Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών
|
|
- ÍΕρρίκος Τομαραίοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 i: Καταχωρητές Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές Ολίσθησης Σειριακή Φόρτωση Σειριακή Ολίσθηση Καταχωρητές Ολίσθησης Παράλληλης Φόρτωσης Καταχωρητές Ολίσθησης ιπλής Κατεύθυνσης Αναπαράσταση Καταχωρητή Ολίσθησης σε VHDL Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών MKM - 2 Καταχωρητές και Μετρητές (Registers and ounters) Ένας n-bit καταχωρητής είναι ένα σύνολο από n flip-flops, ικανό να αποθηκεύσει n bits δυαδικής πληροφορίας. Με επιπρόσθετες συνδυαστικές πύλες, ο καταχωρητής µπορεί να εκτελέσει λειτουργίες επεξεργασίας δεδοµένων (data-processing). Ένας µετρητής είναι ένας καταχωρητής που έχει µια προκαθορισµένη σειρά καταστάσεων, βάση της εφαρµογής παλµών του ρολογιού. MKM - 3 Παράδειγµα: Καταχωρητής 2-bit 1. Πόσες καταστάσεις υπάρχουν; 2. Πόσοι συνδυασµοί εισόδων; Συνδυασµοί εξόδων; 3. Ποια είναι η συνάρτηση εξόδου; 4. Ποια είναι η συνάρτηση της επόµενης κατάστασης; 5. Είναι Moore ή Mealy; Ποιες είναι οι τιµές για το 1 και 2, για ένα καραχωρητή n-bit; Παρούσα Κατ. A1 A0 A0 D Επόµενη Κατ. A1(t+1) A0(t+1) Για In1 In0 = Έξοδος (=A1 A0) Y1 Y MKM - 4 In1 In0 D A1 Y1 Y0 Καταχωρητής 4-bit Ηκοινή είσοδος lock πυροδοτεί όλα τα flip-flops στην θετική ακµή κάθε παλµού, και η διαθέσιµη πληροφορία στις 4 D εισόδους µεταφέρεται στον καταχωρητή. MKM - 5 Μνήµη Καταχωρητών Προσδοκίες: Ένας καταχωρητής πρέπει να µπορεί να αποθηκεύει πληροφορίες για πολλαπλές χρονικές περιόδους Η αποθήκευση ή φόρτωση πληροφοριών πρέπει να ελέγχεται από κάποιο σήµα Πραγµατικότητα: Ένας καταχωτητής D flip-flop register φορτώνει πληροφορίες σε κάθε χρονική περίοδο του ρολογιού (clock cycle) Πραγµατοποίηση Προσδοκιών: Χρήση σήµατος για µπλοκάρισµα του καταχωρητή από το ρολόι, ή Χρήση σήµατος για έλεγχο ανάδρασης (feedback control) από την έξοδο του καταχωρητή πίσω στις εισόδους του, ή Χρήση άλλων SR ή JK flip-flops τα οποία κρατούν την παρούσα κατάσταση τους για είσοδο (0,0) Load είναι συχνή ονοµασία για το σήµα που ελέγχει την αποθήκευση και φόρτωση καταχωρητών Load = 1: Φορτώνει τις τιµές των εισόδων Load = 0: Αποθηκεύει τις τιµές του καταχωρητή MKM - 6 Κεφάλαιο 7-i: Καταχωρητές 1
2 Καταχωρητής 4-bit (συν.) = Load + lock Τα FFs είναι ευαίσθητα σε αλλαγές µόνο όταν Load=1 lock-gating, όχι καλή λύση! MKM - 7 Καταχωρητές µε lock Gating Το σήµα Load χρησιµοποιείται για ενεργοποίηση του σήµατος του ρολογιού όταν είναι 1, και απενεργοποιεί το ρολόι όταν είναι 0. Παράδειγµα προβλήµατος: Για Flip-flops θετικής ακµοπυροδότησης ή αρνητικού-επιπέδου πυροδότησης: lock Load Gated lock στο FF Πιο είναι το πρόβληµα; Απόκλιση του gated clock απότοπραγµατικό ρολόι λόγο της καθυστέρησης από τις επιπρόσθετες πύλες (clock skew) MKM - 8 Καταχωρητές Παράλληλης Φόρτωσης, µε έλεγχο ανάδρασης (ontrolled Feedback) Πιο αξιόπιστος σχεδιασµός: Το ρολόι δουλεύει ασταµάτητα (στα FFs), και Επιλεκτική χρήση του Load για αλλαγή των περιεχοµένων του καταχωρητή. Παράδειγµα: καταχωρητής 2-bit: Για Load = 0, κράτηση παρούσας κατάστασης Load Για Load = 1, D1 φόρτωση τιµών εισόδου, βάση του ρολογιού Πιο σύνθετος σχεδιασµός από clock gating, αλλά ελεύθερος από D0 προβλήµατα χρονισµού lock 2-to-1 Multiplexers MKM - 9 D D A1 A0 Y1 Y0 Καταχωρητής Παράλληλης Φόρτωσης 4-bit MKM - 10 Καταχωρητές Ολίσθησης (Shift