχειών) ως επίπεδα στο δίκτυο SCHMIDT γ) Απεικόνιση των πόλων των ασυνεχειών δ) Απεικόνιση κύκλου τριβής και κύκλου τραχύτητας
3 Η ΦΜΚ ΜΕΤΡΑΤΑΙ ΠΑΝΤΑ ΣΤΗΝ ΠΕΡΙΦΕΡΕΙΑ ΤΟΥ ΚΥΚΛΟΥ ΚΛΙΣΗ /ΦΜΚ J 1 : 54 / ΑΞΟΝΑΣ ΡΟΜΟΥ
4 J 1: 54/ Η ΚΛΙΣΗ ΜΕΤΡΑΤΑΙ ΠΑΝΤΑ ΣΤΟΝ ΑΞΟΝΑ Α- ΑΠΟΕΞΩ(ΠΕΡΙΦΕΡΕΙΑ ΚΥΚΛΟΥ) ΠΡΟΣ ΤΑ ΜΕΣΑ(ΚΕΝΤΡΟ ΚΥΚΛΟΥ)
5 Για την τοποθέτηση του πόλου μετρώνται 90 ο από το σημείο τομής της ασυνέχειας με τον άξονα Α-, επί του άξονα Α-, προς το κέντρο του κύκλου J 1 : 54/ ο ΑΞΟΝΑΣ ΡΟΜΟΥ ΠΟΛΟΣ J 1
6 ΦΜΚ 20 J 2 : 46/20 J 1 : 54/ 60
7 J 2 : 46/20 ΠΟΛΟΣ J 2 90 ο 46 20
8 J 2 : 46/20 J 1 : 54/ 60 ΦΜΚ 168 J3 : 60/168
9 J 1 : 54/ 60 ΠΟΛΟΣ J J 2 : 46/20 J 3 : 60/168
10 J 2 : 46/20 J 1 : 54/ 60 Για την απεικόνιση του κύκλου τριβής και τραχύτητας μετρώνται 36 ο και 56 ο αντίστοιχα από έξω(περιφέρεια κύκλου) προς τα μέσα(κέντρο κύκλου) ΚΥΚΛΟΣ ΤΡΙΒΗΣ J 3 : 60/168 ΚΥΚΛΟΣ ΤΡΑΧΥΤΗΤΑΣ
11 2 ο ΣΤΑ ΙΟ ΛΥΣΗΣ ΤΗΣ ΑΣΚΗΣΗΣ Από τα δεδομένα της άσκησης προκύπτει ότι αφού ό άξονας του δρόμου είναι Β 65 ο ΑηΦΜΚ των πρανών του δρόμου θα είναι: 155 Π 1 65 ± 90 ο 335 Π 2 ΣΦΗΝΟΕΙ ΗΣ ΟΛΙΣΘΗΣΗ Για να αποφευχθεί η σφηνοειδής ολίσθηση ανατολικά, θα πρέπει να οριστεί ένα πρανές με ΦΜΚ 155 ο ώστε το σημείο τομής των ασυνεχειών να βρίσκεται εκτός της περιοχής επιπέδου πρανούς και κύκλου τριβής. Αφού το ορίσω μετρώ στον άξονα Α- την κλίση του.
12 J 3 : 60/168 J 1 : 54/60 50 ο 155 J 2 : 46/20 Π 1 (50/155)
13 Η κλίση του πρανούς βρίσκεται ότι είναι 50 ο. Επομένως το πρανές Π 1 με κλίση 50 ο και ΦΜΚ 155 ο (Π 1 50/155 ) δεν επιτρέπει την σφηνοειδή ολίσθηση λόγω του ότι το σημείο τομής των ασυνεχειών J 1 και J 3 βρίσκεται εκτός της επικίνδυνης περιοχής. Ταυτόχρονα είναι και η βέλτιστη λύση (λιγότερες εκσκαφές).
14 Για να αποφευχθεί η σφηνοειδής ολίσθηση δυτικά, θα πρέπει να οριστεί ένα πρανές με ΦΜΚ 335 ο ώστε το σημείο τομής των ασυνεχειών να βρίσκεται εκτός της περιοχής επιπέδου πρανούς και κύκλου τριβής. Αφού το ορίσω μετρώ στον άξονα Α- την κλίση του.
15 J 3 : 60/168 J 2 : 46/20 Π 2 (52/335) 335 J 1 : 54/60 52 ο
16 Η κλίση του πρανούς βρίσκεται ότι είναι 52 ο. Επομένως το πρανές Π 2 με κλίση 52 ο και ΦΜΚ 335 ο (Π 2 52/335 ) δεν επιτρέπει την σφηνοειδή ολίσθηση λόγω του ότι το σημείο τομής των ασυνεχειών J 1 και J 2 βρίσκεται εκτός της επικίνδυνης περιοχής. Ταυτόχρονα είναι και η βέλτιστη λύση (λιγότερες εκσκαφές).
17 J 1 : 54/60 J 2 : 46/20 Π 2 (52/335) J 3 : 60/168 Π 1 (50/155)
18 J 1 : 54/60 J 2 : 46/20 Π 2 (52/335) J 3 : 60/168 Π 1 (50/155)
19 ΑΝΑΤΡΟΠΗ Αφού ορίστηκαν τα 2 πρανή για την αποφυγή σφηνοειδούς ολίσθησης θα πρέπει να προσδιοριστούν οι περιοχές ανατροπής για κάθε πρανές α) Χωρίς τραχύτητα και β) με τραχύτητα Παρατηρώ ότι με τραχύτητα δε μπορεί να οριστεί περιοχή ανατροπής (εκτός δικτύου Schmidt). Αφού κανένας πόλος ασυνέχειας δεν βρίσκεται εντός της περιοχής ανατροπής των 2 πρανών (Π 1 50/155 και Π 2 52/335) που έχουν οριστεί δεν υπάρχει ανατροπή.
