7.1 Θεωρητική εισαγωγή
|
|
- λατίνος Παπάζογλου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch) RS, το D Flip-Flop, το JK Flip-Flop και η µετατροπή του JK σε T Flip-Flop. 7.1 Θεωρητική εισαγωγή Ακολουθιακά κυκλώµατα Η εκτέλεση διαδοχικών λειτουργιών απαιτεί τη δηµιουργία κυκλωµάτων που µπορούν να αποθηκεύουν πληροφορίες, στα ενδιάµεσα στάδια των λειτουργιών αυτών. Αυτού του τύπου τα κυκλώµατα ονοµάζονται ακολουθιακά. Στο σχ. 7.1 φαίνεται το σχηµατικό διάγραµµα ενός ακολουθιακού κυκλώµατος. Σχήµα 7.1: Σχηµατικό διάγραµµα ακολουθιακού κυκλώµατος Ένα ακολουθιακό κύκλωµα περιλαµβάνει συνδυαστικά κυκλώµατα και τουλάχιστον ένα στοιχείο µνήµης. Τα στοιχεία µνήµης είναι κυκλώµατα που έχουν τη δυνατότητα να αποθηκεύουν πληροφορίες σε δυαδική µορφή. Οι αποθηκευµένες πληροφορίες, σε οποιαδήποτε χρονική στιγµή, καθορίζουν την κατάσταση του ακολουθιακού κυκλώµατος τη δεδοµένη στιγµή. Το ακολουθιακό κύκλωµα λαµβάνει δυαδικές πληροφορίες-δεδοµένα µέσω των εισόδων του. Οι τιµές των εισόδων, σε συνδυασµό µε την παρούσα κατάσταση των στοιχείων µνήµης, καθορίζουν τις τιµές των εξόδων του κυκλώµατος και κατά συνέπεια και την επόµενη κατάσταση των στοιχείων µνήµης. ηλαδή, η κατάσταση ενός ακολουθιακού κυκλώµατος καθορίζεται από µια χρονική ακολουθία τιµών εισόδων, εσωτερικών καταστάσεων και εξόδων. Τα ακολουθιακά κυκλώµατα διακρίνονται σε δύο βασικούς τύπους, ανάλογα µε τις χρονικές στιγµές, κατά τις οποίες: (α) καθορίζονται οι τιµές των εισόδων και (β) αλλάζει η εσωτερική κατάσταση των κυκλωµάτων. Έτσι, ένα ακολουθιακό κύκλωµα µπορεί να είναι: Σύγχρονο: Η εφαρµογή της εισόδου, η εκτέλεση των λειτουργιών, η λήψη της εξόδου γίνεται σε καθορισµένες χρονικές στιγµές, µε τη λειτουργία ενός «παλµού ρολογιού» (βλ. σχ. 7.2). Ασύγχρονο: Οι αλλαγές κατάστασης δεν γίνονται σε καθορισµένους χρόνους αλλά σε τυχαίους χρόνους που καθορίζονται από το κύκλωµα και µόνο.
2 Σχήµα 7.2 Ο συγχρονισµός στα σύγχρονα κυκλώµατα επιτυγχάνεται µε χρήση περιοδικών παλµών ρολογιού. Η σχεδίαση ασύγχρονων κυκλωµάτων είναι δύσκολη, αφού η λειτουργία τους εξαρτάται απ την καθυστέρηση διάδοσης των σηµάτων µέσα στο κύκλωµα και απ τις χρονικές στιγµές µεταβολής των τιµών των εισόδων. Η επιλογή συνεπώς είναι η σχεδίαση σύγχρονων κυκλωµάτων, στα οποία ωστόσο περιέχονται και µονάδες που βασίζονται στην ασύγχρονη λογική. Τέτοιες δοµικές µονάδες είναι τα ασύγχρονα στοιχεία µνήµης που ονοµάζονται µανδαλωτές και αποτελούν τη βάση για την υλοποίηση των flip-flop, που αποθηκεύουν πληροφορίες στα σύγχρονα κυκλώµατα. Τα σύγχρονα ακολουθιακά κυκλώµατα που χρησιµοποιούν παλµούς ρολογιού ως εισόδους στα στοιχεία µνήµης ονοµάζονται χρονιζόµενα ακολουθιακά κυκλώµατα. Οι τιµές των εξόδων των στοιχείων µνήµης (δηλ. της κατάστασής τους) µπορούν να µεταβάλλονται µόνο κατά τη διάρκεια