Registers) Οι καταχωρητές ολίσθησης µεταφέρουν πληροφορίες «πλάγια» µέσα στον καταχωρητή, προς τη περισσότερο σηµαντική (MSB) ή λιγότερο σηµαντική (LSB) θέση Στην πιο απλή περίπτωση, ο καταχωρητής ολίσθησης είναι απλά ένα σύνολο από D flip-flops ενωµένα σε µια γραµµή, ως ακολούθως: In A B Out D D D D Είσοδος δεδοµένων, In, ονοµάζεται σειριακή είσοδος ή είσοδος δεξιάς ολίσθησης Έξοδος δεδοµένων, Out, συχνά ονοµάζεται σειριακή έξοδος Το διάνυσµα (A, B,, Out) ονοµάζεται η παράλληλη έξοδος MKM - 11 Καταχωρητές Ολίσθησης (συν.) Ησυµπεριφορά του σειριακού καταχωρητή ολίσθησης δίνεται στον πίνακα απέναντι T0 είναι η κατάσταση ακριβώς πριν την εµφάνιση του 1ου παλµού του ρολογιού T1 έρχεται µετά τον πρώτο παλµό, και πριν το δεύτερο Αρχικές άγνωστες καταστάσεις δηλώνονται µε? Συµπληρώστε τις 3 τελευταίες γραµµές του πίνακα In lock A B Out D D D D In A B Out T0 0???? T1 1 0??? T ?? T ? T4 1 T5 1 T6 1 MKM - 12 Κεφάλαιο 7-i: Καταχωρητές 2
3 Σειριακή Μεταφορά εδοµένων Σειριακή µεταφορά δεδοµένων από ένα καταχωρητή A σε ένα καταχωρητή B. Απαιτείται µία περίοδος ρολογιού για κάθε bit. Σειριακή πρόσθεση µε χρήση καταχωρητή ολίσθησης Οι δύο δυαδικοί προσθετέοι αποθηκεύονται σειριακά στους δύο καταχωρητές. Πόσος χρόνος χρειάζεται για να φορτωθούν οι αριθµοί; Τα bits προσθέτονται ανά ζεύγος κάθε χρονική στιγµή, µέσω ενός πλήρη αθροιστή (full-adder circuit). Πόσος χρόνος χρειάζεται για την πρόσθεση; Το carry out του πλήρη αθροιστή µεταφέρεται σε ένα D flip-flop, του οποίου η έξοδος χρησιµοποιείται ως το carry in για το επόµενο ζεύγος των bits. Το sum bit στην έξοδο S του πλήρη αθροιστή µεταφέρεται στο καταχωρητή A. MKM - 13 MKM - 14 Σειριακή πρόσθεση µε χρήση καταχωρητή ολίσθησης Πόσος χρόνος χρειάζεται για ολόκληρη τη διαδικασία; Σχεδιάστε το διάγραµµα, σε επίπεδο καταχωρητών (ή RTL-level = Register- Transfer Level) Σειριακή ή Παράλληλη Πρόσθεση; Ο παράλληλος αθροιστής είναι ένα συνδυαστικό κύκλωµα, ενώ ο σειριακός ένα ακολουθιακό. Ο παράλληλος αθροιστής αποτελείται από n πλήρες 1-bit αθροιστές για προσθετέους των n- bit, ενώ ο σειριακός απαιτεί µόνο 1 πλήρη 1-bit αθροιστή. Το σειριακό κύκλωµα παίρνει n περιόδους του ρολογιού για να ολοκληρώσει, ενώ το παράλληλο 1. Συνοπτικά, ο παράλληλος αθροιστής είναι n φορές µεγαλύτερος του σειριακού σε χώρο, αλλά είναι και n φορές πιο γρήγορος. MKM - 15 MKM - 16 Καταχωρητής Ολίσθησης Παράλληλης Φόρτωσης Προσθέτοντας ένα MUX µεταξύ κάθε «στάδιο» του καταχωρητή ολίσθησης, δεδοµένα µπορούν να αποθηκεύονται ή φορτώνονται µε αξιόπιστο τρόπο. IN SHIFT Παράδειγµα Καταχωρητή Ολίσθησης Παράλλήλης Φόρτωσης 2-bit SHIFT=0, τα A και B αντικαθιστούνται µε ταδεδοµένα στις γραµµές D A και D B (παράλληλη φόρτωση), αλλιώς τα δεδοµένα ολισθαίνουν προς τα δεξιά στην κάθε περίοδο ρολογιού και φορτώνεται 1-bit (σειριακή φόρτωση). Προσθέτοντας και άλλα bits, κατασκευάζουµε καταχωρητή ολίσθησης παράλληλης φόρτωσης n-bit. MKM - 17 D A D A D B B D Καταχωρητής Ολίσθησης Παράλληλης Φόρτωσης Παράδειγµα Καταχωρητή Ολίσθησης Προσθέτοντας ένα MUX Παράλλήλης Φόρτωσης 2-bit µεταξύ κάθε «στάδιο» D A D B του καταχωρητή SHIFT=0 A B ολίσθησης, δεδοµένα IN D D µπορούν να αποθηκεύονται ή φορτώνονται µε SHIFT αξιόπιστο τρόπο. SHIFT=0, τα A και B αντικαθιστούνται µε ταδεδοµένα στις γραµµές D A και D B (παράλληλη φόρτωση), αλλιώς τα δεδοµένα ολισθαίνουν προς τα δεξιά στην κάθε περίοδο ρολογιού και φορτώνεται 1-bit (σειριακή φόρτωση). Προσθέτοντας και άλλα bits, κατασκευάζουµε καταχωρητή ολίσθησης παράλληλης φόρτωσης n-bit. MKM - 18 Κεφάλαιο 7-i: Καταχωρητές 3