20 J 2 : 46/20 Π 2 (52/335) 36 ο J 1 : 54/60 36 ο 20 ο 20 ο Π 1 (50/155) J 3 : 60/168
21 Από το σχήμα φαίνεται ότι για τα πρανή Π 1 50/155 και Π 2 52/335 που έχουν οριστεί δεν υπάρχει πιθανότητα σφηνοειδούς ολίσθησης ούτε πιθανότητα ανατροπής σύμφωνα με τα παραπάνω. Θα πρέπει να ελεγχθεί και η πιθανότητα επίπεδης ολίσθησης. ΕΠΙΠΕ Η ΟΛΙΣΘΗΣΗ Γνωρίζουμε ότι για την επίπεδη ολίσθηση ισχύουν οι παρακάτω συνθήκες αστοχίας: 1. Παραλληλία ± 20 ο δηλαδή IΦΜΚ πρανούς ΦΜΚ ασυνέχειαςi I± 20 ο I 2. κλίση πρανούς κλίση ασυνέχειας φ (γωνία εσωτερικής τριβής) Πρέπει να ισχύουν ταυτόχρονα
22 Θα πρέπει να γίνουν οι παρακάτω διερευνήσεις: Π 1 J 1, Π 1 J 2, Π 1 J 3 και Π 2 J 1 Π 2 J 2, Π 2 J 3 Από το σχήμα (περιφέρεια κύκλου όπου μετράται η ΦΜΚ) παρατηρώ ότι οι διακλάσεις J 1 και J 2 απέχουν από τα πρανή του δρόμου περισσότερο από 20 ο ( 20 ο ) Επομένως η σχέση IΦΜΚ πρανούς ΦΜΚ ασυνέχειαςi I± 20 ο I δεν ισχύει για τις J 1 και J 2. Άρα αρκεί να διερευνηθούν τα Π 1 J 3 και Π 2 J 3
23 J 1 : 54/60 J 2 : 46/20 Π 2 (52/335) >20 ο 20 ο J 3 : 60/168 Π 1 (50/155)
24 1. Παραλληλία ± 20 ο δηλαδή IΦΜΚ πρανούς ΦΜΚ ασυνέχειαςi I± 20 ο I 2. κλίση πρανούς κλίση ασυνέχειας φ (γωνία εσωτερικής τριβής) Πρέπει να ισχύουν ταυτόχρονα Διερεύνηση για Π 1 J 3 Π 1: 50/155 J 3 : 60/ I I I 20 I Ισχύει εν ισχύει
25 1. Παραλληλία ± Παραλληλία 20 ο ο δηλαδή δηλαδή IΦΜΚ πρανούς ΦΜΚ ασυνέχειαςi I± 20 IΦΜΚ πρανούς ΦΜΚ ασυνέχειαςi I± 20 ο ο I 2. κλίση πρανούς κλίση ασυνέχειας φ (γωνία 2. κλίση πρανούς κλίση ασυνέχειας (γωνία εσωτερικής τριβής) εσωτερικής τριβής) Πρέπει να ισχύουν ταυτόχρονα Διερεύνηση για Π 2 J 3 Π 2: 52/335 J 3 : 60/168 I I I 20 I δεν ισχύει ε συνεχίζεται η διερεύνηση
26 Άρα για τα πρανή Π 1 :50/155 και Π 2 :52/335 που έχουν οριστεί, αποφεύγεται κάθε είδους αστάθεια (επίπεδη ολίσθηση, σφηνοειδής ολίσθηση, ανατροπή) ενώ ταυτόχρονα η προτεινόμενη κλίση τους, αποτελεί τη βέλτιστη κλίση (λιγότερες εκσκαφές) και επομένως επιτυγχάνεται μικρότερη οικονομική επιβάρυνση.
27 Β. Περίπτωση με τραχύτητα ΣΦΗΝΟΕΙ ΗΣ ΟΛΙΣΘΗΣΗ Στην περίπτωση αυτή δεν υπάρχει σφηνοειδής ολίσθηση αφού κανένα σημείο τομής ασυνεχειών δεν βρίσκεται εντός του κύκλου τραχύτητας. ΑΝΑΤΡΟΠΗ Ορίζεται το πρανές Π 2 με κλίση 84 ο για να μην υπάρχει ενδεχόμενο ανατροπής (βέλτιστη λύση) όπως προκύπτει από το σχήμα(δίκτυο Schmidt). ΕΠΙΠΕ Η ΟΛΙΣΘΗΣΗ Ορίζεται το πρανές Π 1 με κλίση 59 ο (βέλτιστη λύση) ώστε που δεν ισχύει. Άρα δεν υπάρχει επίπεδη ολίσθηση. ΤΕΛΙΚΑ ΓΙΑ Π 1 59/155 ΚΑΙ Π 2 84/335 ΑΠΟΦΕΥΓΕΤΑΙ ΚΑΘΕ ΕΙ ΟΥΣ ΑΣΤΑΘΕΙΑ.
28 Περιοχή ανατροπής με τραχύτητα Π 2 (52/335) J 2 : 46/20 J 1 : 54/60 56 Ο Π 1 (50/155) Π 2 (84/335) Π 1 (59/155) J 3 : 60/168
Ελέγχονται από μια μόνο επιφάνεια ασυνέχειας που προβάλει στο πρόσωπο του πρανούς
ΔΙΚΤΥΑ SCMIDT- ΑΣΤΟΧΙΕΣ ΠΡΑΝΩΝ 10.1 Μηχανισμοί αστοχιών σε βραχώδη πρανή 1 Επίπεδες αστοχίες (planar failures) Ελέγχονται από μια μόνο επιφάνεια ασυνέχειας που προβάλει στο πρόσωπο του πρανούς 2 Σφηνοειδής
Πολιτικοί Μηχανικοί ΕΜΠ Τεχνική Γεωλογία Διαγώνισμα 10/ ΘΕΜΑ 1 ο (4 βαθμοί)
Πολιτικοί Μηχανικοί ΕΜΠ Τεχνική Γεωλογία Διαγώνισμα 10/2006 1 ΘΕΜΑ 1 ο (4 βαθμοί) 1. Σε μια σήραγγα μεγάλου βάθους πρόκειται να εκσκαφθούν σε διάφορα τμήματά της υγιής βασάλτης και ορυκτό αλάτι. α) Στο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο Β. ΜΑΡΙΝΟΣ, Λέκτορας ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, ΚΑΘ. Ενδεικτικό παράδειγµα θεµάτων
ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΟ SCHMIDT ΚΑΙ ΟΙ ΧΡΗΣΕΙΣ ΤΟΥ ΣΤΗ ΓΕΩΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΗΜΗΤΡΙΟΣ Ε. ΡΟΖΟΣ ΕΠ. ΚΑΘ. ΕΜΠ
ΑΣΚΗΣΕΙΣ ΔΙΚΤΥΟ SCHMIDT ΚΑΙ ΟΙ ΧΡΗΣΕΙΣ ΤΟΥ ΣΤΗ ΓΕΩΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΗΜΗΤΡΙΟΣ Ε. ΡΟΖΟΣ ΕΠ. ΚΑΘ. ΕΜΠ 0 Απεικόνιση των γεωμετρικών στοιχείων προσανατολισμού ασυνεχειών. Η γεωλογική πυξίδα. Στη μικρή εικόνα
ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΤΩΝ ΑΣΥΝΕΧΕΙΩΝ ΒΡΑΧΟΜΑΖΑΣ
ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΤΩΝ ΑΣΥΝΕΧΕΙΩΝ ΒΡΑΧΟΜΑΖΑΣ Σημειώσεις παραδόσεων Καθηγητή Σ Κ Μπαντή Τμήμα Πολιτικών Μηχανικών Τομέας Γεωτεχνικής Μηχανικής 2010 Η ΒΡΑΧΟΜΑΖΑ ΩΣ ΔΟΜΙΚΟ ΥΛΙΚΟ ΓΕΩΚΑΤΑΣΚΕΥΩΝ σ 1 σ 1 σ 3 ΑΡΧΙΚΗ
ΣΤΡΩΣΗ ΣΧΙΣΜΟς ΦΥΛΛΩΣΗ ΣΧΙΣΤΟΤΗΤΑ ΔΙΑΚΛΑΣΗ ΡΗΓΜΑ
ΣΤΡΩΣΗ ΣΧΙΣΜΟς ΦΥΛΛΩΣΗ ΣΧΙΣΤΟΤΗΤΑ ΔΙΑΚΛΑΣΗ ΡΗΓΜΑ 1. Προσανατολισμός (orientation) 2. Απόσταση (spacing) 3. Εξάπλωση- Συνέχεια (persistence) 4. Αντοχή τοιχωμάτων (wall strength) 5. Τραχύτητα (roughness)
ΑΣΚΗΣΗ 10 η ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ Ι ΑΝΑΛΥΣΗ ΕΥΣΤΑΘΕΙΑΣ EΝΤΟΝΑ ΚΑΤΑΚΕΡΜΑΤΙΣΜΕΝΟΥ ΒΡΑΧΩΔΟΥΣ ΠΡΑΝΟΥΣ EΝΑΝΤΙ ΚΥΚΛΙΚΗΣ ΑΣΤΟΧΙΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ MΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝ. ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9, 157 80 ΖΩΓΡΑΦΟΥ, ΑΘΗΝΑ NATIONAL TECHNICAL
ΑΣΚΗΣΕΙΣ 11 η -12 η ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ Ι
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ MΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝ. ΓΕΩΛΟΓΙΑΣ & ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9, 157 80 ΖΩΓΡΑΦΟΥ, ΑΘΗΝΑ NATIONAL TECHNICAL
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ: ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ.
