Ελίνα Μακρή
|
|
- Συντύχη Κανακάρης-Ρούφος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ελίνα Μακρή
2 Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D, T, SR, JK)
3 Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D, T, SR, JK)
4 Ακολουθιακά Κυκλώματα
5 Συνδυαστικά Κυκλώματα Η τιμή εξόδου των συνδυαστικών (combinational) κυκλωμάτων που έχουμε δει εξαρτάται απευθείας από τις τιμές εισόδων. Είσοδος Συνδυαστικό Κύκλωμα Έξοδος Ακολουθιακά Κυκλώματα Στα ακολουθιακά (sequential) κυκλώματα, χρησιμοποιούμε στοιχεία μνήμης που αποθηκεύουν τιμές. Το κύκλωμα προσομοιώνεται σε κύκλους χρόνου (cycles) και η τιμή εξόδου εξαρτάται από τις τιμές εισόδων και τα στοιχεία μνήμης (σε κάθε κύκλο). Είσοδος Συνδυαστικό Κύκλωμα Έξοδος Στοιχεία Μνήμης
6 Flip Flop Στοιχείο μνήμης που συνήθως χρησιμοποιούμε στα ακολουθιακά κυκλώματα είναι το flip-flop (FF). Το flip-flop είναι στοιχειώδης μνήμη μέσα στην οποία μπορεί να αποθηκευθεί η ελάχιστη (στοιχειώδης) πληροφορία δηλ. το bit. Τα flip-flops διαθέτουν δύο σταθερές καταστάσεις (1 και 0), και παρέχουν μνήμη που αποθηκεύει πληροφορία ενός (1) bit. Ένα κύκλωμα flip-flop μπορεί να διατηρηθεί σε μία δυαδική κατάσταση επ αόριστον, έως ότου κάποιο σήμα προκαλέσει αλλαγή κατάστασης Κύριοι τύποι Flip Flop είναι οι παρακάτω: SR Flip Flop D Flip Flop T Flip Flop JK Flip Flop A B
7 SR (Set-Reset) Flip Flop Πολλές φορές μας ενδιαφέρει να μπορούμε να ενεργοποιήσουμε ή όχι το σύστημα. Αυτό γίνεται με ένα ρολόι clock που λειτουργεί ως enable του συστήματος (Clock=1 σύστημα ενεργοποιημένο). Αυτό το στοιχείο μνήμης ονομάζετε SR Flip Flop.
8 SR (Set-Reset) Flip Flop Γραφικό Σύμβολο Κύκλωμα
9 SR (Set-Reset) Flip Flop Πίνακας Αληθείας Χρονοδιάγραμμα
10 SR (Set-Reset) Flip Flop Μπορούμε να σχεδιάσουμε SR-FF μόνο με πύλες NAND. Κύκλωμα Πίνακας Αληθείας
11 SR (Set-Reset) Flip Flop Άσκηση Να σχεδιάσετε τις τιμές των εξόδων σύμφωνα με το SR-FF μέχρι την χρονική στιγμή t=10. Θεωρήστε οτι αρχικά ισχύει Q = 0 και Q = 1. t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 Clk R S Q Q Διάγραμμα Χρονισμού Χρόνος
12 SR (Set-Reset) Flip Flop Άσκηση Λύση Να σχεδιάσετε τις τιμές των εξόδων σύμφωνα με το SR-FF μέχρι την χρονική στιγμή t=10. Θεωρήστε οτι αρχικά ισχύει Q = 0 και Q = 1. t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 Clk R S Q Q Διάγραμμα Χρονισμού Χρόνος
13 D Flip Flop Το D-FF μπορεί και αποθηκεύει την τιμή data D στην είσοδο του κυκλώματος. Η τιμή του αλλάζει μόνο όταν το ρολόι Clock λαμβάνει την τιμή 1. Η τιμή του D που «κλειδώνεται» στο D-FF είναι αυτή κατά την διάρκεια που ο παλμός του ρολογιού αλλάζει από 1 σε 0.