4 Καταχωρητής Ολίσθησης Παράλληλης Φόρτωσης Παράδειγµα Καταχωρητή Ολίσθησης Προσθέτοντας ένα MUX Παράλλήλης Φόρτωσης 2-bit µεταξύ κάθε «στάδιο» D A D B του καταχωρητή SHIFT=1 A B ολίσθησης, δεδοµένα IN D D µπορούν να αποθηκεύονται ή φορτώνονται µε SHIFT αξιόπιστο τρόπο. SHIFT=0, τα A και B αντικαθιστούνται µε ταδεδοµένα στις γραµµές D A και D B (παράλληλη φόρτωση), αλλιώς τα δεδοµένα ολισθαίνουν προς τα δεξιά στην κάθε περίοδο ρολογιού και φορτώνεται 1-bit (σειριακή φόρτωση). Προσθέτοντας και άλλα bits, κατασκευάζουµε καταχωρητή ολίσθησης παράλληλης φόρτωσης n-bit. MKM - 19 Φόρτωσης Άλλος σχεδιασµός MKM - 20 Φόρτωσης Άλλος σχεδιασµός SHIFT = 1 Φόρτωσης Άλλος σχεδιασµός SHIFT = 0 LOAD = 1 MKM - 21 MKM - 22 Φόρτωσης Άλλος σχεδιασµός SHIFT = 0 LOAD = 0 Φόρτωσης Άλλος σχεδιασµός (συν.) Μπορούµε να προσθέσουµε την λειτουργία hold για αποθήκευση/κράτηση της παρούσας πληροφορίας. Shift Load 0 1 X Λειτουργία Κράτηση παρούσας κατάστασης: 0 0, 1 1, 2 2, Παράλληλη φόρτωση: D0 0, D1 1, D2 2, Ολίσθηση: Serial Input MKM - 23 MKM - 24 Κεφάλαιο 7-i: Καταχωρητές 4
5 Καταχωρητής Ολίσθησης µε Επιπρόσθετες Λειτουργίες Προσθέτοντας ένα MUX 4-εισόδων µπροστά από το κάθε D flip-flop σε ένα καταχωρητή ολίσθησης, µπορούµε να υλοποιήσουµε ένα κύκλωµα µε λειτουργίες: ολίσθηση δεξιά, ολίσθηση αριστερά, παράλληλη φόρτωση, κράτηση παρούσας κατάστασης. Καταχωρητές ολίσθησης µπορούν επίσης να σχεδιαστούν για ολίσθηση περισσοτέρων του ενός bit ολίσθηση k (<n) bits Παράδειγµα: Καταχωρητής Ολίσθησης ιπλής Κατεύθυνσης (Bidirectional) S 1 S Λειτουργία Κράτηση παρούσας κατάστασης Ολίσθηση προς τα κάτω Ολίσθηση προς τα πάνω Παράλληλη φόρτωση MKM - 25 MKM - 26 S 0 S 1 = 00 MKM - 27 MKM - 28 S 0 S 1 = 01 S 0 S 1 = 10 MKM - 29 MKM - 30 Κεφάλαιο 7-i: Καταχωρητές 5
6 S 0 S 1 = 11 Καταχωρητής Ολίσθησης σε VHDL -- Καταχωρητής αριστερής ολίσθησης 4-bit µε ασύγχρονο Reset library ieee; use ieee.std_logic_1164.all; entity srg_4_r is port(lk, RESET, SI : in std_logic; : out std_logic_vector(3 downto 0); SO : out std_logic); end srg_4_r; MKM - 31 MKM - 32 Καταχωρητής Ολίσθησης σε VHDL architecture behavioral of srg_4_r is signal shift : std_logic_vector(3 downto 0); begin process (RESET, LK) begin if (RESET = '1') then shift <= "0000"; elsif (LK'event and (LK = '1')) then shift <= shift(2 downto 0) & SI; end if; end process; <= shift; A B D SO <= shift(3); end behavioral; B D SI MKM - 33 Κεφάλαιο 7-i: Καταχωρητές 6
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Καταχωρητές Παράλληλης
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές
26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης
Ψηφιακή Σχεδίαση Ενότητα 10:
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 10: Καταχωρητές & Μετρητές Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής
Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Μετρητής Ριπής (Ripple Counter) Μετρητές (Counters) Μετρητής Ριπής (συν.
ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 ii: Μετρητές Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μετρητής Ριπής Περίληψη Σύγχρονος υαδικός Μετρητής Σχεδιασµός µε Flip-Flops
ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008
ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ
ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ Θεωρητικό
Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 3: Καταχωρητές - Απαριθμητές Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Μηχανές Πεπερασμένων Καταστάσεων
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Μηχανές Πεπερασμένων Καταστάσεων Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Ακολουθιακός Κώδικας
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Ακολουθιακός Κώδικας Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ E-mail: pkitsos@teimes.gr
6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή
6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή Εισαγωγή Η σχεδίαση ενός ψηφιακού συστήµατος ως ακολουθιακή µηχανή είναι εξαιρετικά δύσκολη Τµηµατοποίηση σε υποσυστήµατα µε δοµικές µονάδες:
ΑΣΚΗΣΗ 2: Σχεδίαση και προσομοίωση κυκλωμάτων καταχωρητών και μετρητών
ΑΣΚΗΣΗ 2: Σχεδίαση και προσομοίωση κυκλωμάτων καταχωρητών και μετρητών Θέμα Β.1: Απλός καταχωρητής 1 bit (D Flip-Flop) preset D D Q Q clk clear Σχήμα 2.1: D Flip-Flop με εισόδους preset και clear Με τη
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1
ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα (συν.) Κυκλώματα που Κυκλώματα που αποθηκεύουν εξετάσαμε μέχρι τώρα πληροφορίες Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops
7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης
7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Εισαγωγή Καταχωρητής: είναι µία οµάδα από δυαδικά κύτταρα αποθήκευσης και από λογικές πύλες που διεκπεραιώνουν την µεταφορά πληροφοριών. Οι µετρητές είναι
Ψηφιακά Συστήματα. 8. Καταχωρητές
Ψηφιακά Συστήματα 8. Καταχωρητές Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L., Ψηφιακά
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Καταχωρητές και Μετρητές Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Καταχωρητής: είναι μία ομάδα από δυαδικά κύτταρα αποθήκευσης
Σχεδίαση Ψηφιακών Συστημάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 4: Σχεδιασμός Σειριακού Αθροιστή Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ
ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ & ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ Θεωρητικό Μέρος Οι σειριακές λειτουργίες είναι πιο
Εργαστήριο Οργάνωσης Η/Υ. Δαδαλιάρης Αντώνιος
Εργαστήριο Οργάνωσης Η/Υ Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Συνδυαστικό Κυκλωμα: Το κύκλωμα του οποίου οι έξοδοι εξαρτώνται αποκλειστικά από τις τρέχουσες εισόδους του. Ακολουθιακό Κύκλωμα: Το κύκλωμα
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Μετρητής Ριπής q Σύγχρονος
VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων
VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών n VHDL Processes Περίληψη n Εντολές If-Then-Else και CASE
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΚΑΤΑΧΩΡΗΤΕΣ ΟΛΙΣΘΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΚΑΤΑΧΩΡΗΤΕΣ ΟΛΙΣΘΗΤΕΣ 1) Το παρακάτω κύκλωμα του σχήματος 1 είναι ένας καταχωρητής-ολισθητής
Σχεδίαση Ψηφιακών Συστημάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 2: Βασικές Μονάδες Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Ακολουθιακά Κυκλώµατα. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ακολουθιακά Κυκλώµατα (συν.) Ακολουθιακή Λογική: Έννοια
ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 6-i: Ακολουθιακά Κυκλώµατα Μανδαλωτές (Latches) και Flip-Flops Ακολουθιακά Κυκλώµατα Συνδυαστική Λογική:
Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 28 Νοε-8 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου
ΑΠΟ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΚΕΦΑΛΑΙΟ 7-8 (ΚΑΤΑΧΩΡΗΤΕΣ & ΑΠΑΡΙΘΜΗΤΕΣ)
ΑΠΟ ΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2009 205 ΚΕΦΑΛΑΙΟ 7-8 (ΚΑΤΑΧΩΡΗΤΕΣ & ΑΠΑΡΙΘΜΗΤΕΣ) ΑΠΟ ΘΕΜΑ Α Ερωτήσεις. Γιατί στους ασύγχρονους απαριθμητές τα flip-flops δεν αλλάζουν ταυτόχρονα κατάσταση; 2. Να
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 Συµπληρωµατική ΔΙΑΛΕΞΗ 14: Περιγραφή Ακολουθιακών Κυκλωµάτων στη VHDL
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 Συµπληρωµατική ΔΙΑΛΕΞΗ 14: Περιγραφή Ακολουθιακών Κυκλωµάτων στη VHDL ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. VHDL για Ακολουθιακά Κυκλώματα 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων VHDL για Σχεδιασμό Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Περίληψη VHDL Processes Εντολές If-Then Then-Else και CASE Περιγραφή Flip-Flop Flop με VHDL
Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Καθιερωµένα Γραφικά Σύµβολα. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005
ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Απρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 6 ii: Ανάλυση Ακολουθιακών Κυκλωµάτων Περίληψη Καθιερωµένα Γραφικά Σύµβολα Χαρακτηριστικοί Πίνακες
Καταχωρητές,Σύγχρονοι Μετρητές και ΑκολουθιακάΚυκλώματα
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Καταχωρητές,Σύγχρονοι Μετρητές και ΑκολουθιακάΚυκλώματα ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ατζέντα
Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 27 Νοε-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα:
7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ
7. ΚΑΤΑΧΩΡΗΤΕΣ ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ. Τι είναι ένας καταχωρητής; O καταχωρητής είναι μια ομάδα από flip-flop που μπορεί να αποθηκεύσει προσωρινά ψηφιακή πληροφορία. Μπορεί να διατηρήσει τα δεδομένα του αμετάβλητα
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Σχεδίαση Ψηφιακών Συστημάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 6: Σύγχρονα Ακολουθιακά Κυκλώματα Κυριάκης Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο Διάλεξη 8 η : Μηχανές Πεπερασμένων Κaταστάσεων σε FPGAs
ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 8 η :
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Προχωρημένα Θέματα Σχεδιασμού με VHDL
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Προχωρημένα Θέματα Σχεδιασμού με VHDL Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής
Καταχωρητές, Μετρητές και Ακολουθιακά Κυκλώματα
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Καταχωρητές, Μετρητές και Ακολουθιακά Κυκλώματα Διδάσκoντες: Γιώργος Ζάγγουλος και Λάζαρος Ζαχαρία Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL Διδάσκων: Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα
6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Ανάλυση Ακολουθιακών Κυκλωμάτων Ανάλυση: Ο καθορισμός μιας κατάλληλης περιγραφής η οποία επιδεικνύει
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 12: Ανάλυση Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6.2) Μηχανές Καταστάσεων ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)
6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.