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ: ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ. Καθηγητής ΒΟΗΘΗΤΙΚΟ ΦΥΛΛΑΔΙΟ 5 ης ΑΣΚΗΣΗΣ ΤΙΤΛΟΣ ΑΣΚΗΣΗΣ: Ευστάθεια βραχωδών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Αντικείμενο της Άσκησης Η ανάλυση ευστάθειας βραχώδους πρανούς,
Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ
Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ,
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο Β. ΜΑΡΙΝΟΣ, Επ. ΚΑΘ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, ΚΑΘ. Φεβρουάριος 2015 ΟΝΟΜΑΤΕΠΩΝΥΜΟ
ΑΣΚΗΣΗ 6 η ΠΡΑΚΤΙΚΗ ΣΗΜΑΣΙΑ ΤΗΣ ΣΦΑΙΡΙΚΗΣ ΠΡΟΒΟΛΗΣ ΤΩΝ ΑΣΥΝΕΧΕΙΩΝ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ ΚΑΙ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΕΙΔΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΤΟΥ Η/Υ ΤΩΝ
ΑΣΚΗΣΗ 6 η ΠΡΑΚΤΙΚΗ ΣΗΜΑΣΙΑ ΤΗΣ ΣΦΑΙΡΙΚΗΣ ΠΡΟΒΟΛΗΣ ΤΩΝ ΑΣΥΝΕΧΕΙΩΝ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ ΚΑΙ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΕΙΔΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΤΟΥ Η/Υ ΤΩΝ ΠΙΘΑΝΩΝ ΑΣΤΟΧΙΩΝ ΑΥΤΗΣ ΠΡΑΚΤΙΚΗ ΣΗΜΑΣΙΑ ΤΗΣ ΣΦΑΙΡΙΚΗΣ ΠΡΟΒΟΛΗΣ
Στήριξη Στρωσιγενούς Πετρώματος πέριξ σήραγγας
Εργαστήριο Τεχνολογίας Διάνοιξης Σηράγγων, ΕΜΠ Στήριξη Στρωσιγενούς Πετρώματος πέριξ σήραγγας ΔΠΜΣ/ΣΚΥΕ Σήραγγα Καλυδώνας. Υπερεκσκαφή 2 Φυσικό ομοίωμα υπόγειας εκσκαφής εντός στρωσιγενούς πετρώματος Υποστήριξη
Ασκήσεις Τεχνικής Γεωλογίας
Ασκήσεις Τεχνικής Γεωλογίας 5 η Άσκηση: Ευστάθεια βραχωδών πρανών με χρήση δικτύου Schmidt. Υπολογισμός συντελεστή ασφαλείας από ανάλυση δυνάμεων. Επίδραση νερού. Αντιστηρίξεις πρανών. Καθ. Β.Χρηστάρας
Οι ασυνέχειες επηρεάζουν τη συμπεριφορά του τεχνικού έργου και πρέπει να λαμβάνονται υπόψη στο σχεδιασμό του.
ΠΕΡΙΓΡΑΦΗ ΑΣΥΝΕΧΕΙΩΝ ΒΡΑΧΟΥ Όπως έχουμε ήδη αναφέρει οι ασυνέχειες αποτελούν επίπεδα αδυναμίας της βραχόμαζας που διαχωρίζει τα τεμάχια του ακέραιου πετρώματος. Κάθετα σε αυτή η εφελκυστική αντοχή είναι
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 7 o Μάθημα Ευστάθεια πρανών
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 7 o Μάθημα Ευστάθεια πρανών Ευστάθεια βραχωδών πρανών Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ.Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας ΑΠΘ Μάθημα θεωρίας 7:
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 7 o Μάθημα Ευστάθεια πρανών
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 7 o Μάθημα Ευστάθεια πρανών Ευστάθεια βραχωδών πρανών Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ.Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας ΑΠΘ ΠΕΡΙΕΧΟΜΕΝΑ 6ου ΜΑΘΗΜΑΤΟΣ
ΚΑΤΟΛΙΣΘΗΣΕΙΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΠΟ ΤΗΝ ΕΓΝΑΤΙΑ ΟΔΟ. Dr. Βανδαράκης Δημήτριος (dbandarakis@hua.gr) Dr. Παυλόπουλος Κοσμάς Καθηγητής (kpavlop@hua.
