Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
|
|
- Συντύχη Δραγούμης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Διοίκησης Επιχειρήσεων
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 Σκοποί ενότητας Στην συγκεκριμένη ενότητα παρουσιάζεται ο τρόπος που παριστάνονται και κωδικοποιούνται τα δεδομένα (αριθμοί και χαρακτήρες) σε ένα υπολογιστικό σύστημα. 4
5 Περιεχόμενα ενότητας Αριθμητικά Συστήματα & Πράξεις Παράσταση Δεδομένων Παράσταση ακεραίων αριθμών Παράσταση πραγματικών αριθμών Παράσταση χαρακτήρων 5
6 Αριθμητικά Συστήματα & Πράξεις
7 Αριθμητικά Συστήματα Κάθε αριθμητικό σύστημα με βάση b, αποτελείται από b διαφορετικά ψηφία Αριθμητικό Σύστημα Πλήθος ψηφίων Δεκαεξαδικό 16 Ψηφία 0,1,2,3,4,5,6,7,8,9,Α,Β,C,D,E,F Δεκαδικό 10 0,1,2,3,4,5,6,7,8,9 Οκταδικό 8 0,1,2,3,4,5,6,7 Δυαδικό 2 0,1 7
8 Παράσταση αριθμών Αριθμός Σύστημα Παράσταση στο δεκαδικό 2015 (10) Δεκαδικό 2* * * *10 0 ΑΒ4 (16) Δεκαεξαδικό 10* * * (8) Οκταδικό 4*8 2 +7*8 1 +5* (2) Δυαδικό 1*2 5 +0*2 4 +1*2 3 +0*2 2 +1*2 1 +1*2 0 8
9 Παράσταση με δεκαδικά ψηφία Αριθμός Σύστημα Παράσταση στο δεκαδικό 502,35 (10) Δεκαδικό 5* * * * *10-2 ΑΒ4,12 (16) Δεκαεξαδικό 10* * * * * ,5 (8) Οκταδικό 4*8 2 +7*8 1 +5*8 0 +5* ,011 (2) Δυαδικό 1*2 2 +0*2 1 +1*2 0 +0*2-1 +1*2-2 +1*2-3 9
10 Μετατροπή δεκαδικού σε δυαδικό 10
11 Μετατροπή δεκαδικού με κλάσμα σε δυαδικό Έστω ο αριθμός: 23,45 Μετατρέπουμε ξεχωριστά το 23 και το 0,45 Παράδειγμα: όπως είδαμε 23 (10) = (2) Για το 0,45 εργαζόμαστε ως εξής: Πολλαπλασιάζουμε συνεχώς το κλασματικό μέρος επί 2 μέχρι να βρούμε κλασματικό μέρος 0 ή μέχρι να επιτύχουμε την επιθυμητή ακρίβεια Κρατάμε κάθε φορά από τα αποτελέσματα το 1 αν ο αριθμός που προέκυψε ξεπέρασε τη μονάδα ή το 0 αν ο αριθμός που προέκυψε δεν ξεπέρασε τη μονάδα 11
12 Παράδειγμα 2 x 0,45 = 0,9 < 1 άρα το 1ο ψηφίο είναι 0 2 x 0,9 = 1,8 > 1 άρα το 2ο ψηφίο είναι 1 2 x 0,8 = 1,6 > 1 άρα το 3ο ψηφίο είναι 1 2 x 0,6 = 1,2 > 1 άρα το 4ο ψηφίο είναι 1 2 x 0,2 = 0,4 < 1 άρα το 5ο ψηφίο είναι 0 2 x 0,4 = 0,8 < 1 άρα το 6ο ψηφίο είναι 0 κ.ο.κ. Μέχρι τώρα έχουμε: 23,45 (10) = 10111, (2) 12
13 Ακρίβεια κλασματικού μέρους Μέχρι τώρα έχουμε ακρίβεια 6 δεκαδικά ψηφία: 23,45 (10) = 10111, (2) Αν το υπολογιστικό μας σύστημα μπορεί να αποθηκεύσει μέχρι 8 bit δεκαδικού μέρους μπορούμε να συνεχίσουμε και θα προκύψει: 23,45 (10) = 10111, (2) Αρα καταφέραμε να αποθηκεύσουμε τον αριθμό: 23,
14 Μετατροπή δεκαεξαδικού σε δυαδικό 14
15 Μετατροπή δεκαδικού σε δεκαεξαδικό Κάνοντας την αντιστοίχιση στα ψηφία του δεκαεξαδικού έχουμε: 1 => 1 11 => Β 12 => C Ο δεκαεξαδικός αριθμός είναι: = 1BC 16 15
16 Μετατροπή δεκαδικού σε δεκαεξαδικό με κλάσματα Έστω ο αριθμός: 23,45 Μετατρέπουμε ξεχωριστά το 23 και το 0,45 Εύκολα υπολογίζουμε: 23 (10) = 17 (16) Για το 0,45 εργαζόμαστε ως εξής: Πολλαπλασιάζουμε συνεχώς το κλασματικό μέρος επί 16 μέχρι να βρούμε κλασματικό μέρος 0 ή μέχρι να επιτύχουμε την επιθυμητή ακρίβεια Κρατάμε κάθε φορά από τα αποτελέσματα το ακέραιο μέρος του γινομένου 16