6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή
Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 28 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία
Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.
ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Ακολουθιακή Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Ακολουθιακή Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωμα Έξοδοι Στοιχεία Μνήμης Κατάσταση
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,
9. ΚΑΤΑΧΩΡΗΤΕΣ (REGISTERS)
9. ΚΑΤΑΧΩΡΗΤΕΣ (REGISTERS) 9.. ΕΙΣΑΓΩΓΗ Όπως έχουμε ήδη αναφέρει για την αποθήκευση μιας πληροφορίας ενός ψηφίου ( bit) απαιτείται ένα στοιχείο μνήμης δηλαδή ένα FF. Επομένως για περισσότερα του ενός ψηφία
ΕΙΣΑΓΩΓΙΚΟ ΕΓΧΕΙΡΙ ΙΟ ΓΙΑ ΣΧΕ ΙΑΣΜΟ ΜΕ ΧΡΗΣΗ ΤΗΣ ΓΛΩΣΣΑΣ VHDL
ΕΙΣΑΓΩΓΙΚΟ ΕΓΧΕΙΡΙ ΙΟ ΓΙΑ ΣΧΕ ΙΑΣΜΟ ΜΕ ΧΡΗΣΗ ΤΗΣ ΓΛΩΣΣΑΣ VHDL Προετοιµασία: Παπαδόπουλος Γιώργος Σούρδης Γιάννης Για το µάθηµα Οργάνωσης Υπολογιστών (ΑΡΥ301), 2002 ΕΙΣΑΓΩΓΗ ΣΤΗ STRUCTURAL VHDL Η VHDL είναι
Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL Διδάσκoντες: Δρ. Γιώργος Ζάγγουλοςκαι Δρ. Παναγιώτα Δημοσθένους Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων
Η κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A].
Κανονική μορφή συνάρτησης λογικής 5. Η κανονική μορφή μιας λογικής συνάρτησης (ΛΣ) ως άθροισμα ελαχιστόρων, από τον πίνακα αληθείας προκύπτει ως εξής: ) Παράγουμε ένα [A] όρων από την κάθε σειρά για την
Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα επαναληπτικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική
8.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
ΑΣΚΗΣΗ 9. Tα Flip-Flop
ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL Διδάσκoντες: Δρ. Αγαθοκλής Παπαδόπουλος και Δρ. Γιώργος Ζάγγουλος Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων
Μελέτη και σχεδίαση µιας υποτυπώδους κεντρικής µονάδας επεξεργασίας στα 32 µπιτ.
ΤΕΙ ΚΡΗΤΗΣ / ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Μελέτη και σχεδίαση µιας υποτυπώδους κεντρικής µονάδας επεξεργασίας στα 32 µπιτ mode mode(0) ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Εµµανουήλ Καπαρού Επιβλέπων : ρ Μηχ Νικόλαος
Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα
6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από
Αρχιτεκτονικές Υπολογιστών
ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών FLIP-FLOPS ΣΥΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ ΚΑΙ ΣΧΕ ΙΑΣΗ ΣΑΚ ιδάσκων: Αναπλ. Καθ. Κ. Λαµπρινουδάκης clam@uipi.gr Αρχιτεκτονικές
ΚΑΤΑΧΩΡΗΤΕΣ ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ. Τύποι καταχωρητών: (α) σειριακής-εισόδου-σειριακής-εξόδου, (β) σειριακήςεισόδου-παράλληλης-εξόδου,
ΚΑΤΑΧΩΡΗΤΕΣ ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ Καταχωρητές σειριακής-εισόδου-σειριακής-εξόδου Καταχωρητές σειριακής-εισόδου-παράλληλης-εξόδου Καταχωρητές παράλληλης-εισόδου-παράλληλης-εξόδου Καταχωρητές
Σχεδίαση Βασικών Κυκλωµάτων. Χρ. Καβουσιανός. Επίκουρος Καθηγητής
Σχεδίαση Βασικών Κυκλωµάτων Χρ. Καβουσιανός Επίκουρος Καθηγητής Εισαγωγή Τα αριθµητικά κυκλώµατα χρησιµοποιούνται ευρέως στην σχεδίαση συστηµάτων. Data Paths Επεξεργαστές ASICs Κυρίαρχες Αριθµητικές Πράξεις:
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα
Εργαστήριο Αρχιτεκτονικής Υπολογιστών Ι. Εισαγωγή στη VHDL
Εργαστήριο Αρχιτεκτονικής Υπολογιστών Ι Εισαγωγή στη VHDL Εισαγωγή Very High Speed Integrated Circuits Hardware Description Language ιαφορές από γλώσσες προγραμματισμού: παράλληλη εκτέλεση εντολών προσδιορισμός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Σχεδίαση Ψηφιακών Συστημάτων. Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ψηφιακών Συστημάτων Ενότητα: ΚΑΤΑΧΩΡΗΤΕΣ - ΑΠΑΡΙΘΜΗΤΕΣ Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