14 D Flip Flop Γραφικό Σύμβολο Κύκλωμα
15 D Flip Flop Πίνακας Αληθείας Χρονοδιάγραμμα
16 T Flip Flop Το T-FF διατηρεί την τρέχουσα output κατάσταση όταν T=0 και την αντιστρέφει όταν είναι T=1.
17 T Flip Flop Γραφικό Σύμβολο Κύκλωμα
18 T Flip Flop Πίνακας Αληθείας Χρονοδιάγραμμα
19 JK Flip Flop Το JK-FF έχει 2 εισόδους J και K. Η είσοδος J αντιστοιχεί στο "set" και η είσοδος Κ αντιστοιχεί στο "reset.
20 JK Flip Flop Γραφικό Σύμβολο Κύκλωμα
21 JK Flip Flop Πίνακας Αληθείας Χρονοδιάγραμμα
22 JK Flip Flop Μετατροπή JK-FF σε Τ-FF T Αν T = 0, τότε J=K=0. Επομένως απο τον πίνακα λειτουργίας του JK-FF έχουμε έξοδο Qt. Αν T = 1, τότε J=K=1. Επομένως απο τον πίνακα λειτουργίας του JK-FF έχουμε έξοδο Qt. Άρα από T = 0 προκύπτει έξοδος Qt και από T = 1, προκύπτει έξοδος Qt, δηλαδή ο πίνακας λειτουργίας του T-FF.
23 JK Flip Flop Μετατροπή JK-FF σε D-FF D Αν D = 0, τότε J = 0, K = 1. Επομένως απο τον πίνακα λειτουργίας του JK-FF έχουμε έξοδο 0. Αν D = 1, τότε J = 1, K = 0. Επομένως απο τον πίνακα λειτουργίας του JK-FF έχουμε έξοδο 1. Άρα από D = 0 προκύπτει έξοδος 0 και από D = 1, προκύπτει έξοδος 1, δηλαδή ο πίνακας λειτουργίας του D-FF.
24 Πίνακες Λειτουργίας & Πίνακες Διέγερσης Οι χαρακτηριστικοί πίνακες λειτουργίας FF μας δίνουν την επόμενη κατάσταση του FF συναρτήσει των τιμών των εισόδων τους. Οι πίνακες διέγερσης FF μας δίνουν τις τιμές που πρέπει να πάρουν οι είσοδοι για να έχουμε μια ορισμένη μετάβαση κατάστασης.
25 Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων
26 Πίνακες Λειτουργίας Οι χαρακτηριστικοί πίνακες λειτουργίας FF μας δίνουν την επόμενη κατάσταση του FF συναρτήσει των τιμών των εισόδων τους. Ορίζουν τις λογικές ιδιότητες των FFs και χαρακτηρίζουν πλήρως τη λειτουργία τους.
27 Διαδικασία Ανάλυσης Με τον όρο "ανάλυση" ενός ακολουθιακού κυκλώματος εννοούμε την εύρεση ολόκληρης της χρονικής ακολουθίας των εισόδων, εξόδων και καταστάσεων αυτού. Επομένως, όταν μας δίνεται ένα σύγχρονο ακολουθιακό κύκλωμα (ΣΑΚ), θα θέλαμε να προσδιορίσουμε όλη την αλληλουχία των δυνατών καταστάσεων αυτού, όπως και των πιθανών εξόδων του, σε συνάρτηση με τις τιμές των εξωτερικών εισόδων του κυκλώματος και τους ωρολογιακούς παλμούς. Η διαδικασία της ανάλυσης ενός ΣΑΚ γίνεται πολύ εύκολα σε τρία ξεχωριστά βήματα: συναρτήσεις εισόδου πίνακας καταστάσεων διάγραμμα καταστάσεων
28 Διαδικασία Ανάλυσης Συνοπτικά Η ανάλυση των ακολουθιακών κυκλωμάτων έγκειται στην εύρεση ενός πίνακα ή διαγράμματος για την χρονική ακολουθία εισόδων, εξόδων και εσωτερικών καταστάσεων. Ανάλυση ακολουθιακού κυκλώματος: Υπολογισμός των δυαδικών τιμών κάθε συνάρτησης εισόδου flip flop με την παρούσα κατάσταση και τις μεταβλητές εισόδου. Χρήση του χαρακτηριστικού πίνακα λειτουργίας για καθορισμό της επόμενης κατάστασης.
