Συστήματα Μικροϋπολογιστών
|
|
- Άλκηστις Μαρής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Συστήματα Μικροϋπολογιστών Παραδείγματα προγραμματισμού του με Intel 8085 Υπεύθυνος Μαθήματος: K. ΠΕΚΜΕΣΤΖΗ
2 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.
3 Παράδειγμα 1 ίνεται αριθμός των 8 bit στη θέση μνήμης 0040H. Να βρεθούν τα δεκαεξαδικά ψηφία υψηλότερης και χαμηλότερης τάξης (σε δυαδική παράσταση) και να αποθηκευτούν στις θέσεις 0041H και 0042H αντίστοιχα. 0040: X Y 0041: 0 X 0042: 0 Y
4 Παράδειγμα 1 Λύση LXI H,0040 MOV A, M MOV B, A RRC RRC RRC RRC ; Κρατώ αντίγραφο ; 4 περιστροφές δεξιά ; Το υψηλότερης αξίας Hex ψηφίο ; πάει στη χαμηλότερη θέση ANI 0F ; Απομόνωση X, 0F 16 = ΙΝΧ H MOV M, A ; Αποθηκεύω το X στη θέση 0041H MOV A, B ; Επαναφέρω ANI 0F ; Απομονώνω το χαμηλότερης ; Hex αξίας ψηφίο Y INX H MOV M, A HLT ; Αποθηκεύω το Y στη θέση 0042H ; Τέλος 0040: X Y 0041: 0 X 0042: 0 Y
5 Παράδειγμα 2 Αριθμός των 16 bits που βρίσκεται στις θέσεις 40 και 41 της μνήμης να προστεθεί στον αριθμό των 16 bits που βρίσκεται στις θέσεις 42 και 43 της μνήμης. Το αποτέλεσμα να τοποθετηθεί στις θέσεις 44 και 45. Τα περισσότερο σημαντικά bytes βρίσκονται στις θέσεις 41, 43 και 45. Να βρεθεί και δεύτερος τρόπος. 0040: X1 0041: X2 0042: Y1 0043: Y2 0044: S1 0045: S2 + input1 X2 X input2 Y2 Y output S2 S =
6 Παράδειγμα 2 Λύση Α LXI H,0040H INX H MOV A,M ; INX H INX H ; (A) = X1 (HL) = 42H INX H ; ADC M ; (HL) = 43H Προσθ. τα περισσότερο σημαντικά bytes X2+Y2+CY ADD M ; Προσθέτουμε τα λιγότερο σημαντικά bytes X1+Y1=S1 INX H ; MOV M,B ; (HL) = 44H Αποθήκευση S2 MOV B,A ; DCX H ; MOV A,M ; (B) = S1 (HL) = 41H (A) = X2 INX H ; MOV M,A ; HLT ; (HL) = 45H Αποθήκευση αποτελέσματος S2 Τέλος προγράμματος
7 Παράδειγμα 2 Λύση Β LHLD 0040H XCHG LHLD 0042H DAD D SHLD 0044H HLT Φορτώνουμε στο ζεύγος HL τα περιεχόμενα των θέσεων 40H, 41Η Φορτώνουμε στον DE τα περιεχόμενα του ζεύγους HL HL M(43)M(42) Πρόσθεση των 2 αριθμών Αποθήκευση αποτελέσματος στις θέσεις 44, 45 Τέλος προγράμματος
8 Παράδειγμα 3 Εδώ υπολογίζεται το τετράγωνο ενός αριθμού που περιέχεται στη θέση 0040Η της μνήμης με τη βοήθεια ενός πίνακα. Ο αριθμός υποθέτουμε ότι ανήκει στο διάστημα [0,15]. Ο πίνακας τοποθετείται στις θέσεις 0100Η έως 010FH της μνήμης. Το αποτέλεσμα τοποθετείται στη θέση 0041Η. Πίνακας τετραγώνων 0100Η: 00Η 0101Η: 01Η 0102Η: 04H 0103H: 09H 0104H: 10H 0105H: 19H 0106H: 24H 0107H: 31H 0108Η: 40Η 0109Η: 51Η 010AΗ: 64H 010BH: 79H 010CH: 90H 010DH: A9H 010EH: C4H 010FH: E1H