ΚΑΤΟΛΙΣΘΗΣΕΙΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΠΟ ΤΗΝ ΕΓΝΑΤΙΑ ΟΔΟ Dr. Βανδαράκης Δημήτριος (dbandarakis@hua.gr) Dr. Παυλόπουλος Κοσμάς Καθηγητής (kpavlop@hua.gr) ΠΕΡΙΕΧΟΜΕΝΑ ΚΑΤΟΛΙΣΘΗΣΕΙΣ ΤΜΗΜΑΤΑ ΚΑΤΟΛΙΣΘΗΣΕΩΝ ΤΑΞΙΝΟΜΗΣΗ
ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ
ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ Σκοπός Σκοπός της άσκησης αυτής είναι η στερεογραφική απεικόνιση του επιπέδου του ρήγματος, καθώς και του βοηθητικού επιπέδου
Ασκήσεις Τεχνικής Γεωλογίας
Ασκήσεις Τεχνικής Γεωλογίας 5 η Άσκηση: Ευστάθεια βραχωδών πρανών µε χρήση δικτύου Schmidt. Υπολογισµός συντελεστή ασφαλείας από ανάλυση δυνάµεων. Επίδραση νερού. Αντιστηρίξεις πρανών. Καθ. Β.Χρηστάρας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ.Καθηγητής 8 η Σειρά ασκήσεων:
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ: ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ.
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ: ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ. Καθηγητής ΒΟΗΘΗΤΙΚΟ ΦΥΛΛΑΔΙΟ 5 ης ΑΣΚΗΣΗΣ ΤΙΤΛΟΣ ΑΣΚΗΣΗΣ: Ευστάθεια βραχωδών
ΑΣΚΗΣΗ 7 η ΧΡΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΒΡΑΧΟΜΑΖΑΣ ΚΑΤΑ BIENIAWSKI (RMR)
ΑΣΚΗΣΗ 7 η ΧΡΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΒΡΑΧΟΜΑΖΑΣ ΚΑΤΑ BIENIAWSKI (RMR) ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΣΤΗΜΑΤΩΝ ΤΑΞΙΝΟΜΗΣΗΣ Κατά τη διάρκεια της προκαταρκτικής φάσης έρευνας για την κατασκευή ενός τεχνικού έργου, η χρήση
ΑΣΚΗΣΗ 4η ΑΣΥΝΕΧΕΙΕΣ ΒΡΑΧΩΔΩΝ ΣΧΗΜΑΤΙΣΜΩΝ ΥΠΑΙΘΡΙΕΣ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΓΕΩΜΕΤΡΙΚΩΝ ΚΑΙ ΛΟΙΠΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΟΥΣ
ΑΣΚΗΣΗ 4η ΑΣΥΝΕΧΕΙΕΣ ΒΡΑΧΩΔΩΝ ΣΧΗΜΑΤΙΣΜΩΝ ΥΠΑΙΘΡΙΕΣ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΓΕΩΜΕΤΡΙΚΩΝ ΚΑΙ ΛΟΙΠΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΟΥΣ Ασυνέχειες βραχομάζας Σημαντικό ρόλο στη γεωμηχανική συμπεριφορά της βραχομάζας παίζουν ο αριθμός
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ: ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ.
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ: ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ ΥΔΡΟΓΕΩΛΟΓΙΑΣ ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ. Καθηγητής ΒΟΗΘΗΤΙΚΟ ΦΥΛΛΑΔΙΟ 7ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΤΙΤΛΟΣ ΑΣΚΗΣΗΣ: Αξιολόγηση
Στην στερεογραφική προβολή δεν μπορούν να μετρηθούν αποστάσεις αλλά μόνο γωνιώδεις σχέσεις.
ΔΙΚΤΥΑ SCHMIDT Στερεογραφική προβολή Η στερεογραφική προβολή είναι μια μέθοδος που προσφέρει το πλεονέκτημα της ταχύτατης λύσης προβλημάτων που λύνονται πολύπλοκα με άλλες μεθόδους. Με την στερεογραφική
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ«ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» «ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΜΗΧΑΝΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΒΡΑΧΟΜΑΖΑΣ ΜΕ ΜΙΑ ΚΑΙ ΔΥΟ ΟΙΚΟΓΕΝΕΙΕΣ ΑΣΥΝΕΧΕΙΩΝ»
Modified Stability-graph method
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Modified Stability-graph method Potvin (1988) Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουργός Ε.Μ.Π. Modified Stability-graph
ΤΕΚΤΟΝΙΚΗ ΓΕΩΛΟΓΙΑ. Ασκήσεις Εργαστηρίου. (Εργαστήριο Γεωλογίας-Παλαιοντολογίας) Καθ. Αδαμάντιος Κίλιας
ΤΕΚΤΟΝΙΚΗ ΓΕΩΛΟΓΙΑ Ασκήσεις Εργαστηρίου (Εργαστήριο Γεωλογίας-Παλαιοντολογίας) Καθ. Αδαμάντιος Κίλιας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2013-2014 ΑΣΚΗΣΗ 1 ΡΟΔΟΔΙΑΓΡΑΜΜΑΤΑ ΠΑΡΑΤΑΞΕΩΝ Δίνονται οι παρακάτω παρατάξεις
Διαγώνισμα Φυσικής Α Λυκείου
Διαγώνισμα Φυσικής Α Λυκείου Ευθύγραμμη κίνηση Δυναμική σε μία διάσταση Δυναμική στο επίπεδο Θέμα Α 1) Μέτρο της αδράνειας των σωμάτων είναι: i) Η ταχύτητα. ii) Η επιτάχυνση. iii) Το βάρος. iv) Η μάζα.