29 Βήματα Βήμα Α1 Γράφουμε τις λογικές συναρτήσεις των εισόδων των FFs από το κύκλωμα που μας έχει δοθεί. Βήμα Α2 Υπολογίζουμε τον πίνακα καταστάσεων. Βήμα Α3 Σχεδιάζουμε το διάγραμμα καταστάσεων.
30 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Παράδειγμα Δίνεται το παρακάτω κύκλωμα:
31 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Παράδειγμα Βήμα Α1: Γράφουμε τις λογικές συναρτήσεις των εισόδων των FFs από το κύκλωμα που μας έχει δοθεί.
32 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Παράδειγμα Βήμα Α2: Υπολογίζουμε τον πίνακα καταστάσεων. Ο πίνακας καταστάσεων αποτελείται από 3 τμήματα: 1. Παρούσα Κατάσταση Στο πρώτο τμήμα καταγράφονται όλες οι δυνατές τιμές των καταστάσεων Q. Στην συγκεκριμένη περίπτωση έχουμε 2 FFs και επομένως 4 δυνατές τιμές για το ζεύγος Q 1, Q 0. Στη γενική περίπτωση κυκλώματος που αποτελείται από n FFs, έχουμε συνολικά 2 n δυνατές καταστάσεις.
33 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Παράδειγμα Βήμα Α2: Υπολογίζουμε τον πίνακα καταστάσεων. Ο πίνακας καταστάσεων αποτελείται από 3 τμήματα: 2. Είσοδοι Το δεύτερο τμήμα περιέχει τις τιμές των εισόδων των FFs, όπως αυτές προκύπτουν από τις συναρτήσεις εισόδου του βήματος Α1 και τις τιμές της παρούσας κατάστασης.
34 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Παράδειγμα Βήμα Α2: Υπολογίζουμε τον πίνακα καταστάσεων. Ο πίνακας καταστάσεων αποτελείται από 3 τμήματα: 3. Επόμενη Κατάσταση Κάθε τιμή του τμήματος αυτού προκύπτει από τις αντίστοιχες τιμές της παρούσας κατάστασης και των εισόδων, λαμβάνοντας υπόψη τον τρόπο λειτουργίας του FF. Επομένως, οι τιμές της στήλης Q 1 της επόμενης κατάστασης προκύπτουν από την στήλη Q 1 της παρούσας κατάστασης και την τιμή της στήλης εισόδου Τ 1.
35 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Παράδειγμα Βήμα Α3: Σχεδιάζουμε το διάγραμμα καταστάσεων. Το διάγραμμα καταστάσεων είναι η γραφική απεικόνιση του πίνακα καταστάσεων. Κάθε κατάσταση απεικονίζεται με ένα κύκλο και κάθε μετάβαση δείχνεται με ένα βέλος.
36 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Παρατηρήσεις Παρατηρούμε ότι οι ωρολογιακοί παλμοί δεν δείχνονται στον πίνακα και στο διάγραμμα καταστάσεων. Εννοείται ότι από την παρούσα κατάσταση μεταβαίνουμε στην επόμενη κατάσταση με την έλευση της ενεργού ακμής πυροδότησης του ωρολογιακού παλμού CLK. Για τον υπολογισμό του πίνακα καταστάσεων βασιζόμαστε εκτός από την παρούσα κατάσταση και τις τιμές των εισόδων, και στον πίνακα λειτουργίας του FF. Με άλλα λόγια, οι πίνακες λειτουργίας των FFs είναι απαραίτητοι για την ανάλυση ενός ακολουθιακού κυκλώματος.
37 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Άσκηση 1 Δίνεται το παρακάτω κύκλωμα: Να γίνει ανάλυση του παραπάνω ΣΑΚ.
38 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Άσκηση 1 Λύση Βήμα Α1: Για να βρείτε τις λογικές συναρτήσεις ακολουθήστε τα βελάκια στην παρακάτω βοηθητική εικόνα:
39 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Άσκηση 1 - Λύση Βήμα Α1: Γράφουμε τις λογικές συναρτήσεις των εισόδων των FFs από το κύκλωμα που μας έχει δοθεί.