17 Παράδειγμα με δεκαεξαδικό 16 x 0,45 = 7,2 άρα το 1ο ψηφίο είναι 7 16 x 0,2 = 3,2 άρα το 2ο ψηφίο είναι 3 16 x 0,2 = 3,2 άρα το 3ο ψηφίο είναι 3 16 x 0,2 = 3,2 άρα το 4ο ψηφίο είναι 3 κ.ο.κ. Άρα έχουμε: 23,45 (10) = 17,7333 (16) 17
18 Παράσταση Δεδομένων
19 Δυαδική παράσταση (1) Δύο ψηφία 0 και 1 (bit) (Binary Digit) Διαφορετική παράσταση για αριθμούς και χαρακτήρες Ανάγκη κοινού κώδικα παράστασης 19
20 Δυαδική παράσταση (2) Τα πρώτα ψηφιακά συστήματα χρησιμοποιούσαν το δυναμικό των 0V για το ψηφίο 0 και το δυναμικό των 5V για το ψηφίο 1 Τα σύγχρονα υπολογιστικά συστήματα με στόχο κυρίως τη χαμηλότερη δυνατή κατανάλωση ισχύος αντιστοιχίζουν το ψηφίο 1 σε πολύ χαμηλότερη τάση 20
21 Παράσταση Αριθμών Ένα υπολογιστικό σύστημα δε μπορεί να παραστήσει αριθμούς με άπειρα ψηφία Ο σταθερός αριθμός n που καθορίζει το μήκος των δυαδικών ψηφίων που χρησιμοποιεί ένα υπολογιστικό σύστημα το ονομάζουμε λέξη (word) του υπολογιστικού συστήματος 21
22 Παράσταση Προσημασμένων Ακεραίων Αριθμών
23 Παράσταση με Πρόσημο και Μέτρο Ένας προσημασμένος ακέραιος αριθμός παριστάνεται με μια λέξη n ψηφίων Το 1 ο ψηφίο από δεξιά ονομάζεται «Λιγότερο σημαντικό ψηφίο» (Least Significant Bit - LSB) γιατί πολλαπλασιάζεται με τον μικρότερο συντελεστή Το 1 ο ψηφίο από αριστερά ονομάζεται «Περισσότερο σημαντικό ψηφίο» (Most Significant Bit - MSB) To MSB παριστάνει το πρόσημο του αριθμού, τα υπόλοιπα n-1 ψηφία παριστάνουν το μέτρο του 23
24 Παράδειγμα με πρόσημο & μέτρο n = 8 (λέξη - word 8 δυαδικών ψηφίων) Παραδείγματα: +14 => => Μπορεί να παρασταθούν αριθμοί στο διάστημα -(2 n-1-1) έως (2 n-1-1) έως (-127, +127) Το μηδέν ή
25 Παράσταση συμπληρώματος Παραστάσεις όπως 5+3 ή 5-3 απαιτούν κυκλώματα ξεχωριστά για την πρόσθεση και την αφαίρεση Όμως: 5-3 = 5 + (-3) έτσι χρειαζόμαστε μόνο την πρόσθεση και μια κατάλληλη παράσταση των αρνητικών αριθμών 25
26 Παράσταση αρνητικών αριθμών παράσταση με πρόσημο και μέτρο => -15 παράσταση του συμπληρώματος ως προς 1 είναι ο αριθμός που προκύπτει αν αντιστρέψουμε κάθε bit του αρχικού αριθμού πχ για τον είναι ο αριθμός παράσταση του συμπληρώματος ως προς 2 26
27 Συμπλήρωμα ως προς 2 Χρησιμοποιείται σε μεγάλη έκταση στις μαθηματικές πράξεις Συμπλήρωμα ως προς δύο ενός αριθμού είναι ο αριθμός που προκύπτει αν στο συμπλήρωμα ως προς ένα του αριθμού αυτού προσθέσουμε το ένα. Π.χ. το συμπλήρωμα ως προς δύο του αριθμού προκύπτει ως εξής: Αρχικός αριθμός: Συμπλήρωμα ως προς ένα: Συμπλήρωμα ως προς δύο:
28 Συμπλήρωμα ως προς 2 μπορούμε να παραστήσουμε ακεραίους από -2 n-1 έως +(2 n-1-1) με μήκος λέξης n το μέτρο ενός αρνητικού ακεραίου που παριστάνεται με συμπλήρωμα ως προς 2 βρίσκεται παίρνοντας όλα τα ψηφία (και το MSB) και υπολογίζουμε το συμπλήρωμα ως προς 2 η αφαίρεση γίνεται με την πρόσθεση του συμπληρώματος ως προς 2 του αφαιρετέου (δεν χρειαζόμαστε κυκλώματα για την αφαίρεση) 28