εφαρµογής των παλµών. Όταν δεν υπάρχει παλµός ρολογιού, οι τιµές των εξόδων δεν αλλάζουν, ακόµα και αν οι τιµές των εισόδων µεταβληθούν. Τα στοιχεία µνήµης ονοµάζονται flip-flop και είναι διατάξεις που µπορούν να αποθηκεύουν 1 bit δυαδικών δεδοµένων (σχήµα 7.3). Σχήµα 7.3: Σχηµατικό διάγραµµα σύγχρονου ακολουθιακού κυκλώµατος Ένα flip-flop διαθέτει µία ή δύο εξόδους. Η µία αντιστοιχεί στην κανονική τιµή του bit που αποθηκεύεται, ενώ η δεύτερη έξοδος είναι «προαιρετική» και αντιστοιχεί στο συµπλήρωµα της τιµής του αποθηκευµένου bit Μανδαλωτής SR Είναι ένα κύκλωµα που αποτελείται από δύο πύλες NOR, που συνδυάζονται όπως φαίνεται στο σχ. 7.4 Ο µανδαλωτής έχει δύο εισόδους, που χαρακτηρίζονται ως S (set) και R (reset), καθώς και δύο αξιοποιήσιµες εξόδους, που καθορίζουν την κατάσταση του κυκλώµατος. Η κατάσταση Q = 1και Q = 0, του µανδαλω- Σχήµα 7.4 Μανδαλωτής SR τή χαρακτηρίζεται ως κατάσταση set. µε πύλες NOR. Η κατάσταση Q = 0 και Q = 1, του µανδαλωτή χαρακτηρίζεται ως κατάσταση reset. Οι έξοδοι είναι η µία συµπλήρωµα της άλλης. Όταν και οι δύο είσοδοι πάρουν την
3 τιµή 1 ταυτόχρονα, τότε προκύπτει µία µη-επιτρεπτή κατάσταση. Η λειτουργία του µανδαλωτή περιγράφεται στον Πίνακα 7.1 Πίνακας 7.1 Λειτουργία του µανδαλωτή SR Είσοδοι Έξοδοι Κατάσταση Set 1 0 Store Reset 0 1 Store 1 1 Μη-επιτρεπτή Μανδαλωτής S R Είναι ένα κύκλωµα που αποτελείται από δύο πύλες NAND, που συνδυάζονται όπως φαίνεται στο σχ. 7.5 Ο πίνακας λειτουργίας του κυκλώµατος είναι ο Πίνακας 7.2. Σχήµα 7.5 Μανδαλωτής S R. Πίνακας 7.2 Λειτουργία του µανδαλωτή S R Είσοδοι Έξοδοι Κατάσταση Set Store 1 1 Reset Store 1 1 Μη-επιτρεπτή Χρονιζόµενος µανδαλωτής SR Η λειτουργία του βασικού κυκλώµατος του µανδαλωτή SR µπορεί να τροποποιηθεί, µε χρήση µιας πρόσθετης εισόδου ελέγχου (παλµός ρολογιού), που καθορίζει το πότε µεταβάλλεται η κατάστασή του. Το σχηµατικό διάγραµµα του κυκλώµατος φαίνεται στο σχήµα 7.6. Ο πίνακας λειτουργίας του είναι ο Πίνακας 7.3 Σχήµα 7.6 Χρονιζόµενος µανδαλωτής SR Πίνακας 7.3 Λειτουργία του χρονιζόµενου µανδαλωτή SR Είσοδοι Έξοδοι C Κατάσταση 0 X X Q Q Store 1 Q Q Store Reset Set Μη-επιτρεπτή
4 Όταν και οι τρεις είσοδοι βρεθούν στην τιµή 1, οι τιµές των εισόδων του βασικού µανδαλωτή γίνονται 0. Αυτό οδηγεί σε µη-επιτρεπτή κατάσταση, αφού και οι δύο έξοδοι παίρνουν τιµή D Flip-Flop Ένας τρόπος να αντιµετωπιστεί το πρόβληµα της ανεπιθύµητης συµπεριφοράς λόγω της µηεπιτρεπτής κατάστασης στον µανδαλωτή SR είναι να διασφαλιστεί ότι οι είσοδοι S και R δεν θα παίρνουν την τιµή 1 ταυτόχρονα. Αυτό επιτυγχάνεται µε χρήση του D flip-flop (σχ. 7.7). Σχήµα 7.7 D flip-flop Το κύκλωµα έχει µόνο δύο εισόδους: την D (data) και την C (control). Η τιµή της εισόδου D γίνεται αντιληπτή όταν C = 1. Όταν D = 1, η έξοδος Q παίρνει την τιµή 1, οπότε το κύκλωµα βρίσκεται