9 Παράδειγμα 3 Λύση LDA 0040H MOV L,A MVI H,0 LXI D,0100H DAD D MOV A,M STA 0041H HLT ημιουργία της κατάλληλης διεύθυνσης του πίνακα τετραγώνων Μεταφέρεται στον Α το αντίστοιχο τετράγωνο Αποθήκευση του αποτελέσματος στη θέση 41Η
10 Παράδειγμα 3 Απλούστερη Λύση LDA 0040H MOV L, A MVI H, 01 MOV A, M STA 0041H HLT ημιουργία στο HL της κατάλληλης διεύθυνσης του πίνακα τετραγώνων Μεταφέρεται στον Α το αντίστοιχο τετράγωνο Αποθήκευση του αποτελέσματος στη θέση 41Η
11 Παράδειγμα 4 Ένας διψήφιος αριθμός είναι αποθηκευμένος στις θέσεις 40 και 41 της μνήμης, με το περισσότερο σημαντικό ψηφίο (MSD) στη θέση 40. Ο αριθμός αυτός να μετατραπεί σε δυαδικό και να αποθηκευτεί στη θέση 42.
12 Παράδειγμα 4 Λύση LXI H, 0040H MOV A,M ADD A MOV B,A ADD A ADD A ADD B INX H ADD M INX H MOV M,A HLT ; (A) MSD ; (A) 2 MSD ; (B) 2 MSD ; (A) 2 (A) = 4 MSD ; (A) 2 (A) = 8 MSD ; (A) (A)+(B) = 8 MSD + 2 MSD ; =10 MSD ; (A) 10 MSD + LSD ; Αποθήκευση αποτελέσματος
13 Παράδειγμα 5 Τα περιεχόμενα των θέσεων 0040Η και 0041Η της μνήμης είναι απλοί δυαδικοί αριθμοί (χωρίς πρόσημο). Να προσδιοριστεί ο μεγαλύτερος από τους δύο αριθμούς και να αποθηκευτεί στη θέση 0042 Η. N1 N2 max (N1, N2)
14 Παράδειγμα 5 Λύση DONE: LXI H, 0040H MOV A,M INX H CMP M JNC DONE MOV A,M INX H MOV M,A HLT ; Συγκρίνονται οι 2 αριθμοί ; Άλμα αν ο 1ος είναι μεγαλύτερος ; N1(A)>N2(M) => CY=0 ; διαφορετικά (N1< N2) προετοιμάζεται ο 2ος ; (H)(L) 0042H ; Αποθήκευση μεγαλύτερου στη 0042Η
15 Παράδειγμα 6 Στο πρόγραμμα αυτό προσδιορίζεται το μεγαλύτερο ενός συνόλου αριθμών. Το πλήθος των αριθμών βρίσκεται στη θέση 0041H της μνήμης και οι αριθμοί αρχίζουν από τη θέση 0042H. Το αποτέλεσμα καταχωρείται στη θέση 40H.
16 Παράδειγμα 6 - Λύση FOR: NEXT: LXI H, 0041H MOV B,M SUB A INX H CMP M JNC NEXT MOV A,M DCR B JNZ FOR STA 0040H HLT ; (B) πλήθος αριθμών ; Μηδενίζεται ο Α ; Είναι ο επόμενος αριθμός > Α ; δηλ. του τοπικού μεγίστου; ; Ναι, αντικαθίσταται ο μέγιστος. ; Αλλιώς προχωράμε στον έλεγχο του ; επόμενου αριθμού
17 Παράδειγμα 7 Στο πρόγραμμα αυτό προσδιορίζεται το μήκος ενός συνόλου χαρακτήρων (ASCII string) όπου κάθε χαρακτήρας αντιστοιχεί σε έναν κωδικό του ενός byte. Το string είναι αποθηκευμένο στη μνήμη, από τη θέση 0041Η και μετά. Το τέλος του προσδιορίζεται από ένα χαρακτήρα CR (0DH). Αφού βρεθεί το ζητούμενο μήκος (χωρίς το CR) τοποθετείται στη θέση 0040Η.