Καταστάσεων. Καταστάσεων
8 η Θεµατική Ενότητα : Εισαγωγή Ησχεδίαση ενός ψηφιακού συστήµατος µπορεί να διαιρεθεί σε δύο µέρη: τα κυκλώµατα επεξεργασίας δεδοµένων και τα κυκλώµατα ελέγχου. Το κύκλωµα ελέγχου δηµιουργεί σήµατα για
Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος
1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα
Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter)
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter) ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
ΑΣΚΗΣΗ 8 ΚΑΤΑΧΩΡΗΤΕΣ - REGISTERS
ΑΣΚΗΣΗ 8 ΚΑΤΑΧΩΡΗΤΕΣ - REGISTERS Αντικείμενο της άσκησης: Η σχεδίαση και λειτουργία συστημάτων προσωρινής αποθήκευσης (Kαταχωρητές- Registers). Για την αποθήκευση μιας πληροφορίας του ενός ψηφίου (bit)
Ψηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης 1 Κεφάλαιο 7 Καταχωρητές Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης 2 Καταχωρητές ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ς-εισόδου-σειριακής-εξόδου
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Συντρέχων Κώδικας
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 216-217 Συντρέχων Κώδικας Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ E-mail: pkitsos@teimes.gr
Περιγραφή Κυκλωμάτων με χρήση της VHDL. Καταχωρητές και χρονισμός με ρολόι
Περιγραφή Κυκλωμάτων με χρήση της VHDL Καταχωρητές και χρονισμός με ρολόι Οργάνωση Παρουσίασης Διεργασίες (κανόνες) Ακολουθιακές Δηλώσεις (Sequential Statements) Καταχωρητές και χρονισμός Συμπληρωματική
Ψηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό
Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα
Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές
Εισαγωγή στη γλώσσα περιγραφής υλικού VHDL. Γενικά χαρακτηριστικά, σύνταξη και τύποι. Ψηφιακή Σχεδίαση µε CAD ΙΙ - ιάλεξη 1 -
Εισαγωγή στη γλώσσα περιγραφής υλικού VHDL Γενικά χαρακτηριστικά, σύνταξη και τύποι Ψηφιακή Σχεδίαση µε CAD ΙΙ - ιάλεξη 1 - Περίγραµµα διάλεξης Τι είναι η VHDL? Πλεονεκτήµατα της VHDL στη σχεδίαση κυκλωµάτων
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Λογικός Σχεδιασµός και Σχεδιασµός Η/Υ. ΗΜΥ-210: Εαρινό Εξάµηνο Σκοπός του µαθήµατος. Ψηφιακά Συστήµατα. Περίληψη. Εύρος Τάσης (Voltage(
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Σκοπός του µαθήµατος Λογικός Σχεδιασµός και Σχεδιασµός Η/Υ Κεφάλαιο 1: Υπολογιστές και Πληροφορία (1.1-1.2) Βασικές έννοιες & εργαλεία που χρησιµοποιούνται
Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211
Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 υαδικός Αθροιστής, Πολυπλέκτες και Αποκωδικοποιητές Εβδοµάδα: 5 Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ2 Χειµερινό 23 Στόχοι
12. ΚΑΤΑΧΩΡΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1
12. ΚΑΤΑΧΩΡΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΚΑΤΑΧΩΡΗΤΕΣ Ο ΚΑΤΑΧΩΡΗΤΗΣ ΩΣ ΣΤΟΙΧΕΙΟ ΜΝΗΜΗΣ ΕΙ Η ΚΑΤΑΧΩΡΗΤΩΝ ΣΤΑΤΙΚΟΣ ΚΑΤΑΧΩΡΗΤΗΣ ΚΑΤΑΧΩΡΗΤΗΣ ΟΛΙΣΘΗΣΗΣ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ
Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ
ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου
Κεφάλαιο 6. Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα
Κεφάλαιο 6 Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα 6.1 Εισαγωγή Η εκτέλεση διαδοχικών λειτουργιών απαιτεί τη δημιουργία κυκλωμάτων που μπορούν να αποθηκεύουν πληροφορίες, στα ενδιάμεσα στάδια των