40 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Άσκηση 1 - Λύση Βήμα Α2: Υπολογίζουμε τον πίνακα καταστάσεων. Ο πίνακας καταστάσεων αποτελείται από 3 τμήματα: 1. Παρούσα Κατάσταση Στο συγκεκριμένο ΣΑΚ έχουμε 3 FFs και επομένως 8 δυνατές τιμές καταστάσεων για Q 0, Q 1 και Q 2.
41 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Άσκηση 1 - Λύση Βήμα Α2: Υπολογίζουμε τον πίνακα καταστάσεων. Ο πίνακας καταστάσεων αποτελείται από 3 τμήματα: 2. Είσοδοι Το δεύτερο τμήμα περιέχει τις τιμές των εισόδων των FFs, όπως αυτές προκύπτουν από τις συναρτήσεις εισόδου του βήματος Α1 και τις τιμές της παρούσας κατάστασης.
42 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Άσκηση 1 - Λύση Βήμα Α2: Υπολογίζουμε τον πίνακα καταστάσεων. Ο πίνακας καταστάσεων αποτελείται από 3 τμήματα: 3. Επόμενη Κατάσταση Κάθε τιμή του τμήματος αυτού προκύπτει από τις αντίστοιχες τιμές της παρούσας κατάστασης και των εισόδων, λαμβάνοντας υπόψη τον τρόπο λειτουργίας του FF. Επομένως, οι τιμές της στήλης Q 1 της επόμενης κατάστασης προκύπτουν από την στήλη Q 1 της παρούσας κατάστασης και τις τιμές των στηλών εισόδου J 1, Κ 1, κτλ.
43 ΣΑΚ χωρίς εξωτερικές εισόδους και εξόδους Άσκηση 1 - Λύση Βήμα Α3: Σχεδιάζουμε το διάγραμμα καταστάσεων. Το διάγραμμα καταστάσεων είναι η γραφική απεικόνιση του πίνακα καταστάσεων. Κάθε κατάσταση απεικονίζεται με ένα κύκλο και κάθε μετάβαση δείχνεται με ένα βέλος.
44 ΣΑΚ με εξωτερικές εισόδους Αν στο κύκλωμα που θέλουμε να αναλύσουμε εφαρμόζονται κάποιες εξωτερικές είσοδοι, τότε πρέπει να τις λάβουμε υπόψη μας στη διαδικασία της ανάλυσης, προσδιορίζοντας την επίδραση που αυτές έχουν στο κύκλωμα. Η διαδικασία της ανάλυσης δεν αλλάζει και εξακολουθεί να γίνεται ακολουθώντας τα τρία βήματα που αναφέραμε.
45 ΣΑΚ με εξωτερικές εισόδους Παράδειγμα στο κύκλωμα που έχει δοθεί στις διαφάνειες του μαθήματος, έχουν προκύψει οι παρακάτω λογικές συναρτήσεις:
46 ΣΑΚ με εξωτερικές εισόδους Παράδειγμα Υπολογίζοντας τον πίνακα καταστάσεων παρατηρούμε ότι οι είσοδοι J, K των FFs είναι συναρτήσεις όχι μόνο της παρούσας κατάστασης Q, αλλά και της τιμής της εισόδου Χ. Αυτό σημαίνει πως για να προσδιορίσουμε την επόμενη κατάσταση πρέπει να ξέρουμε την παρούσα κατάσταση και την είσοδο Χ. Έτσι, στο πρώτο τμήμα του πίνακα καταστάσεων ενσωματώνουμε και τις τιμές του Χ.