18 Παράδειγμα 7 Λύση FOR: DONE: LXI H,0041H MVI B,0 ; (Β)=αρχικό μήκος 0 MVI A,0Dh ; (A) Κωδικός CR CMP M JZ DONE INR B INX H JMP FOR MOV Α,Β STA 0040H HLT ; Είναι ο χαρακτήρας CR; ; Αν ναι τέλος ; ιαφορετικά το μήκος αυξάνεται ; Κατά ένα ; Έλεγχος επόμενου χαρακτήρα ; Αποθήκευση μήκους
19 Παράδειγμα 8 ίνεται ένα block Ν δεδομένων στη μνήμη. Η πρώτη διεύθυνση βρίσκεται στον καταχωρητή D-E και το πλήθος Ν στον καταχωρητή Β. Ζητείται ένα πρόγραμμα που να συγκρίνει το περιεχόμενο του καταχωρητή Α με το block των δεδομένων και αν δεν περιλαμβάνεται αυτό να προστίθεται στο τέλος του block με αντίστοιχη ενημέρωση του πλήθους Ν.
20 Παράδειγμα 8 Λογικό ιάγραμμα Αρχή (C) (H)(L) (Β) (D)(E) M((H)(L))=A? Nαί Όχι (H)(L) (C) (Η)(L)+1 (C)-1 Όχι (C)=0? Nαί M((H)(L)) (A) (B) (B)+1 Τέλος
21 Παράδειγμα 8 Λύση ADR1: ADR2: MOV C,B MOV H,D MOV L,E CMP M JZ ADR2 INX H DCR C JNZ ADR1 MOV M,A INR B HLT ; (Β) Πλήθος δεδομένων ; (D)(E) (H)(L) ; Συγκρίνεται ο Α με τις τιμές του πίνακα ; Αν περιλαμβάνεται, η διαδικασία ; περατώνεται ; Αλλιώς σαρώνουμε όλο τον πίνακα ; εν βρέθηκε, άρα θα προστεθεί στο τέλος ; Ενημέρωση πλήθους Ν
22 Παράδειγμα 9 ίνονται 256 μη αρνητικοί αριθμοί στην περιοχή FF της μνήμης. Υπολογίζεται ο μέσος όρος των αριθμών με ακρίβεια 8 bits και καταχωρείται στη θέση 3000.
23 Παράδειγμα 9 Λογικό ιάγραμμα
24 Παράδειγμα 9 - Λύση ADR1: ADR2: LXI H, 2000H MVI B, 00H MVI A, 00H ADD M JNC ADR2 INR B INR L JNZ ADR1 LXI H, 3000H MOV M,B HLT ; Αρχικοποιήσεις ; Άθροιση στον συσσωρευτή Α ; Υπερχειλίσεις στον καταχωρητή Β ; Επόμενος αριθμός ; Αν συμπληρωθούν 256 αθροίσεις, τέλος ; και αποθήκευση αποτελέσματος
25 Παράδειγμα 10 Μετατροπή υαδικού αριθμού σε BCD Θέση Μνήμης 4 bit 4 bit 40H 41H 42H 0 BCD 0 BCD Binary Μονάδες εκάδες
26 Παράδειγμα 10 Λύση DECA: END: LDA 0042H CPI 64H ; Είναι μεγαλύτερος του 99? (A-99) JNC END ; Αν ναι τέλος (A>99) MVI B,FFH ; Αλλιώς Α 99 INR B SUI 0AH ; Αλλεπάλληλες αφαιρέσεις του 10 JNC DECA ; Αν είναι θετικός συνέχισε ADI 0AH ; ιόρθωση του αρνητικού υπολοίπου STA 0040H ; Αποθήκευση μονάδων MOV A,B STA 0041H ; Αποθήκευση δεκάδων HLT
27 Παράδειγμα 11 Η χρήση της εντολής δεκαδικής ρύθμισης DAA Αν Α L >9 ή AC=1 τότε A A+6 (ή A L A L +6) Αν A H >9 ή CY=1 τότε A A+60 (ή A H A H +6) MVI A,27 ADI 36 ;A 5DH=6310 MVI A,9 INR A ;A 0AH=1010 DAA ;A 63 MVI A,29 DAA ;A 1010 ADI 18 ;A 41H (AC=1) DAA ;A 47
28 Παράδειγμα 12 Μετατροπή υαδικού Αριθμού σε εκαδική Μορφή Παράδειγμα Εδώ είναι το 4*6 4Ε=4*16+14=4*10 + Ε + 4*6=78 Σχηματίζω 4*6 σε δεκαδική μορφή Ε +6 DAA 24 +4Ε DAA 78
29 Παράδειγμα 12 Λύση MOV B,A ; B 16X+Y (αποθήκευση) ANI F0 ; A 16X RRC RRC RRC RRC ; A X ADD A ; A 2X (Hex) DAA ; A 2X (Dec) MOV C,A ; Αποθήκευση ADD A ; A 4X (Hex) DAA ; A 4X (Dec) ADD C ; A 6X (Hex) DAA ; A 6X (Dec) ADD B ; 10X+Y+6X = 16X+Y DAA ; Dec HLT Λόγω της DAA που ακολουθεί μπορούμε να θεωρήσουμε ότι ο Β περιέχει τον αρχικό αριθμό σε δεκαδική μορφή (10X+Y)
30 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα» του ΕΜΠ έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
Συστήματα Μικροϋπολογιστών
Συστήματα Μικροϋπολογιστών Ο Μικροεπεξεργαστής 8085 K. ΠΕΚΜΕΣΤΖΗ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Συστήματα Μικροϋπολογιστών. Παραδείγματα χρήσης διαδικασιών Εισόδου Εξόδου δεδομένων στον με 8085
Συστήματα Μικροϋπολογιστών Παραδείγματα χρήσης διαδικασιών Εισόδου Εξόδου δεδομένων στον με 8085 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης
Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα
ΑΛΓΟΡΙΘΜΟΙ ΜΕΤΑΤΡΟΠΗΣ ΣΥΣΤΗΜΑΤΩΝ
ΑΛΓΟΡΙΘΜΟΙ ΜΕΤΑΤΡΟΠΗΣ ΣΥΣΤΗΜΑΤΩΝ Report για το αντίστοιχο project στο µάθηµα µικροϋπολογιστών Ι. Πόθος Βασίλειος Α.Μ.3120 2 Εισαγωγή Εισαγωγή Ο άνθρωπος από την αρχή της ιστορίας του προσπαθούσε να κατανοήσει
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΜΙΚΡΟΕΠΕΞΕΡΓΑΣΤΕΣ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ
Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης
Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:
Οργάνωση Υπολογιστών
Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
«ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΕΣ» ΕΣΩΤΕΡΙΚΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΕΣ
«ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΕΣ» ΕΣΩΤΕΡΙΚΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΚΑΙ ΛΕΙΤΟΥΡΓΙΕΣ 8085 ΧΟΝΔΡΙΚΟ ΔΙΑΓΡΑΜΜΑ 8085 CPU ΟΙ ΚΑΤΑΧΩΡΗΤΕΣ ΤΟΥ 8085 Ο ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΗΣ ΕΝΤΟΛΩΝ Η ΑΡΙΘΜΗΤΙΚΗ ΚΑΙ ΛΟΓΙΚΗ ΜΟΝΑΔΑ ΟΙ «ΣΗΜΑΙΕΣ» FLAGS Η ΜΟΝΑΔΑ
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 4 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 4 ο Μάθημα Λεωνίδας λεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No 05 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 5 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 5 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 07 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και
Υπολογιστές Ι. Άδειες Χρήσης. Εισαγωγή. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Εισαγωγή Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 2: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 24 25 Ηµεροµηνία Εξέτασης 29.6.25 Χρόνος Εξέτασης
Αρχιτεκτονική Υπολογιστών
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 8: Ολισθήσεις Περιστροφές Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών
Αρχιτεκτονική Υπολογιστών
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 5: Εντολές αλλαγής ροής. Διακλάδωση χωρίς συνθήκη. Διακλάδωση με συνθήκη. Δρ. Μηνάς Δασυγένης
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά
Αρχιτεκτονική Υπολογιστών
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 3: Καταχωρητές, Τμήματα, Διευθυνσιοδότηση Μνήμης, SEGMENT, MOV, ADD, SUB, INT, TITLE, LEA
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής
Συστήματα Μικροϋπολογιστών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ Συστήματα Μικροϋπολογιστών 3η Oμάδα Ασκήσεων Δημητρίου Ανδριάνα 03110684 Σκούρα Ελένη 03110721 1 η 4 η Άσκηση i) Στο πρόβλημα
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Συστήματα αρίθμησης
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Συστήματα αρίθμησης Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 8 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 02 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και
Αρχιτεκτονική Υπολογιστών
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 4: Πολλαπλασιασμός (MUL,IMUL). Διαίρεση (DIV,IDIV). Εμφάνιση αλφαριθμητικού. Εμφάνιση χαρακτήρα.
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης
Εισαγωγή στην Πληροφορική
Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα
ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΕΒ 2014 Καθηγητής: Νικολαΐδης Νικ. Ημ/νία εξέτασης: 10-2-2014
ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΦΕΒ 2014 Καθηγητής: Νικολαΐδης Νικ. Ημ/νία εξέτασης: 10-2-2014 ΘΕΜΑ 1 α) Τι διαφέρει μία ROM από μία PAL; Οι ROM έχουν σταθερό αποκωδικοποιητή ο οποίος σχηματίζει όλα τα
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια
Αρχιτεκτονική Υπολογιστών Εργαστήριο
Αρχιτεκτονική Υπολογιστών Εργαστήριο Ενότητα: ΠΑΡΑΔΕΙΓΜΑ ΑΠΟΣΦΑΛΜΑΤΩΣΗΣ Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής
Αρχιτεκτονική Υπολογιστών
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 2: Καταχωρητές, HelloWorld σε 8086, emu8086 emulator Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Δομημένος Προγραμματισμός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Δομημένος Προγραμματισμός Ενότητα: Αλφαριθμητικά θεωρία Δ. Ε. Μετάφας Τμ. Ηλεκτρονικών Μηχ. Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ψηφιακά Συστήματα. 1. Συστήματα Αριθμών
Ψηφιακά Συστήματα 1. Συστήματα Αριθμών Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L.,
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf)
ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ (σελ. 30-34 στο ΜΥ1011Χ.pdf) Για να λύνετε εύκολα ασκήσεις στα συστήματα αρίθμησης θα πρέπει να απομνημονεύσετε τα πρώτα 17 βάρη του δυαδικού συστήματος από 2 0 μέχρι 2
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Κώδικες, 1ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται
ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6
ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα
Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ
Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και
Αριθµητική υπολογιστών
Αριθµητική υπολογιστών Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #03 1 εκαδικό σύστηµα αρίθµησης Βάση το 10. 10 ψηφία: 0 1 2 3 4 5 6 7 8 9 1 δεκαδικό ψηφίο εκφράζει 1 από 10 πιθανές επιλογές
Συστήματα Μικροϋπολογιστών
Συστήματα Μικροϋπολογιστών Συστήματα Διακοπών Υπεύθυνος Μαθήματος: K. ΠΕΚΜΕΣΤΖΗ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 04 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και
Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 06 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και
Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:
ΕΡΓΑΣΤΗΡΙΟ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ Η/Υ
ΕΡΓΑΣΤΗΡΙΟ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ Η/Υ 4 ο Εξάμηνο Μαδεμλής Ιωάννης MSc Ηλεκτρονικός Φυσικός Αντικείμενο: ΠΡΟΦΙΛ ΜΑΘΗΜΑΤΟΣ Προγραμματισμός σε γλώσσα Assembly Σκοπός: Γνώση της assembly από τους απόφοιτους του τμήματος
ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΕΣ Ι Μικροεπεξεργαστής Intel 8085, Εργαστηριακές Ασκήσεις
ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΕΣ Ι Μικροεπεξεργαστής Intel 8085, Εργαστηριακές Ασκήσεις Δρ.Τοπάλης Ευάγγελος Δρ. Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Υπολογιστών καθ. Χαδέλλης Λουκάς ΤΕΙ Δυτικής Ελλάδας ΕΡΓΑΣΤΗΡΙΟ
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1
Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Δομημένος Προγραμματισμός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Δομημένος Προγραμματισμός Ενότητα: Εισαγωγή στη C θεωρία Δ. Ε. Μετάφας Τμ. Ηλεκτρονικών Μηχ. Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΕΣ Ι Μικροεπεξεργαστής 8085, Εργαστηριακές Ασκήσεις
ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΕΣ Ι Μικροεπεξεργαστής 8085, Εργαστηριακές Ασκήσεις Δρ. Τοπάλης Ευάγγελος (Δρ. Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Υπολογιστών) Δρ.Κεραμίδας Γεώργιος (Δρ. Ηλεκτρολόγος Μηχανικός
Αρχιτεκτονική Υπολογιστών
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 7: Αποκωδικοποίηση Εντολής x86 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών
Συστήματα Μικροϋπολογιστών
Συστήματα Μικροϋπολογιστών Μονάδες Ε/Ε και μνήμες Μικροεπεξεργαστών Υπεύθυνος Μαθήματος: K. ΠΕΚΜΕΣΤΖΗ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Προγραμματισμός Η/Υ 1 (Εργαστήριο)
Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 4: Τύποι Δεδομένων και τελεστές Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας
Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1
Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:
Θ. Ζαχαριάδης Αν. Καθηγητής. Λ. Σαράκης Καθ. Εφαρμογών
Θ. Ζαχαριάδης Αν. Καθηγητής Λ. Σαράκης Καθ. Εφαρμογών Στον debugger που χρησιμοποιούμε στο εργαστήριο, όταν γράφουμε δεκαεξαδικούς αριθμούς που το πιο σημαντικό ψηφίο τους είναι Α-F βάζουμε μπροστά από
Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση
Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση τους Κατόπιν, στην επινόηση συμβόλων για τη παράσταση
Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 8: Αρχεία και Δομές Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν
Οργάνωση Υπολογιστών
Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το
Αρχιτεκτονική Υπολογιστών
Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 6: inc, dec, loop, jcxz, dup, displacement Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο
Αρχιτεκτονική υπολογιστών
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Αρχιτεκτονική υπολογιστών Ενότητα 9 : Ομάδες Εντολών: Ιδιότητες και Λειτουργίες Φώτης Βαρζιώτης 2 Ανοιχτά Ακαδημαϊκά Μαθήματα Τμήμα Μηχανικών
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 3(γ): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Συστήματα Μικροϋπολογιστών
Συστήματα Μικροϋπολογιστών Είσοδος / Έξοδος Δεδομένων Υπεύθυνος Μαθήματος: K. ΠΕΚΜΕΣΤΖΗ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
{ int a = 5; { int b = 7; a = b + 3;
Σχεδίαση Γλωσσών & Μεταγλωττιστές Ενότητα 1: Γλώσσες με δομή block Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 2 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 2 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί
Δυαδικη παρασταση αριθμων και συμβολων
Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 03 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και
ΠΛΗ21 Κεφάλαιο 2. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: Παράσταση Προσημασμένων Αριθμών Συμπληρώματα
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 2.3.4 Παράσταση Προσημασμένων Αριθμών Συμπληρώματα Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι ένας Συμπλήρωμα ενός αριθμού πρακτικά Τι είναι Συμπλήρωμα ως
1 η ΑΣΚΗΣΗ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Ακ. έτος , 5ο Εξάμηνο, Σχολή ΗΜ&ΜΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr 1 η ΑΣΚΗΣΗ ΣΤΗΝ
Αρχιτεκτονική υπολογιστών
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αρχιτεκτονική υπολογιστών Ενότητα 11 : Δομή και Λειτουργία της CPU 1/2 Φώτης Βαρζιώτης 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Τμήμα Μηχανικών Πληροφορικής
; Οι HL δείχνουν την επόµενη θέση µνήµης MVI A, 38H CMP H JNZ DO_FLMEM ; POP B. ; Ανάκτηση καταχωρητών απο το σωρό.