29 Παράδειγμα αφαίρεσης με συμπλήρωμα ως προς = 5 σε λέξη 4 δυαδικών ψηφίων 12 + ( 7) = 5 12 => => 0111 Συμπλήρωμα ως προς 2 του 7 => 1001 Πρόσθεση με το συμπλήρωμα ως προς 2: όταν υπάρχει υπερχείλιση το αποτέλεσμα είναι θετικό (δε λαμβάνουμε υπόψη την υπερχείλιση) και ο αριθμός είναι 0101 = 5 29
30 Παράδειγμα αφαίρεσης με συμπλήρωμα ως προς (10) 46 (10) σε λέξη 8 δυαδικών ψηφίων ισοδύναμη με +32 (10) + ( 46 (10) ) +32 (10) => (10) => Για το συμπλήρωμα ως προς 2 του 46 έχουμε : Αντιστροφή ψηφίων => Πρόσθεση μονάδας +1 => Η πράξη θα γίνει ως εξής: Πρόσθεση συμπληρώματος ως προς 2: δεν υπάρχει υπερχείλιση άρα το αποτέλεσμα είναι αρνητικό με αριθμό τον με μέτρο (συμπλήρωμα ως προς 2) =>
31 Παράσταση Πραγματικών Αριθμών
32 Πραγματικοί Αριθμοί Για την παράστασή τους χρειαζόμαστε: να παρασταθεί το πρόσημο να παρασταθούν τα ψηφία του αριθμού να παρασταθεί η θέση της υποδιαστολής Δύο τρόποι: Μέθοδος σταθερής υποδιαστολής Μέθοδος κινητής υποδιαστολής 32
33 Μέθοδος σταθερής υποδιαστολής Τόσο το ακέραιο μέρος όσο και το δεκαδικό αποθηκεύεται με τη μέθοδο των προσημασμένων ακέραιων σε σταθερό αριθμό δυαδικών ψηφίων Για παράδειγμα ο αριθμός 101,001 (2) σε μήκος λέξης 8 bit με κλασματικό μέρος 3 bits παριστάνεται ως εξής:
34 Μέθοδος κινητής υποδιαστολής Βρίσκουμε πρώτα την κανονική μορφή (normalized) κανονική μορφή ονομάζουμε τη μορφή του πραγματικού αριθμού που το 1 ο μη μηδενικό ψηφίο του βρίσκεται αμέσως μετά την υποδιαστολή πχ ο αριθμός 253,12 έχει κανονική μορφή τον 0,25312x10 3 ενώ ο αριθμός 2545 έχει κανονική μορφή τον 0,2545x10 4 Διαχωρίζουμε τον αριθμό σε 2 τμήματα: συντελεστής (mantissa) εκθέτης (exponent) 34
35 Παράσταση με τη μέθοδο κινητής υποδιαστολής Έτσι, ο αριθμός: 0, (2) θα γίνει: 0, *2-4 και θα παρασταθεί: Πρόσημο Μέτρο Συντελεστής Εκθέτης
36 Πράξεις με κινητή υποδιαστολή Για την πρόσθεση και αφαίρεση οι αριθμοί τροποποιούνται για να έχουν τον ίδιο εκθέτη, στη συνέχεια οι πράξεις γίνονται στο κλασματικό μέρος Για τον πολλαπλασιασμό και διαίρεση πολλαπλασιάζονται ή διαιρούνται τα κλασματικά μέρη και παρόμοια προστίθενται ή αφαιρούνται οι εκθέτες 36
37 Κωδικοποίηση αριθμών Έχουν προταθεί διάφοροι κώδικες που βασίζονται στο δυαδικό σύστημα αρίθμησης (αριθμητικοί κώδικες) όπως ο BCD (Binary Coded Decimal) Δεκαδικό ψηφίο Δυαδική μορφή Δυαδική κωδικοποίηση
38 Παράδειγμα Κωδικοποίησης Ο αριθμός 325 (10) θα γίνει Δεκαδικός αριθμός Δυαδική κωδικοποίηση δεκαδικών ψηφίων
39 Παράσταση Χαρακτήρων Οι χαρακτήρες κωδικοποιούνται σε ένα υπολογιστικό σύστημα σε μια ακολουθία δυαδικών ψηφίων με βάση κάποιο σύστημα κωδικοποίησης Η ακολουθία των δυαδικών ψηφίων αντιστοιχεί σε μια αριθμητική τιμή (code value) Κυριότεροι κώδικες χαρακτήρων είναι: ASCII Unicode 39
40 Κώδικας ASCII (1) ASCII (American Standard Code for Information Interchange) δημιουργήθηκε για την υποστήριξη του οργανισμού ANSI (American National Standard Institute Εθνικού Αμερικανικού Ινστιτούτου Προτύπων) Υιοθετήθηκε από όλους τους κατασκευαστές μικροϋπολογιστών και χρησιμοποιήθηκε ευρύτατα Αρχικά χρησιμοποίησε 7bit (2 7 =128 διαφορετικοί χαρακτήρες) το 8 ο bit ήταν για τον έλεγχο ισοτιμίας Στη συνέχεια έγινε 8bit (256 χαρακτήρες) ASCII-8 40