ΗΜΗΤΡΙΟΥ ΚΩΝΣΤΑΝΤΙΝΑ Α.Ε.Μ. 9385
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ-ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ Υ ΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ A/Α ΘΕΜΑΤΟΣ: 5 ΗΜΗΤΡΙΟΥ ΚΩΝΣΤΑΝΤΙΝΑ Α.Ε.Μ. 9385 ΘΕΣΣΑΛΟΝΙΚΗ 2003 1 ΤΕΧΝΙΚΗ
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
5. Εξωτερικά Λιμενικά Έργα
5.2 Έργα με πρανή 5.2.1 Γενικά 5. Εξωτερικά Λιμενικά Έργα Η πλέον συνήθης μέθοδος κατασκευής εξωτερικών λιμενικών έργων, ιδιαίτερα στη χώρα μας, είναι με λιθορριπές διατάσσονται σε τραπεζοειδή πρισματική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ. Καθηγητής 6η ΑΣΚΗΣΗ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ
ΠΑΡΑΤΗΡΗΣΕΙΣ. Α/Α ΠΕΡΙΓΡΑΦΗ ΦΩΤ. ΠΕΡΙΟΧΗ 1 Π1 Γενική άποψη του ΝΑ/κού τμήματος της περιοχής Φ1
ΠΑΡΑΡΤΗΜΑ α) Παρατηρήσεις ΠΑΡΑΤΗΡΗΣΕΙΣ Α/Α ΠΕΡΙΓΡΑΦΗ ΦΩΤ. ΠΕΡΙΟΧΗ 1 Π1 Γενική άποψη του ΝΑ/κού τμήματος της περιοχής Φ1 Π2 ρόμος που συμπίπτει με γραμμή απορροής ρέματος Φ2 Π3 Μπάζα από οικοδομικά υλικά,
( σφόνδυλος : τροχαλία με μεγάλη μάζα)
Ζήτημα 1 ο (μια σωστή στα ερωτήματα α,β,γ,) α) Οι πόλοι της γης βρίσκονται στα ίδια σημεία της επιφάνειας της γης Η σταθερότητα των πόλων οφείλεται; Στο γεγονός ότι ασκείται από τον ήλιο ελκτική δύναμη
ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή
1 ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ Εισαγωγή Η ανάλυση ευαισθησίας μιάς οικονομικής πρότασης είναι η μελέτη της επιρροής των μεταβολών των τιμών των παραμέτρων της πρότασης στη διαμόρφωση της τελικής απόφασης. Η ανάλυση
Θέμα 1 ο Στις παρακάτω ερωτήσεις να επιλέξετε την σωστή απάντηση:
Θέμα 1 ο Στις παρακάτω ερωτήσεις να επιλέξετε την σωστή απάντηση: Α) Ο πρώτος νόμος του Νεύτωνα λέει ότι όταν πάνω σε ένα σώμα ασκείται μηδενική δύναμη, τότε αυτό: α) παραμένει ακίνητο, β) κινείται με
Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ
Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ,
ΣΗΡΑΓΓΑ ΑΝΗΛΙΟΥ ΑΣΤΟΧΙΑ ΠΡΑΝΟΥΣ ΑΝΑΤΟΛΙΚΟΥ ΜΕΤΩΠΟΥ
ΣΗΡΑΓΓΑ ΑΝΗΛΙΟΥ ΑΣΤΟΧΙΑ ΠΡΑΝΟΥΣ ΑΝΑΤΟΛΙΚΟΥ ΜΕΤΩΠΟΥ Η.Σωτηρόπουλος Δρ.Ν.Μουρτζάς 1. Εισαγωγή Ο όρος «αστοχία» χρησιμοποιείται εδώ με την έννοια μιάς μή «αποδεκτής απόκλισης» ανάμεσα στην πρόβλεψη και τη
ΠΛΗΜΜΥΡΕΣ & ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ
ΠΛΗΜΜΥΡΕΣ & ΑΝΤΙΠΛΗΜΜΥΡΙΚΑ ΕΡΓΑ Αντιπλημμυρικά έργα Μέρος Γ Σχολή Πολιτικών Μηχανικών Τ.Υ.Π.&.Περ.- ΔΠΜΣ Μάθημα: Πλημμύρες & Αντιπλημμυρικά Έργα - Ν.Ι.Μουτάφης Λίμνη ΥΗΕ Καστρακίου Τεχνικό έργο υπερχείλισης
Κατασκευές στην επιφάνεια του βράχου 25
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 5 ΣΥΜΒΟΛΙΣΜΟΙ 13 Κατασκευές στην επιφάνεια του βράχου 25 EIΣΑΓΩΓΗ 27 ΚΕΦΑΛΑΙΟ 1 - Η ΣΥΝΑΡΜΟΓΗ ΤΟΥ ΒΡΑΧΟΥ 29 Παράμετροι οι οποίες ορίζουν τη συναρμογή 29 Ο προσανατολισμός των ασυνεχειών
ΑΣΚΗΣΗ 5η ΑΣΥΝΕΧΕΙΕΣ ΒΡΑΧΩΔΩΝ ΣΧΗΜΑΤΙΣΜΩΝ ΣΦΑΙΡΙΚΗ ΠΡΟΒΟΛΗ ΤΩΝ ΠΟΛΩΝ ΤΟΥΣ ΚΑΙ ΤΩΝ ΕΠΙΠΕΔΩΝ ΠΟΥ ΠΡΟΚΥΠΤΟΥΝ ΜΕ ΤΗ ΧΡΗΣΗ ΔΙΚΤΥΟΥ SCHMIDT.
ΑΣΚΗΣΗ 5η ΑΣΥΝΕΧΕΙΕΣ ΡΑΧΩΔΩΝ ΣΧΗΜΑΤΙΣΜΩΝ ΣΦΑΙΡΙΚΗ ΠΡΟΟΛΗ ΤΩΝ ΠΟΛΩΝ ΤΟΥΣ ΚΑΙ ΤΩΝ ΕΠΙΠΕΔΩΝ ΠΟΥ ΠΡΟΚΥΠΤΟΥΝ ΜΕ ΤΗ ΧΡΗΣΗ ΔΙΚΤΥΟΥ SCHMIDT. Με τις πυξίδες που σήμερα χρησιμοποιούνται αλλά και για την οικονομία
Για να μην χάσουμε τα συμπεράσματα.
Για να μην χάσουμε τα συμπεράσματα. Η τομή ενός ομογενούς στερεού s είναι ορθογώνιο ΑΒΓΔ με πλευρές (ΑΒ)=2α και (ΑΔ)=6α. Αφήνουμε το στερεό σε κεκλιμένο επίπεδο κλίσεως θ, όπου ημθ=0,6 και συνθ=0,8. Να
Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας
3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου
Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του
Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6
ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται
ΕΡΓΑΣΙΑ 8 ΚΙΝΗΣΗ ΜΕ ΔΥΝΑΜΕΙΣ ΠΟΥ ΔΕΝ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΚΑΙ ΤΡΙΒΗ
ΕΡΓΑΣΙΑ 8 ΚΙΝΗΣΗ ΜΕ ΔΥΝΑΜΕΙΣ ΠΟΥ ΔΕΝ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΚΑΙ ΤΡΙΒΗ 1. Σώμα μάζας m=2kg είναι ακίνητο πάνω σε οριζόντιο επίπεδο. Στο σώμα ασκείται οριζόντια δύναμη F με φορά προς τα δεξιά. Να βρεθεί
Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ
Α Ρ Ι Σ Τ Ο Τ Ε Λ Ε Ι Ο Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ο Ν Ι Κ Η Σ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ,