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ. ΚΕΦΑΛΑΙΟ 2ο ΚΑΤΑΧΩΡΗΤΕΣ. (c) Αμπατζόγλου Γιάννης, Ηλεκτρονικός Μηχανικός, καθηγητής ΠΕ17
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο ΚΑΤΑΧΩΡΗΤΕΣ Καταχωρητές (ολίσθησης) Είναι κυκλώματα με D FF που χρησιμοποιούνται για την αποθήκευση πληροφοριών. Ανάλογα με τον τρόπο εισόδου και εξόδου των δεδομένων, οι
7.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)
ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης
Εργαστήριο Οργάνωσης Η/Υ. Δαδαλιάρης Αντώνιος
Εργαστήριο Οργάνωσης Η/Υ Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Χρησιμοποιούμε τις μηχανές πεπερασμένων καταστάσεων (finite state machines FSMs) για την μοντελοποίηση της συμπεριφοράς ενός κυκλώματος, η
ΚΑΤΑΧΩΡΗΤΕΣ ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ. Καταχωρητές παράλληλης-εισόδου-παράλληληςεξόδου. Καταχωρητές παράλληλης-εισόδου-σειριακής-εξόδου
ΚΑΤΑΧΩΡΗΤΕΣ ΣΕΙΡΙΑΚΟΙ ΚΑΙ ΠΑΡΑΛΛΗΛΟΙ ΚΑΤΑΧΩΡΗΤΕΣ Καταχωρητές σειριακής-εισόδου-σειριακής-εξόδου Καταχωρητές σειριακής-εισόδου-παράλληλης-εξόδου Καταχωρητές παράλληλης-εισόδου-παράλληληςεξόδου Καταχωρητές
K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops
K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΥΛΙΚΟ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Ενότητα 1. Λογικής Σχεδίασης. Καθηγητής Αντώνης Πασχάλης
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ - VHL ΥΛΙΚΟ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Ενότητα 1 Αρχές και Πρακτικές Ακολουθιακής Λογικής Σχεδίασης Καθηγητής Αντώνης Πασχάλης 217 Γενικές
Εργαστήριο Οργάνωσης Η/Υ. Δαδαλιάρης Αντώνιος
Εργαστήριο Οργάνωσης Η/Υ Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Ρόλος των γλωσσών περιγραφής υλικού σε μια τυπική ροή σχεδίασης: Documentation Simulation Synthesis Οι γλώσσες περιγραφής υλικού μπορούν να
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 11: Ακολουθιακά Κυκλώµατα (Κεφάλαιο 5, 6.1, 6.3, 6.4) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Ακολουθιακά
Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος
1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα
ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.
Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ
Περιγραφή Κυκλωμάτων με χρήση της VHDL. Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων
Περιγραφή Κυκλωμάτων με χρήση της VHDL Δομική περιγραφή και περιγραφή Μηχανών Πεπερασμένων Καταστάσεων Οργάνωση Παρουσίασης Περιγραφή Δομής σε VHDL (Structural Description) Μηχανές Πεπερασμένων Καταστάσεων
Περίληψη. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005. υαδική Αφαίρεση. υαδική Αφαίρεση (συν.) Ακόµη ένα παράδειγµα Αφαίρεσης.
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 2005 Κεφάλαιο 5 -ii: Αριθµητικές Συναρτήσεις και Κυκλώµατα Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αφαίρεση δυαδικών Περίληψη
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες)
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το ανωτέρω διάγραμμα καταστάσεων,
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Τύποι Δεδομένων και Τελεστές
«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Τύποι Δεδομένων και Τελεστές Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ E-mail: pkitsos@teimes.gr Αντίρριο
Library, package και subprograms
Library, package και subprograms Libraries Packages Subprograms Procedures Functions Overloading Αριθμητικά πακέτα Type conversion Shift operators Παράδειγμα Library - Package Ασκήσεις-Προβλήματα 12/8/2009