σε κατάσταση set. Όταν D = 0, η έξοδος Q παίρνει τιµή 0, οπότε το κύκλωµα µεταβαίνει σε κατάσταση reset (Πίνακας 7.4) D Flip-Flop Πίνακας 7.4 Λειτουργία του µανδαλωτή D Είσοδοι C D 0 X Store 1, Reset 1 1 1, Set Επόµενη κατάσταση της εξόδου Q Το ολοκληρωµένο κύκλωµα που θα χρησιµοποιηθεί στο εργαστήριο είναι το 7474, που περιέχει δύο ακµοπυροδότητα (θετικής ακµής) D flip-flop. Κάθε flip-flop διαθέτει εισόδους D (data), C (clock), set και reset, καθώς και δύο εξόδους, συµπληρωµατικές µεταξύ τους. Οι είσοδοι λειτουργούν ανεξάρτητα απ την είσοδο του ρολογιού. Όταν οι είσοδοι set και reset βρίσκονται σε τιµή 1, η τιµή της εισόδου D οδηγείται στις εξόδους Q, Q, κατά τη µετάβαση του παλµού ρολογιού απ το 0 στο 1 (θετική ακµή). Η τιµή της εισόδου πρέπει να είναι καθορισµένη πριν τη µετάβαση του παλµού, ώστε να λειτουργήσει σωστά το κύκλωµα (σχ. 7.8). Σχήµα 7.8 D flip-flop(ολοκληρωµένο 7474) και περιγραφή των ακροδεκτών
5 7.1.5 JK Flip-Flop Το JK flip-flop έχει δύο εισόδους, την J (set) και την K (reset). Αποτελεί τροποποίηση του µανδαλωτή SR, χωρίς να οδηγεί σε µη-επιτρεπτή κατάσταση (σχ. 7.9). Η παρουσία των πυλών AND διασφαλίζει το ότι η είσοδος J επιδρά µόνον όταν το κύκλωµα βρίσκεται σε κατάσταση reset, ενώ η K µόνον όταν βρίσκεται σε κατάσταση set. Με άλλα λόγια, οι δύο είσοδοι δεν µπορούν να ενεργοποιηθούν ταυτόχρονα. Σχήµα 7.9 JK flip-flop Όταν το κύκλωµα βρίσκεται σε κατάσταση set ( Q = 1 και Q = 0), η είσοδος J «αδρανοποιείται», λόγω του Q = 0, που σηµαίνει ότι η κάτω AND δίνει έξοδο 0 και η αντίστοιχη NOR δεν αλλάζει κατάσταση. Απ την άλλη, όταν το κύκλωµα βρίσκεται σε κατάσταση reset ( Q = 0 και Q = 1) αδρανοποιείται η είσοδος K. Όταν J = K = 1: Αν το κύκλωµα βρίσκεται σε κατάσταση set ( Q = 1 και Q = 0), η είσοδος J «αδρανοποιείται», οπότε, στον επόµενο παλµό ρολογιού, η πάνω πύλη AND θα έχει εισόδους Q = K = C = 1, άρα θα δώσει έξοδο 1 και η πάνω NOR θα δώσει έξοδο Q = 0. ηλαδή το κύκλωµα θα µεταβεί σε κατάσταση reset ( Q = 0 και Q = 1). Αντίστροφα, όταν το κύκλωµα βρίσκεται σε κατάσταση reset ( Q = 0 και Q = 1), η Κ «αδρανοποιείται» και στον επόµενο παλµό, το κύκλωµα µεταβαίνει σε κατάσταση set ( Q = 1και Q = 0). Ο πίνακας 7.5 είναι ο πίνακας λειτουργίας ενός JK flip-flop. Ο πίνακας αναφέρεται στη λειτουργία του κυκλώµατος, κατά την εφαρµογή παλµού ρολογιού. Η κατάσταση Q είναι η παρούσα κατάσταση του κυκλώµατος και η Q(t+1), η κατάσταση στην οποία µεταβαίνει. Πίνακας 7.5 Λειτουργία του JK flip-flop Q J K Q(t+1)