47 ΣΑΚ με εξωτερικές εισόδους Παράδειγμα Βήμα Α2 Βήμα Α3
48
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Ακολουθιακή Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Ακολουθιακή Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωμα Έξοδοι Στοιχεία Μνήμης Κατάσταση
Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων
Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Με τον όρο ανάλυση ενός κυκλώματος εννοούμε τον προσδιορισμό της συμπεριφοράς του κάτω από συγκεκριμένες συνθήκες λειτουργίας. Έτσι, για ένα συνδυαστικό κύκλωμα,
7.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)
Αρχιτεκτονικές Υπολογιστών
ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών FLIP-FLOPS ΣΥΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ ΚΑΙ ΣΧΕ ΙΑΣΗ ΣΑΚ ιδάσκων: Αναπλ. Καθ. Κ. Λαµπρινουδάκης clam@uipi.gr Αρχιτεκτονικές
ΑΣΚΗΣΗ 9. Tα Flip-Flop
ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ Σύγχρονο ακολουθιακό κύκλωμα είναι εκείνο του οποίου όλα τα FFs χρονίζονταιμετοίδιο ρολόι (clock). Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαση Σύγχρονων Ακολουθιακών
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Σχεδίαση Ψηφιακών Συστηµάτων
Σχεδίαση Ψηφιακών Συστηµάτων Πανεπιστήμιο Δυτικής Αττικής Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών Γιάννης Βογιατζής Πάνος Καρκαζής 27-28 Παρουσίαση 4 η : Ψηφιακή Σχεδίαση Μέρος 3 Ανάλυση και Σχεδίαση
K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops
K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε
Κεφάλαιο 6. Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα
Κεφάλαιο 6 Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα 6.1 Εισαγωγή Η εκτέλεση διαδοχικών λειτουργιών απαιτεί τη δημιουργία κυκλωμάτων που μπορούν να αποθηκεύουν πληροφορίες, στα ενδιάμεσα στάδια των
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Ηλεκτρονικής. Πτυχιακή Εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Ηλεκτρονικής Πτυχιακή Εργασία Υλοποίηση σύγχρονων ακολουθιακών κυκλωμάτων σε VHDL για FPGAs/CPLDs και ανάλυση χρονισμών για εύρεση
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 27 Νοε-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα:
ΑΣΚΗΣΗ 7 FLIP - FLOP
ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά
f(x, y, z) = y z + xz
Λύσεις θεμάτων Εξεταστικής Περιόδου Ιανουαρίου Φεβρουαρίου 27 ΘΕΜΑ Ο (2, μονάδες) Δίνεται η λογική συνάρτηση : f (, y, z ) = ( + y )(y + z ) + y z. Να συμπληρωθεί ο πίνακας αλήθειας της συνάρτησης. (,
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008
ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική
5. Σύγχρονα Ακολουθιακά Κυκλώματα
5. Σύγχρονα Ακολουθιακά Κυκλώματα Ακολουθιακό (sequential) λέμε το σύστημα που περιέχει στοιχεία μνήμης, δηλ. κυκλώματα αποθήκευσης δυαδικής πληροφορίας Γενικό διάγραμμα ακολουθιακού κυκλώματος - Αποτελείται
Ακολουθιακά Κυκλώματα Flip-Flops
Ακολουθιακά Κυκλώματα Flip-Flops . Συνδυαστικα κυκλωματα Ακολουθιακα κυκλωματα x x 2 x n Συνδυαστικο κυκλωμα z z 2 z m z i =f i (x,x 2,,x n ) i =,2,,m 2. Ακολουθιακα κυκλωματα: x n Συνδυαστικο m z y κυκλωμα
Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ
ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου
Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα
6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα
6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από
Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα
Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές
Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL
Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL 3.1 Εισαγωγή στα FLIP FLOP 3.1.1 Θεωρητικό Υπόβαθρο Τα σύγχρονα ακολουθιακά κυκλώματα με τα οποία θα ασχοληθούμε στο εργαστήριο των Ψηφιακών συστημάτων
ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ
ΑΣΚΗΣΗ ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Στόχος της άσκησης: Η διαδικασία σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων. Χαρακτηριστικό παράδειγμα σύγχρονων ακολουθιακών κυκλωμάτων είναι οι σύγχρονοι μετρητές. Τις αδυναμίες
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1
ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα (συν.) Κυκλώματα που Κυκλώματα που αποθηκεύουν εξετάσαμε μέχρι τώρα πληροφορίες Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Καταχωρητές και Μετρητές Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Καταχωρητής: είναι μία ομάδα από δυαδικά κύτταρα αποθήκευσης
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι σύγχρονοι μετρητές υλοποιούνται με Flip-Flop τύπου T
ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS)
ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) Αντικείμενο της άσκησης: H σχεδίαση και η χρήση ασύγχρονων απαριθμητών γεγονότων. Με τον όρο απαριθμητές ή μετρητές εννοούμε ένα ακολουθιακό κύκλωμα με FF, οι καταστάσεις
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής
Ασύγχρονοι Απαριθμητές. Διάλεξη 7
Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι
Ακολουθιακά Κυκλώµατα. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ακολουθιακά Κυκλώµατα (συν.) Ακολουθιακή Λογική: Έννοια
ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 6-i: Ακολουθιακά Κυκλώµατα Μανδαλωτές (Latches) και Flip-Flops Ακολουθιακά Κυκλώµατα Συνδυαστική Λογική:
Ψηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΟΜΕΑΣ ΥΠΟΔΟΜΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Δρ. ΑΣΗΜΑΚΗΣ ΝΙΚΟΛΑΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός
Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 28 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η λειτουργία RESET R IN OUT Εάν το σήμα R είναι λογικό «1» στην έξοδο
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Καταχωρητές Παράλληλης
Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ
6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή
6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή Εισαγωγή Η σχεδίαση ενός ψηφιακού συστήµατος ως ακολουθιακή µηχανή είναι εξαιρετικά δύσκολη Τµηµατοποίηση σε υποσυστήµατα µε δοµικές µονάδες:
Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Μετρητής Ριπής (Ripple Counter) Μετρητές (Counters) Μετρητής Ριπής (συν.
ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 ii: Μετρητές Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μετρητής Ριπής Περίληψη Σύγχρονος υαδικός Μετρητής Σχεδιασµός µε Flip-Flops
Η κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A].
Κανονική μορφή συνάρτησης λογικής 5. Η κανονική μορφή μιας λογικής συνάρτησης (ΛΣ) ως άθροισμα ελαχιστόρων, από τον πίνακα αληθείας προκύπτει ως εξής: ) Παράγουμε ένα [A] όρων από την κάθε σειρά για την
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 12: Σύνοψη Θεμάτων Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.
6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή
Ψηφιακά Συστήματα. 7. Κυκλώματα Μνήμης
Ψηφιακά Συστήματα 7. Κυκλώματα Μνήμης Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L., Ψηφιακά
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα
Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 28 Νοε-8 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου
ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ FLIP-FLOP ΤΟ ΒΑΣΙΚΟ FLIP-FLOP ΧΡΟΝΙΖΟΜΕΝΑ FF ΤΥΠΟΥ FF ΤΥΠΟΥ D FLIP-FLOP Τ FLIP-FLOP ΠΥΡΟΔΟΤΗΣΗ ΤΩΝ FLIP-FLOP ΚΥΡΙΟ - ΕΞΑΡΤΗΜΕΝΟ FLIP-FLOP ΑΚΜΟΠΥΡΟΔΟΤΟΥΜΕΝΑ FLIP-FLOP ΚΥΚΛΩΜΑΤΑ
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. Να μελετηθεί η λειτουργία του ακόλουθου κυκλώματος. Ποιος ο ρόλος των εισόδων του (R και S) και πού βρίσκει εφαρμογή; R Q
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ = ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ = ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Συμπληρώνεται από τον διδάσκοντα (2.0) 2 (2.5) 3 (3.0) 4 (2.5) Σ ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ
«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο Διάλεξη 8 η : Μηχανές Πεπερασμένων Κaταστάσεων σε FPGAs
ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 8 η :
Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS
Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS Γενικές Γραμμές Ακολουθιακή Λογική Μεταστάθεια S-R RLatch h( (active high h&l low) S-R Latch with Enable Latch Flip-Flop Ασύγχρονοι είσοδοι PRESET
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 12: Ανάλυση Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6.2) Μηχανές Καταστάσεων ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)
Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 i: Καταχωρητές Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές Ολίσθησης Σειριακή Φόρτωση Σειριακή Ολίσθηση Καταχωρητές Ολίσθησης Παράλληλης Φόρτωσης
Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Καθιερωµένα Γραφικά Σύµβολα. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005
ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Απρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 6 ii: Ανάλυση Ακολουθιακών Κυκλωµάτων Περίληψη Καθιερωµένα Γραφικά Σύµβολα Χαρακτηριστικοί Πίνακες
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι απαριθμητές ή μετρητές (counters) είναι κυκλώματα που
Καταστάσεων. Καταστάσεων
8 η Θεµατική Ενότητα : Εισαγωγή Ησχεδίαση ενός ψηφιακού συστήµατος µπορεί να διαιρεθεί σε δύο µέρη: τα κυκλώµατα επεξεργασίας δεδοµένων και τα κυκλώµατα ελέγχου. Το κύκλωµα ελέγχου δηµιουργεί σήµατα για
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές
Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.
ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται
Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter)
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter) ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Χειμερινό Εξάμηνο 2017-2018 Λογικές Πύλες, Στοιχεία Μνήμης, Συνδυαστική Λογική και Κυματομορφές ΗΥ220 - Βασίλης Παπαευσταθίου & Γιώργος Καλοκαιρινός 1 Τα βασικά της
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ 3/02/2019 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι
26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης
Ψηφιακή Σχεδίαση. Δρ. Μηνάς Δασυγένης Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 8: Μανδαλωτές SR, S R D Flip-Flops Αφέντη Σκλάβου, Σχεδιασμός Ακολουθιακών κυκλωμάτων, Πίνακας Καταστάσεων, Διάγραμμα Καταστάσεων
Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος
1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα
Ψηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
Συνδυαστικά Λογικά Κυκλώματα
Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Μετρητής Ριπής q Σύγχρονος
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων. Διδάσκοντες
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας Διδάσκοντες 1. Γ. Πάτσης, Επικ. Καθηγητής,
ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ
Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 6: Απαριθµητές (µετρητές) Διδάσκων: Καθηγητής Ν. Φακωτάκης Ακολουθιακά κυκλώµατα Σύγχρονα (οδηγούµενα από
Σύγχρονα ακολουθιακά κυκλώματα. URL:
DeÔtero Ex mhno FoÐthshc Σύγχρονα ακολουθιακά κυκλώματα Ge rgioc. Alexandrìpouloc Lèktorac P.D. 47/8 e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg Tm ma Epist mhc kai TeqnologÐac
ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή
ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 6. Εισαγωγή Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά και ακολουθιακά. Τα κυκλώματα που εξετάσαμε στα προηγούμενα κεφάλαια ήταν συνδυαστικά. Οι τιμές των
3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά
ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH.
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ, Θεωρητικής Κατεύθυνσης Ημερομηνία
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΓΧΡΟΝΗ ΑΚΟΛΟΥΘΙΑΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Ακολουθιακά κυκλώματα Η πλειονότητα των ψηφιακών συσκευών (τηλέφωνα, δέκτες GPS, φωτογραφικές μηχανές, υπολογιστές κ.α.),
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 3: Ψηφιακή Λογική ΙI Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
C D C D C D C D A B
Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με
σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.
Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του
ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ
ΑΣΚΗΣΗ 3 ΣΥΝΔΥΑΣΤΙΚΑ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΗ Αντικείμενο της άσκησης: Μεθοδολογία ανάλυσης και σχεδίασης συνδυαστικών λογικών κυκλωμάτων και λειτουργική εξομοίωση με το λογισμικό EWB. Συνδυαστικά
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ
ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ Θεωρητικό
7. Ψηφιακά Ηλεκτρονικά
1 7. Ψηφιακά Ηλεκτρονικά 7.1 Εισαγωγή Στα προηγούμενα μελετήσαμε τη λειτουργία του τρανζίστορ στην ενεργό περιοχή, χαρακτηριστικό της οποίας είναι ότι τα σήματα εισόδου και εξόδου μπορούν να λάβουν συνεχείς
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και
ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 11: Ακολουθιακά Κυκλώµατα (Κεφάλαιο 5, 6.1, 6.3, 6.4) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Ακολουθιακά
ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ
Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Μάθημα 5: Στοιχεία µνήµης ενός ψηφίου Διδάσκων: Καθηγητής Ν. Φακωτάκης Στοιχεία μνήμης Ένα ψηφιακό λογικό κύκλωμα
Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ ΠΑΤΡΑ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ
K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα
K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται
ε. Ένα κύκλωμα το οποίο παράγει τετραγωνικούς παλμούς και απαιτείται εξωτερική διέγερση ονομάζεται ασταθής πολυδονητής Λ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 16/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ (ΣΥΣΤΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΕΝΔΕΙΚΤΙΚΕΣ