Καθορισμός του μηχανισμού γένεσης
Καθορισμός του μηχανισμού γένεσης Σκοπός Σκοπός της άσκησης αυτής είναι ο καθορισμός του μηχανισμού γένεσης ενός σεισμού με βάση τις πρώτες αποκλίσεις των επιμήκων κυμάτων όπως αυτές καταγράφονται στους
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 24 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 25 Απριλίου, 2010 Ώρα: 11:00-14:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από οκτώ (8) θέματα. 2) Να απαντήσετε σε όλα τα θέματα. 3)
ΤΕΧΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΟΡΓΑΝΙΣΜΟΣ ΛΙΜΕΝΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΕ (Ο.Λ.Θ. Α.Ε.) ΙΕΥΘΥΝΣΗ ΜΕΛΕΤΩΝ ΚΑΙ ΚΑΤΑΣΚΕΥΗΣ ΕΡΓΩΝ ΤΜΗΜΑ ΜΕΛΕΤΩΝ ΕΡΓΩΝ ΕΡΓΟ:
ΟΡΓΑΝΙΣΜΟΣ ΛΙΜΕΝΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΕ (Ο.Λ.Θ. Α.Ε.) ΙΕΥΘΥΝΣΗ ΜΕΛΕΤΩΝ ΚΑΙ ΚΑΤΑΣΚΕΥΗΣ ΕΡΓΩΝ ΤΜΗΜΑ ΜΕΛΕΤΩΝ ΕΡΓΩΝ ΕΡΓΟ: Αντικατάσταση του ικτύου Ύδρευσης σε Κρηπιδώματα της Ο.Λ.Θ. Α.Ε. Αριθμός Μελέτης: 278/2013
Κεφάλαιο 8 Ανισοτροπία
Κεφάλαιο 8 Ανισοτροπία Την ανισοτροπία στη μηχανική συμπεριφορά των πετρωμάτων δυνάμεθα να διακρίνουμε σε σχέση με την παραμορφωσιμότητα και την αντοχή τους. 1 Ανισοτροπία της παραμορφωσιμότητας 1.1 Ένα
ΔΙΑΣΤΑΣΕΙΣ. Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων
ΔΙΑΣΤΑΣΕΙΣ Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων Η Σωστή τοποθετηση Διαστασεων στο Μηχανολογικο Σχεδιο ειναι απαραιτητη για τη Σωστή Κατασκευή Εχετε κατι να παρατηρησετε;
Ποιότητα κατεργασμένης επιφάνειας. Αποκλίσεις 1ης, 2ης, 3ης, 4ης τάξης Τραχύτητα επιφάνειας Σκληρότητα Μικροσκληρότητα Παραμένουσες τάσεις
Ποιότητα κατεργασμένης επιφάνειας Αποκλίσεις 1ης, 2ης, 3ης, 4ης τάξης Τραχύτητα επιφάνειας Σκληρότητα Μικροσκληρότητα Παραμένουσες τάσεις Δεκ-09 Γ.Βοσνιάκος Μηχανουργικές επιφάνειες - ΕΜΤ Άδεια Χρήσης
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων
Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr Σύνθεση και Ανάλυση Δυνάμεων και Ροπών
Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης
Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.
Physics by Chris Simopoulos
ΟΙ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ - ΤΡΙΒΗ 1ος νόμος του Νεύτωνα ή νόμος της αδράνειας της ύλης. «Σε κάθε σώμα στο οποίο δεν ενεργούν δυνάμεις ή αν ενεργούν έχουν συνισταμένη μηδέν δεν μεταβάλλεται η κινητική του κατάσταση.
ΦΑΚΕΛΟΣ ΔΗΜΟΣΙΑΣ ΣΥΜΒΑΣΗΣ ΜΕΛΕΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΗΜΑΘΙΑΣ ΔΗΜΟΣ ΒΕΡΟΙΑΣ ΔΙΕΥΘΥΝΣΗ ΤΕΧΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ Βικέλα 4, 59132 Βέροια CPV: 71335000-5 ΜΕΛΕΤΗ: ΧΡΗΜΑΤΟ- ΔΟΤΗΣΗ: Κ.Α.: ΠΡΟΕΚΤΙΜΩΜΕΝ Η ΑΜΟΙΒΗ: «Μ ε λ έ τ η ε π ί λ υ σ η ς φ
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ και A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ και - Hunt Midwest (Subtroolis) και - Hunt Midwest (Subtroolis) Εφαρμογής - Η μέθοδος και (rooms and illars) ανήκει στην κατηγορία
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΘΕΜΑ 1 Ο : Α1. Σε ένα υλικό σημείο ενεργούν τέσσερις δυνάμεις. Για να ισορροπεί το σημείο θα πρέπει: α. Το άθροισμα
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται.
ο ΓΕΛ ΓΑΛΑΤΣΙΟΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ Διερεύνηση της σχέσης L=ω Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται. Η ροπή αδράνειας Ι
Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων
Soil Boring co. σταυροδρόμι 14 Αθήνα Ανάλυση κεκλιμένων επιφορτίσεων Εισαγωγή δεδομένων Έργο Ημερομηνία : 21/10/2011 Γεωμετρία της φέρουσας κατασκευής Ύψος επιχωμάτωσης Μήκος επιχωμάτωσης Πάχος επικάλυψης
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-125 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΑΣΚΗΣΗ 1 Μικρή σφαίρα εκτοξεύεται τη χρονική στιγμή t=0 από ορισμένο ύψος με αρχική ταχύτητα
ΜΕΡΟΣ 1 ΠΕΡΙΕΧΟΜΕΝΑ. 1. Γεωλογείν περί Σεισμών...3. 2. Λιθοσφαιρικές πλάκες στον Ελληνικό χώρο... 15. 3. Κλάδοι της Γεωλογίας των σεισμών...
ΜΕΡΟΣ 1 1. Γεωλογείν περί Σεισμών....................................3 1.1. Σεισμοί και Γεωλογία....................................................3 1.2. Γιατί μελετάμε τους σεισμούς...........................................