6 JK Flip-Flop Το ολοκληρωµένο κύκλωµα που θα χρησιµοποιηθεί στο εργαστήριο είναι το (σχ. 7.10), που περιέχει δύο ακµοπυροδότητα JK flip-flop. Κάθε flip-flop διαθέτει εισόδους J, K, C (clock), set και clear, καθώς και δύο εξόδους, συµπληρωµατικές µεταξύ τους. Όταν ο παλµός µεταβαίνει από 0 σε 1, οι είσοδοι ενεργοποιούνται και τα δεδοµένα γίνονται «αντιληπτά». Οι τιµές των εισόδων J, K µπορούν να µεταβάλλονται όταν ο παλµός είναι σε τιµή 1. Τα δεδοµένα αυτά µεταφέρονται στην έξοδο, κατά την αρνητική ακµή του παλµού. Σχήµα 7.10 JK flip-flop(ολοκληρωµένο 74112) και περιγραφή των ακροδεκτών T Flip-Flop Πρόκειται για Παραλλαγή του JK flip-flop, όπου οι είσοδοι J και K έχουν γίνει µία (σχ. 7.11). Η ονοµασία Τ flip-flop προέρχεται από τη δυνατότητα του flip-flop να αντιστρέφεται (toggle), δηλαδή να αλλάζει κατάσταση. Σε όποια κατάσταση και να βρίσκεται το flip-flop, όταν έλθει ο παλµός του ρολογιού ενώ Τ=1 πηγαίνει στη συµπληρωµατική κατάσταση. Όταν Τ=0, Q(t+1)=Q, δηλαδή η επόµενη κατάσταση είναι ίδια µε την παρούσα και καµιά αλλαγή δε συµβαίνει. Σχήµα 7.10 Τ flip-flop Πίνακας 7.6 Λειτουργία του Τ flip-flop Q Τ Q(t+1)
7 7.2 Εργαστηριακό µέρος Υλοποίηση του µανδαλωτή SR µε πύλες NAND (IC 7400) 1. Κατασκευάστε στο raster το πιο κάτω κύκλωµα και συµπλρώστε τον αντίστοιχο πίνακα αλήθειας: Περιγραφή της κατάστασης 2. Επαναλάβετε τη διαδικασία για το επόµενο κύκλωµα του χρονιζόµενου µανδαλωτή SR. C= Περιγραφή της κατάστασης C= Περιγραφή της κατάστασης Τι συµπέρασµα βγάζετε µελετώντας τα αποτελέσµατα των δύο πινάκων;
8 7.2.2 Μελέτη του D flip-flop (IC 7474) Θα χρησιµοποιήσετε µόνο το ένα από τα δύο flip-flop, που περιλαµβάνει το ολοκληρωµένο. 1. Τοποθετήστε το ολοκληρωµένο κύκλωµα στο raster και συνδέστε τους ακροδέκτες τροφοδοσίας και γείωσης. 2. Χρησιµοποιήστε τις εξόδους Q 0, Q0. 3. Στους ακροδέκτες SD0, RD0 δώστε τιµή 1. Λόγω του ότι οι είσοδοι SD0, RD0 είναι active low θα χρησιµοποιηθούν δύο πύλες NOT (7404), όπως φαίνεται στο διάγραµµα. Φέρτε το κύκλωµα σε κατάσταση set: Με τον ακροδέκτη RD0 να παραµένει σε τιµή 1 δώστε στον SD0 τιµή 0 και πάλι 1. Βεβαιωθείτε ότι οι τιµές στις εξόδους είναι: Q = 1, Q= 0 και ότι SD0=RD0=1. 4. ώστε στις εισόδους D0 (data) και CP0 (clock) τιµή Με D0=0 δώστε CP0=1. 6. ώστε D0=1 και CP0=0. 7. ώστε πάλι CP0=1. Συµπληρώστε τον πίνακα λειτουργίας του D flip-flop µε βάση τη διαδικασία που περιγράφεται πιο πάνω. SD0 RD0 D0 CP0 Q0 Q Μελέτη του JK flip-flop (IC 74112) Θα χρησιµοποιήσετε µόνο το ένα από τα δύο flip-flop, που περιλαµβάνει το ολοκληρωµένο. 1. Τοποθετήστε το ολοκληρωµένο κύκλωµα στο raster και συνδέστε τους ακροδέκτες τροφοδοσίας και γείωσης. 2. Χρησιµοποιήστε τις εξόδους 1 Q, 1Q. Στους ακροδέκτες 1CLR, 1PR δώστε τιµή 1. Λόγω του ότι οι είσοδοι 1CLR, 1PR είναι active low θα χρησιµοποιηθούν δύο πύλες NOT (7404), όπως φαίνεται στο διάγραµµα. Φέρτε το κύκλωµα σε κατάσταση set: Με τον ακροδέκτη 1CLR να παραµένει σε τιµή 1 δώστε στον 1PR τιµή 0 και πάλι 1. Βεβαιωθείτε ότι οι τιµές στις εξόδους είναι: Q = 1, Q= 0 και ότι 1PR =1CLR =1. 3. Συµπληρώστε τον πιο κάτω πίνακα λειτουργίας του κυκλώµατος.