ΑΣΚΗΣΗ 1 η 1. Να γραφεί πρόγραµµα σε µνηµονική γλώσσα assembly 8085, υπό µορφή υπορουτίνας, (µε τις απαραίτητες αρχικοποιήσεις), που να γεµίζει τις θέσεις µνήµης RAM από 3400-37FF Hex, µε περιεχόµενα αυξηµένα
Ψηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν
Θ. Ζαχαριάδης Αν. Καθηγητής. Λ. Σαράκης Καθ. Εφαρμογών
Θ. Ζαχαριάδης Αν. Καθηγητής Λ. Σαράκης Καθ. Εφαρμογών CMP REG, memory memory, REG REG, REG memory, immediate REG, immediate Compare. operand1 - operand2 result is not stored anywhere, flags are set (OF,
Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Εισαγωγή στην επιστήμη των υπολογιστών
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό
Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δομημένος Προγραμματισμός Ενότητα 5(γ): Εργαστηριακή Άσκηση Αναπλ. Καθηγητής: Κωνσταντίνος Στεργίου Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Αναπαράσταση Δεδομένων ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση δεδομένων Κατάλληλη συμβολική αναπαράσταση δεδομένων, για απλοποίηση βασικών πράξεων, όπως πρόσθεση Πόσο εύκολο είναι
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τα επιμέρους τμήματα Η ΟΜΗ TOY ΥΠΟΛΟΓΙΣΤΗ. Αναπαράσταση μεγεθών. Αναλογική αναπαράσταση ΚΕΝΤΡΙΚΗ ΜΝΗΜΗ ΜΟΝΑ Α ΕΛΕΓΧΟΥ
ΥΠΟΛΟΓΙΣΤΕΣ Ι Η ΟΜΗ TOY ΥΠΟΛΟΓΙΣΤΗ Τα επιμέρους τμήματα ΕΙΣΟ ΟΣ ΚΕΝΤΡΙΚΗ ΜΝΗΜΗ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΗ ΛΟΓΙΚΗ ΕΞΟ ΟΣ ΚΕΝΤΡΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑΣ 1 2 Αναπαράσταση μεγεθών ΜΕΤΡΟΥΜΕΝΟ ΜΕΓΕΘΟΣ ΑΝΑΛΟΓΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ
Ηλεκτρονικοί Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Δεδομένα στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Σύστημα Πλεονάσματος. Αναπαράσταση Πραγματικών Αριθμών. Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος Αναπαράσταση Πραγματικών Αριθμών Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση
Περιεχόµενα. οµή Η/Υ: Αναπαράσταση εδοµένων. υαδικό σύστηµα. Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα
οµή Η/Υ: Αναπαράσταση εδοµένων Συστήµατα Αρίθµησης υαδικό Οκταδικό εκαεξαδικό Παραδείγµατα Περιεχόµενα Κωδικοποίηση δεδοµένων Κώδικας ASCII Άλλοι κώδικες Παραδείγµατα Συστήµατα Αρίθµησης Τα συνηθέστερα
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 12: Σύνοψη Θεμάτων Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 11 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και