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΡΓΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΓΚΟΙΝΩΝΙΑΚΩΝ ΕΡΓΩΝ ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ ΕΡΓΟΥ ΣΕ ΟΡΥΓΜΑ ΤΟΥ ΕΡΓΟΥ
γραπτή εξέταση στο μάθημα
3η εξεταστική περίοδος από 9/03/5 έως 9/04/5 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ Ε Μ Α Α Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 25 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ A ΛΥΚΕΙΟΥ Κυριακή, 3 Απριλίου, 2011 Ώρα: 10:00-13:00 Οδηγίες: 1) Να απαντήσετε σε όλα τα θέματα. Το δοκίμιο αποτελείται από έξι (6) θέματα. 2) Να
ΚΕΦΑΛΑΙΑ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ Ι ΗΛΕΚΤΡΟΝΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΙΑΛΕΞΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΚΑΙ Υ ΡΟΓΕΩΛΟΓΙΑΣ ΚΕΦΑΛΑΙΑ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ Ι ΗΛΕΚΤΡΟΝΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΙΑΛΕΞΕΩΝ
ΣΕΙΡΆ ΑΣΚΉΣΕΩΝ, ΥΔΡΑΥΛΙΚΗ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ, προαιρετική, Θέμα 1 (1 ο βασικό πρόβλημα της Υδραυλικής των κλειστών αγωγών)
ΣΕΙΡΆ ΑΣΚΉΣΕΩΝ, ΥΔΡΑΥΛΙΚΗ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ, προαιρετική, 2017 2018 Θέμα 1 (1 ο βασικό πρόβλημα της Υδραυλικής των κλειστών αγωγών) Νερό εκρέει ελεύθερα από σύστημα σωληνώσεων σε σειρά, το οποίο άρχεται
Επαλήθευση Τοίχου με ακρόβαθρο Εισαγωγή δεδομένων
Επαλήθευση Τοίχου με ακρόβαθρο Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 29.10.2015 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Ακρόβαθρο : Συντελεστές EN 1992-1-1 : Aνάλυση τοίχου Υπολ ενεργητικών
( ) L v. δ Τύμπανο. κίνησης. Αντίβαρο τάνυσης. 600m. 6000Ν ανά cm πλάτους ιµάντα και ανά ενίσχυση 0.065
Ανυψωτικές & Μεταφορικές Μηχανές Ακαδημαϊκό έτος: 010-011 Άσκηση (Θέμα Επαναληπτικής Γραπτής Εξέτασης Σεπ010 / Βαρύτητα: 50%) Έστω η εγκατάσταση της ευθύγραµµης µεταφορικής ταινίας του Σχήµατος 1, η οποία
ΕΦΑΡΜΟΓΈΣ ΣΤΟΝ 2 ο ΝΟΜΟ ΤΟΥ ΝΕΥΤΩΝΑ
Σ ΕΦΑΡΜΟΓΈΣ ΣΟΝ ο ΝΟΜΟ ΟΥ ΝΕΥΩΝΑ 1) ΣΥΝΘΕΣΗ ΥΝΑΜΕΩΝ. ον Ο νόµο του Νεύτωνα τον εφαρµόζουµε πάντοτε µε την συνισταµένη των δυνάµεων που ασκούνται στο σώµα. Παράδειγµα 1. Σε ένα ακίνητο σώµα µάζας 1 Kg ασκούνται
MEΛΕΤΗ: «Αγροτική Οδοποιία οικισμού Παλιαμπέλων Δήμου Πύδνας Κολινδρού» ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΕΡΓΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΠΙΕΡΙΑΣ ΔΗΜΟΣ ΠΥΔΝΑΣ ΚΟΛΙΝΔΡΟΥ Δ/ΝΣΗ Τ.Υ. & ΠΟΛ/ΜΙΑΣ ΤΜΗΜΑ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ MEΛΕΤΗ: «Αγροτική Οδοποιία οικισμού Παλιαμπέλων Δήμου Πύδνας Κολινδρού» ΤΕΧΝΙΚΗ ΕΚΘΕΣΗ 1. ΥΦΙΣΤΑΜΕΝΗ
ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ
ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ 1 Οι δυνάμεις μπορούν να χωριστούν σε δυο κατηγορίες: Σε δυνάμεις επαφής, που ασκούνται μόνο ανάμεσα σε σώματα που βρίσκονται σε επαφή, και σε δυνάμεις
Ανάλυση τοίχου προβόλου Εισαγωγή δεδομένων
Ανάλυση τοίχου προβόλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 7.0.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Aνάλυση τοίχου Υπολ ενεργητικών
Καθηγητής Σταύρος Μπαντής Τμήμα Πολιτικών Μηχανικών Α.Π.Θ. Ακαδημαϊκό Έτος
Καθηγητής Σταύρος Μπαντής Τμήμα Πολιτικών Μηχανικών Α.Π.Θ. Ακαδημαϊκό Έτος 2009-2010 ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΤΥΠΙΚΗ ΤΟΜΗ ΥΠΕΔΑΦΟΥΣ Έδαφος ΕΔΑΦΗ Συσσωματώματα ασύνδετων στερεών σωματιδίων που παράγονται
Αστοχίες τεχνητών πρανών-επιχωμάτων και τοίχων αντιστήριξης από σεισμούς στα Ιόνια νησιά. Επιπτώσεις στο οδικό δίκτυο
Αστοχίες τεχνητών πρανών-επιχωμάτων και τοίχων αντιστήριξης από σεισμούς στα Ιόνια νησιά. Επιπτώσεις στο οδικό δίκτυο Κωνσταντία Μάκρα & Εμμανουήλ Ροβίθης Ερευνητές ΟΑΣΠ-ΙΤΣΑΚ Στόχος Παρουσίαση αντιπροσωπευτικών
ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1. Ο άνθρωπος ξεκινά τη στιγμή t=0 από τη θέση x=50 m και όπως φαίνεται στο παρακάτω διάγραμμα κινείται προς τα αριστερά. Στη συνέχεια σε κάθε σημειωμένη θέση στο
Δομή παρουσίασης. Βασικές ενέργειες για μείωση διακινδύνευσης π εριοχών κατολισθήσεων 4 παραδείγματα σταθεροποίησης κατολισθήσεω ν
Κατολισθητικά φαινόμενα στην Εγνατία οδό: διάγνωση, αντιμετώπιση, παρακολούθηση Ελένη Σακουμπέντα Πολιτικός Μηχανικός, MSc ΕΓΝΑΤΙΑ ΟΔΟΣ Α.Ε. Τμηματάρχης Γεωτεχνικών Διεύθυνση Μελετών esakum@egnatia.gr
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΞΑΜΗΝΟ: 7 ο ΔΙΔΑΣΚΟΝΤΕΣ: Β. ΧΡΗΣΤΑΡΑΣ, Καθηγητής Β. ΜΑΡΙΝΟΣ, Επ. Καθηγητής 6η ΑΣΚΗΣΗ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ
Επιτάχυνση της Βαρύτητας g = 10m/s 2
ΛΥΚΕΙΟ ΑΚΡΟΠΟΛΗΣ ΠΡΟΤΕΙΟΜΕΕΣ ΑΠΑΤΗΣΕΙΣ Σχολική Χρονιά:2014-2015 αθμός :. ΔΙΑΓΩΙΣΜΑ κατ. ΣΧΕΔΙΑΣΜΟΣ ΔΥΑΜΕΩ-ΚΙΗΜΑΤΙΚΗ-ΔΥΑΜΙΚΗ-ΤΡΙΗ Υπ. Κηδεμόνα :.. Μάθημα : ΦΥΣΙΚΗ Όνομα μαθητή/τριας: Ημερομηνία : Τμήμα
Ασκήσεις Τεχνικής Γεωλογίας
Ασκήσεις Τεχνικής Γεωλογίας 4 η Άσκηση: Αντοχή Βράχου Βραχόμαζας Ταξινομήσεις Βραχόμαζας Καθ. Β.Χρηστάρας Επ. Καθηγητής. Β. Μαρίνος Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας Ποιο είναι το υλικό που
ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ. Κάθετη δύναμη επαφής Τριβή ολίσθησης ** Το σώμα κατέρχεται ολισθαίνοντας στο κεκλιμένο επίπεδο. 5 μονάδες
ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Θέμα 1 ο 1. Μέσα σε έναν αερόκενο σωλήνα αήνουμε μια σαίρα. Ποιες από τις παρακάτω προτάσεις είναι λανθασμένες; α) Δεν υπάρχει βαρύτητα μέσα στον αερόκενο σωλήνα. β) Στη σαίρα ασκείται
Γ ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Προτεινόμενα Θέματα Α Λυκείου Φεβρουάριος Φυσική ΘΕΜΑ Α
Προτεινόμενα Θέματα Α Λυκείου Φεβρουάριος 014 Φυσική ΘΕΜΑ Α γενικής παιδείας Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1- και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Μέτρο
ΠΡΩΤΟΓΕΝΗΣ ΟΠΤΙΚΟΣ ΕΛΕΓΧΟΣ
ΠΡΩΤΟΓΕΝΗΣ ΟΠΤΙΚΟΣ ΕΛΕΓΧΟΣ Αναστασιάδης Γεώργιος Πολιτικός Μηχανικός - MBA 9 ο Εθνικό Συνέδριο ΜΚΕ της Ελληνικής Εταιρείας Μη Καταστροφικών Ελέγχων Αθήνα, Εθνικό Ίδρυμα Ερευνών, 11 Νοεμβρίου 2016 Οπτικός
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ ΔΥΝΑΜΙΚΗ (χωρίς τριβή) ΘΕΜΑΤΑ Β
1. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗΣ ΔΥΝΑΜΙΚΗ (χωρίς τριβή) ΘΕΜΑΤΑ Β 2. 1 3. 4. 5. 2 6. 7. 8. 3 9. 10 11. 4 12. 13. 5 14. 15. 6 16. 17. 18. 7 19. 20. 21. 8 22. 23. 24. 9 25. 26. 27. 10 28. 29. 30. 31. 11 32. 33.