9 CLR PR J K CK Q Q 0 1 X X X 1 0 X X X X X X X X Μετατροπή του JK flip-flop (IC 74112), σε T flip-flop. Το JK flip-flop µετατρέπεται σε Τ flip-flop όταν οι δύο είσοδοί του παίρνουν την ίδια τιµή. Κατασκευάστε το πιο κάτω κύκλωµα και συµπληρώστε τον πίνακα λειτουργίας του. CLR PR Τ CK Q X
Κεφάλαιο 6. Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα
Κεφάλαιο 6 Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα 6.1 Εισαγωγή Η εκτέλεση διαδοχικών λειτουργιών απαιτεί τη δημιουργία κυκλωμάτων που μπορούν να αποθηκεύουν πληροφορίες, στα ενδιάμεσα στάδια των
ΑΣΚΗΣΗ 9. Tα Flip-Flop
ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
8.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί
ΑΣΚΗΣΗ 7 FLIP - FLOP
ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα
K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops
K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι σύγχρονοι μετρητές υλοποιούνται με Flip-Flop τύπου T
Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 27 Νοε-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα:
Ακολουθιακά Κυκλώµατα. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ακολουθιακά Κυκλώµατα (συν.) Ακολουθιακή Λογική: Έννοια
ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 6-i: Ακολουθιακά Κυκλώµατα Μανδαλωτές (Latches) και Flip-Flops Ακολουθιακά Κυκλώµατα Συνδυαστική Λογική:
Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL
Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL 3.1 Εισαγωγή στα FLIP FLOP 3.1.1 Θεωρητικό Υπόβαθρο Τα σύγχρονα ακολουθιακά κυκλώματα με τα οποία θα ασχοληθούμε στο εργαστήριο των Ψηφιακών συστημάτων
ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008
ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Ακολουθιακή Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Ακολουθιακή Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωμα Έξοδοι Στοιχεία Μνήμης Κατάσταση
Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος
1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα
Αρχιτεκτονικές Υπολογιστών
ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών FLIP-FLOPS ΣΥΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ ΚΑΙ ΣΧΕ ΙΑΣΗ ΣΑΚ ιδάσκων: Αναπλ. Καθ. Κ. Λαµπρινουδάκης clam@uipi.gr Αρχιτεκτονικές
Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος
1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι απαριθμητές ή μετρητές (counters) είναι κυκλώματα που
Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου
ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή
ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 6. Εισαγωγή Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά και ακολουθιακά. Τα κυκλώματα που εξετάσαμε στα προηγούμενα κεφάλαια ήταν συνδυαστικά. Οι τιμές των
Ψηφιακά Συστήματα. 7. Κυκλώματα Μνήμης
Ψηφιακά Συστήματα 7. Κυκλώματα Μνήμης Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L., Ψηφιακά
Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS
Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS Γενικές Γραμμές Ακολουθιακή Λογική Μεταστάθεια S-R RLatch h( (active high h&l low) S-R Latch with Enable Latch Flip-Flop Ασύγχρονοι είσοδοι PRESET
Εργαστήριο Ψηφιακής Σχεδίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις
βαθµίδων µε D FLIP-FLOP. Μονάδες 5
Κεφάλαιιο: 6 ο Τίίτλος Κεφαλαίίου:: Μανταλωτές & Flip Flop (Ιούνιος 2004 ΤΕΕ Ηµερήσιο) Να σχεδιάσετε καταχωρητή δεξιάς ολίσθησης τεσσάρων βαθµίδων µε D FLIP-FLOP. Μονάδες 5 (Ιούνιος 2005 ΤΕΕ Ηµερήσιο)
ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.
ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS)
ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) Αντικείμενο της άσκησης: H σχεδίαση και η χρήση ασύγχρονων απαριθμητών γεγονότων. Με τον όρο απαριθμητές ή μετρητές εννοούμε ένα ακολουθιακό κύκλωμα με FF, οι καταστάσεις
C D C D C D C D A B
Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με
Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα
6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από
Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ
ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1
ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα (συν.) Κυκλώματα που Κυκλώματα που αποθηκεύουν εξετάσαμε μέχρι τώρα πληροφορίες Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops
ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ
Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Μάθημα 5: Στοιχεία µνήµης ενός ψηφίου Διδάσκων: Καθηγητής Ν. Φακωτάκης Στοιχεία μνήμης Ένα ψηφιακό λογικό κύκλωμα
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων
Η κανονική μορφή της συνάρτησης που υλοποιείται με τον προηγούμενο πίνακα αληθείας σε μορφή ελαχιστόρων είναι η Q = [A].
Κανονική μορφή συνάρτησης λογικής 5. Η κανονική μορφή μιας λογικής συνάρτησης (ΛΣ) ως άθροισμα ελαχιστόρων, από τον πίνακα αληθείας προκύπτει ως εξής: ) Παράγουμε ένα [A] όρων από την κάθε σειρά για την
ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH.
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ
Σχεδίαση κυκλωμάτων ακολουθιακής λογικής
Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή
3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός
3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων
5. Σύγχρονα Ακολουθιακά Κυκλώματα
5. Σύγχρονα Ακολουθιακά Κυκλώματα Ακολουθιακό (sequential) λέμε το σύστημα που περιέχει στοιχεία μνήμης, δηλ. κυκλώματα αποθήκευσης δυαδικής πληροφορίας Γενικό διάγραμμα ακολουθιακού κυκλώματος - Αποτελείται
ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ FLIP-FLOP ΤΟ ΒΑΣΙΚΟ FLIP-FLOP ΧΡΟΝΙΖΟΜΕΝΑ FF ΤΥΠΟΥ FF ΤΥΠΟΥ D FLIP-FLOP Τ FLIP-FLOP ΠΥΡΟΔΟΤΗΣΗ ΤΩΝ FLIP-FLOP ΚΥΡΙΟ - ΕΞΑΡΤΗΜΕΝΟ FLIP-FLOP ΑΚΜΟΠΥΡΟΔΟΤΟΥΜΕΝΑ FLIP-FLOP ΚΥΚΛΩΜΑΤΑ
Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα
Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές
Ασύγχρονοι Απαριθμητές. Διάλεξη 7
Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι
Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ ΠΑΤΡΑ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ
Ακολουθιακά Κυκλώματα Flip-Flops
Ακολουθιακά Κυκλώματα Flip-Flops . Συνδυαστικα κυκλωματα Ακολουθιακα κυκλωματα x x 2 x n Συνδυαστικο κυκλωμα z z 2 z m z i =f i (x,x 2,,x n ) i =,2,,m 2. Ακολουθιακα κυκλωματα: x n Συνδυαστικο m z y κυκλωμα
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ
ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΚΑΙ Η ΥΛΟΠΟΙΗΣΗ ΤΟΥΣ ΜΕ FLIP-FLOP ΚΑΙ ΠΥΛΕΣ Θεωρητικό
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες)
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το ανωτέρω διάγραμμα καταστάσεων,
Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 28 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 28 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία
Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα
6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΚΑΤΑΧΩΡΗΤΕΣ ΟΛΙΣΘΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΚΑΤΑΧΩΡΗΤΕΣ ΟΛΙΣΘΗΤΕΣ 1) Το παρακάτω κύκλωμα του σχήματος 1 είναι ένας καταχωρητής-ολισθητής
7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης
7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Εισαγωγή Καταχωρητής: είναι µία οµάδα από δυαδικά κύτταρα αποθήκευσης και από λογικές πύλες που διεκπεραιώνουν την µεταφορά πληροφοριών. Οι µετρητές είναι
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 5. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Β 2 Επαναληπτική
Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.
ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ
Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 12: Σύνοψη Θεμάτων Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
6.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΕΦΑΡΜΟΓΕΣ ΚΑΤΑΧΩΡΗΤΩΝ ΟΛΙΣΘΗΣΗΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΕΦΑΡΜΟΓΕΣ ΚΑΤΑΧΩΡΗΤΩΝ ΟΛΙΣΘΗΣΗΣ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Στο διπλανό σχήμα φαίνεται το διάγραμμα ακροδεκτών
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ, Θεωρητικής Κατεύθυνσης Ημερομηνία
Flip-Flop: D Control Systems Laboratory
Flip-Flop: Control Systems Laboratory Είναι ένας τύπος συγχρονιζόμενου flip- flop, δηλαδή ενός flip- flop όπου οι έξοδοί του δεν αλλάζουν μόνο με αλλαγή των εισόδων R, S αλλά χρειάζεται ένας ωρολογιακός
f(x, y, z) = y z + xz
Λύσεις θεμάτων Εξεταστικής Περιόδου Ιανουαρίου Φεβρουαρίου 27 ΘΕΜΑ Ο (2, μονάδες) Δίνεται η λογική συνάρτηση : f (, y, z ) = ( + y )(y + z ) + y z. Να συμπληρωθεί ο πίνακας αλήθειας της συνάρτησης. (,
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ 3/02/2019 ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ ΘΕΜΑ 1 ο 1. Να γράψετε στο τετράδιό σας το γράμμα καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 11: Ακολουθιακά Κυκλώµατα (Κεφάλαιο 5, 6.1, 6.3, 6.4) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Ακολουθιακά
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης
Δυαδικές Μονάδες Μνήμης: Μανδαλωτής SR, D και JK Flip-Flops Σχεδιασμός Μετρητής Ριπής
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡOY ΗΜΥ 211-2007 Δυαδικές Μονάδες Μνήμης: Μανδαλωτής SR, D και JK Flip-Flops Σχεδιασμός Μετρητής Ριπής ΕΡΓΑΣΤΗΡΙΟ ΛΟΓΙΣΜΙΚΟΥ/ΥΛΙΚΟΥ
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων Χειμερινό Εξάμηνο 2017-2018 Λογικές Πύλες, Στοιχεία Μνήμης, Συνδυαστική Λογική και Κυματομορφές ΗΥ220 - Βασίλης Παπαευσταθίου & Γιώργος Καλοκαιρινός 1 Τα βασικά της
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η λειτουργία RESET R IN OUT Εάν το σήμα R είναι λογικό «1» στην έξοδο
6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.
6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή
Ψηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
Κεφάλαιο 10. Ψηφιακά κυκλώματα Flip-Flop και εφαρμογές
Κεφάλαιο 10. Ψηφιακά κυκλώματα Flip-Flop και εφαρμογές Σύνοψη Το κεφάλαιο αυτό αποτελεί, ουσιαστικά, συνέχεια του προηγούμενου και μελετώνται ψηφιακά κυκλώματα με πιο σύνθετη δομή. Παρουσιάζονται τα κυκλώματα
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,
K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα
K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται
8. Στοιχεία μνήμης. Οι δυο έξοδοι του FF είναι συμπληρωματικές σημειώνονται δε σαν. Όταν αναφερόμαστε στο FF εννοούμε πάντα την κανονική έξοδο Q.
8. ΣΟΙΧΕΙΑ ΜΝΗΜΗΣ 8. Εισαγωγή Στα συνδυαστικά κυκλώματα, που μελετήσαμε έως τώρα, δεν υπήρχε κάποια διαδικασία ανάδρασης (Feed Back) -δηλαδή οδήγηση της εξόδου των στοιχείων στην είσοδό τους- επομένως
Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα επαναληπτικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,
5.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD
Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter)
ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter) ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ
7. Ψηφιακά Ηλεκτρονικά
1 7. Ψηφιακά Ηλεκτρονικά 7.1 Εισαγωγή Στα προηγούμενα μελετήσαμε τη λειτουργία του τρανζίστορ στην ενεργό περιοχή, χαρακτηριστικό της οποίας είναι ότι τα σήματα εισόδου και εξόδου μπορούν να λάβουν συνεχείς
ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ
ΑΣΚΗΣΗ ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Στόχος της άσκησης: Η διαδικασία σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων. Χαρακτηριστικό παράδειγμα σύγχρονων ακολουθιακών κυκλωμάτων είναι οι σύγχρονοι μετρητές. Τις αδυναμίες
ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ
Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 6: Απαριθµητές (µετρητές) Διδάσκων: Καθηγητής Ν. Φακωτάκης Ακολουθιακά κυκλώµατα Σύγχρονα (οδηγούµενα από
ΑΣΚΗΣΗ 8 ΚΑΤΑΧΩΡΗΤΕΣ - REGISTERS
ΑΣΚΗΣΗ 8 ΚΑΤΑΧΩΡΗΤΕΣ - REGISTERS Αντικείμενο της άσκησης: Η σχεδίαση και λειτουργία συστημάτων προσωρινής αποθήκευσης (Kαταχωρητές- Registers). Για την αποθήκευση μιας πληροφορίας του ενός ψηφίου (bit)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Καταχωρητές Παράλληλης
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Καθιερωµένα Γραφικά Σύµβολα. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005
ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Απρ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 6 ii: Ανάλυση Ακολουθιακών Κυκλωµάτων Περίληψη Καθιερωµένα Γραφικά Σύµβολα Χαρακτηριστικοί Πίνακες
ΑΣΚΗΣΗ 6 ΠΟΛΥΠΛΕΚΤΕΣ (MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMUX)
ΑΣΚΗΣΗ 6 ΠΟΛΥΠΛΕΚΤΕΣ (MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMUX) Αντικείμενο της άσκησης: Η κατανόηση των εννοιών πολύπλεξης - απόπλεξης, η σχεδίαση σε επίπεδο πυλών ενός πολυπλέκτη και εφαρμογές με τα ολοκληρωμένα κυκλώματα
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Καταχωρητές και Μετρητές Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Καταχωρητής: είναι μία ομάδα από δυαδικά κύτταρα αποθήκευσης
Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).
Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται
Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level)
Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Απαντήσεις 1. Η παραγγελία είναι σάντουιτς ή ένα σουβλάκι και τηγανητές πατάτες η οποία μπορεί να αναλυθεί ως σάντουιτς ή (σουβλάκι και τηγανητές πατάτες)
σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.
Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του
7 η διάλεξη Ακολουθιακά Κυκλώματα
7 η διάλεξη Ακολουθιακά Κυκλώματα 1 2 3 4 5 6 7 Παραπάνω βλέπουμε ακολουθιακό κύκλωμα σχεδιασμένο με μανταλωτές διαφορετικής φάσης. Παρατηρούμε ότι συνδυαστική λογική μπορεί να προστεθεί μεταξύ και των
Ψηφιακά Συστήματα. 8. Καταχωρητές
Ψηφιακά Συστήματα 8. Καταχωρητές Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L., Ψηφιακά
Σύγχρονοι Απαριθμητές. Διάλεξη 8
Σύγχρονοι Απαριθμητές Διάλεξη 8 Δομή της διάλεξης Εισαγωγή Σύγχρονος Δυαδικός Απαριθμητής Σύγχρονος Δεκαδικός Απαριθμητής Προγραμματιζόμενοι Απαριθμητές Ασκήσεις 2 Σύγχρονοι Απαριθμητές Εισαγωγή 3 Εισαγωγή
26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης
Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Μετρητής Ριπής (Ripple Counter) Μετρητές (Counters) Μετρητής Ριπής (συν.
ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 ii: Μετρητές Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μετρητής Ριπής Περίληψη Σύγχρονος υαδικός Μετρητής Σχεδιασµός µε Flip-Flops
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Ηλεκτρονικής. Πτυχιακή Εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Ηλεκτρονικής Πτυχιακή Εργασία Υλοποίηση σύγχρονων ακολουθιακών κυκλωμάτων σε VHDL για FPGAs/CPLDs και ανάλυση χρονισμών για εύρεση
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς
ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ
Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 8: Σύγχρονα ακολουθιακά κυκλώµατα (µέρος Α ) Διδάσκων: Καθηγητής Ν. Φακωτάκης Κυκλώµατα οδηγούµενα από
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΓΧΡΟΝΗ ΑΚΟΛΟΥΘΙΑΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Ακολουθιακά κυκλώματα Η πλειονότητα των ψηφιακών συσκευών (τηλέφωνα, δέκτες GPS, φωτογραφικές μηχανές, υπολογιστές κ.α.),
ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.3 : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών Στόχοι Μαθήματος: Να γνωρίσετε τις βασικές αρχές αριθμητικής των Η/Υ. Ποια είναι τα κυκλώματα
Σχεδίαση Ψηφιακών Συστηµάτων
Σχεδίαση Ψηφιακών Συστηµάτων Πανεπιστήμιο Δυτικής Αττικής Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών Γιάννης Βογιατζής Πάνος Καρκαζής 27-28 Παρουσίαση 4 η : Ψηφιακή Σχεδίαση Μέρος 3 Ανάλυση και Σχεδίαση
HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. 1 ΗΥ330 - Διάλεξη 7η - Ακολουθιακά Κυκλώματα
HY330 Ψηφιακά - Εισαγωγή στα Συστήματα VLSI Διδάσκων: Χ. Σωτηρίου, Βοηθοί: θα ανακοινωθούν http://inf-server.inf.uth.gr/courses/ce330 1 Μανταλωτές θετικής, αρνητικής πολικότητας Σχεδίαση με Μανταλωτές
3 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 8 ΙΟΥΝΙΟΥ 215 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