Y- 4.1 ΚΛΙΜΑΚΑ : ΟΡΙΣΤΙΚΗ ΥΔΡΑΥΛΙΚΗ ΜΕΛΕΤΗ ΧΕΡΣAIΑ ΖΩΝΗ ΛΙΜΕΝΑ 1 : 20
. ΤΥΠΙΚΟ ΣΚΑΜΜΑ ΑΓΩΓΩΝ ΟΜΡΙΩΝ ΑΠΟ ΤΣΙΜΕΝΤΟΣΩΛΗΝΕΣ. ΤΥΠΙΚΟ ΣΚΑΜΜΑ ΑΓΩΓΩΝ ΑΠΟΧΕΤΕΥΣΗΣ 1. TΥΠΙΚΗ ΔΙΑΤΟΜΗ 2. TΥΠΙΚΗ ΔΙΑΤΟΜΗ 1. TΥΠΙΚΗ ΔΙΑΤΟΜΗ 2. TΥΠΙΚΗ ΔΙΑΤΟΜΗ α)το ύψος επίχωσης είναι μεγαλύτερο απο 0,80m
Α. Π.: ΥΠΟΠΑΙΘ/Γ ΑΠΚ/ΕΠΣ/Τ ΟΥΦΑ/40606/22204/675/209 Ηµ/νία: 18/02/2015
INFORMATICS DEVELOPMEN T AGENCY Digitally signed by INFORMATICS DEVELOPMENT AGENCY Date 2015.02.18 112808 EET Reason Location Athens ΑΔΑ 7Β2Δ465ΦΘ3-ΖΛΓ Α. Π. ΥΠΟΠΑΙΘ/Γ ΑΠΚ/ΕΠΣ/Τ ΟΥΦΑ/40606/22204/675/209
Οπτική και κύματα. Δημήτρης Παπάζογλου Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης
Οπτική και κύματα Δημήτρης Παπάζογλου dpapa@materal.uoc.gr Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Θεωρία πινάκων Διάνυσμα ακτίνας Παραξονική προσέγγιση ta διάνυσμα ακτίνας y αριθμητικό
Ανάλυση τοίχου βαρύτητας Εισαγωγή δεδομένων
Ανάλυση τοίχου βαρύτητας Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 8.0.005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99 : Φέρουσα (πέτρα) τοιχοπ :
Λ Ι Σ Τ Α ΕΛΕΓΧΟΥ Α Σ Φ Α Λ Ε Ι Α Σ
ΕΛΛΗΝΙΚΆ GRIECHISCH Λ Ι Σ Τ Α ΕΛΕΓΧΟΥ Α Σ Φ Α Λ Ε Ι Α Σ Αντλίες σκυροδέματος στο εργοτάξιο Αντλίες σκυροδέματος στο εργοτάξιο ΕΛΕΓΧΟΣ 1 ΠΡΟΣΒΑΣΗ Αποστάσεις ασφαλείας ΕΛΕΓΧΟΣ 2 ΕΔΑΦΟΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ Φέρουσα
3. ΑΞΙΟΛΟΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΟΥ ΠΡΟΣΟΜΟΙΩΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΦΡΑΙΖΑΡΙΣΜΑΤΟΣ
3. ΑΞΙΟΛΟΓΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΟΥ ΠΡΟΣΟΜΟΙΩΤΙΚΟΥ ΜΟΝΤΕΛΟΥ ΦΡΑΙΖΑΡΙΣΜΑΤΟΣ 3.1 Εισαγωγή Στο κεφάλαιο αυτό παρουσιάζεται η αξιολόγηση μίας μικρής δέσμης αποτελεσμάτων που εξήχθησαν από το λογισμικό προσομοίωσης
Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση
Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια
Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1
ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα
Φυσική Α Λυκείου. Καραβοκυρός Χρήστος
Φυσική Α Λυκείου 04-03 - 08 Καραβοκυρός Χρήστος ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α. Σώμα μάζας
ΙΝΣΤΙΤΟΥΤΟ ΓΕΩΛΟΓΙΚΩΝ & ΜΕΤΑΛΛΕΥΤΙΚΩΝ ΕΡΕΥΝΩΝ
1 ΙΝΣΤΙΤΟΥΤΟ ΓΕΩΛΟΓΙΚΩΝ & ΜΕΤΑΛΛΕΥΤΙΚΩΝ ΕΡΕΥΝΩΝ ΠΙΘΑΝΑ ΑΙΤΙΑ ΤΩΝ ΠΑΡΑΤΗΡΟΥΜΕΝΩΝ ΚΑΤΑΣΤΡΟΦΩΝ ΣΤΟ ΠΑΛΑΙΟΚΑΣΤΡΟ ΝΙΣΥΡΟΥ ΠΡΟ ΡΟΜΗ ΓΕΩΛΟΓΙΚΗ ΕΚΘΕΣΗ Από Γ. Ε. Βουγιουκαλάκη Αθήνα, Άυγουστος 2003 2 Πιθανά αίτια
Έργα μηχανικού, ήπιες κλίσεις, t(βάθος ροής) και y περίπου ταυτίζονται
Ομοιόμορφη ροή σε ανοικτούς αγωγούς γ Βασικές έννοιες Ομοιόμορφη ροή Ταχύτητα και γραμμή ενέργειας σε ομοιόμορφη ροή, εξίσωση Manning (Παπαϊωάννου, 2010) Συνήθως οι ανοικτοί αγωγοί (ιδιαίτερα στα περισσότερα
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,