41 Κώδικας ASCII (2) Κωδικοί Είδος συμβόλου 0-31 Χαρακτήρες ελέγχου Σύμβολα Αριθμητικά ψηφία Σύμβολα Κεφαλαία λατινικά γράμματα Σύμβολα Πεζά λατινικά γράμματα Σύμβολα Από χρησιμοποιήθηκε για την κωδικοποίηση ειδικών συμβόλων και γραφικών χαρακτήρων ή για την παράσταση άλλων αλφαβήτων, όπως του ελληνικού. Ο Ελληνικός Οργανισμός Τυποποίησης (ΕΛΟΤ) έφτιαξε τον κώδικα ΕΛΟΤ 928 ως επέκταση του ASCII. 41
42 Κώδικας ASCII (3) 42
43 Κώδικας Unicode Προέρχεται από το σύνθεση του Παγκόσμιος ή Οικουμενικός (Universal) και του Μοναδικός (Unique) Σχεδιάστηκε για να καλύψει όλες τις γλώσσες του κόσμου Διαθέτει σταθερό μήκος 16 bits για κάθε χαρακτήρα κατά συνέπεια μπορεί να παραστήσει 2 16 = διαφορετικούς χαρακτήρες Οι πρώτες τιμές αντιστοιχούν στους χαρακτήρες του κώδικα ASCII και ακολουθούν οι χαρακτήρες του Ελληνικού, Κυριλλικού, Εβραϊκού, Αραβικού, κά σήμερα χρησιμοποιείται ευρέως 43
44 Τέλος Ενότητας
Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης
Δυαδικό Σύστημα Αρίθμησης
Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 5 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 5 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 3. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Β Παράσταση Προσημασμένων
Μάθημα 2: Παράσταση της Πληροφορίας
Μάθημα 2: Παράσταση της Πληροφορίας 2.1 Παράσταση δεδομένων Κάθε υπολογιστική μηχανή αποτελείται από ηλεκτρονικά κυκλώματα που η λειτουργία τους βασίζεται στην αρχή ανοιχτό-κλειστό. Η συμπεριφορά τους
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Συστήματα αρίθμησης Δυαδικό αριθμητικό
ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ
Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1
Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ Καραμαούνας Πολύκαρπος 1 2.1Η έννοια της πληροφορίας Δεδομένα Πληροφορία Καραμαούνας Πολύκαρπος 2 2.2 ΗΥ Το βασικό εργαλείο επεξεργασίας και
Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης
ΤΛ2002 Ψηφιακά Κυκλώματα Ι Μάθημα 1: Δυαδικά συστήματα - Κώδικες Λευτέρης Καπετανάκης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011 ΤΛ-2002: L1 Slide 1 Ψηφιακά Συστήματα ΤΛ-2002:
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Συστήματα αρίθμησης
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 8: Συστήματα αρίθμησης Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 8 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική
Ψηφιακά Συστήματα. 1. Συστήματα Αριθμών
Ψηφιακά Συστήματα 1. Συστήματα Αριθμών Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L.,
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Οργάνωση Υπολογιστών
Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό
Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1
Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό
1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ. α i. (α i β i ) (1.3) όπου: η= το πλήθος ακεραίων ψηφίων του αριθμού Ν. n-1
1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Εισαγωγή Το δεκαδικό σύστημα (Decimal System) αρίθμησης χρησιμοποιείται από τον άνθρωπο και είναι κατάλληλο βέβαια γι αυτόν, είναι όμως εντελώς ακατάλληλο για τις ηλεκτρονικές
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής
ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6
ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα
Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση
Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση τους Κατόπιν, στην επινόηση συμβόλων για τη παράσταση
Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 7 και 8: Αναπαραστάσεις. Πανεπιστήμιο Θεσσαλίας - Τμήμα Πληροφορικής
Γιώργος Δημητρίου Μάθημα 7 και 8: Αναπαραστάσεις Αναπαράσταση Πληροφορίας Η/Υ Αριθμητικά δεδομένα Σταθερής υποδιαστολής Κινητής υποδιαστολής Μη αριθμητικά δεδομένα Χαρακτήρες Ειδικοί κώδικες Εντολές Γλώσσα
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα
Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΕΡΓΑΣΙΑ 1: Ονοματεπώνυμο: Εξάμηνο: Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Α.Μ: Έτος: 1. Το δεκαδικό σύστημα Είναι φανερό ότι οι χιλιάδες, εκατοντάδες, δεκάδες, μονάδες και τα δεκαδικά ψηφία είναι δυνάμεις
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 2. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Α 2 Τεχνολογία
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης
ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας
ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ ΔΙΑΡΚΕΙΑ: 1 περιόδους 22/1/2010 10:11 καθ. Τεχνολογίας 22/1/2010 10:12 Παραδείγματα Τι ονομάζουμε αριθμητικό σύστημα? Το σύνολο από ψηφία (αριθμοί & χαρακτήρες). Που χρησιμεύουν
Εισαγωγή στην Πληροφορική
Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1
Εισαγωγή στην επιστήμη των υπολογιστών
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα
Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ
Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων
Αριθμητικά Συστήματα = 3 x x x x 10 0
Δεκαδικό Όταν αναφερόμαστε σε μία αριθμητική τιμή, απεικονίζουμε μία ποσότητα με ένα σύμβολο ή έναν συνδυασμό από σύμβολα. Το αριθμητικό σύστημα που χρησιμοποιούμε είναι το δεκαδικό. Αποτελείται από δέκα
Κεφάλαιο 1. Συστήματα αρίθμησης και αναπαράστασης
Κεφάλαιο 1 Συστήματα αρίθμησης και αναπαράστασης 1.1 Εισαγωγή Οι υπολογιστές αναπαριστούν όλα τα είδη πληροφορίας ως δυαδικά δεδομένα. Έτσι, για την ευκολότερη και ταχύτερη επεξεργασία των διαφόρων πληροφοριών,
Προγραμματισμός Υπολογιστών
Προγραμματισμός Υπολογιστών Αναπαράσταση Πληροφορίας Κ. Βασιλάκης, ΣΤΕΦ, ΤΕΙ Κρήτης Δεδομένα και πληροφορία Δεδομένα είναι ένα σύνολο διακριτών στοιχείων σχετικά με ένα συμβάν ή μια διαδικασία χωρίς κάποια
Ψηφιακά Συστήματα. 2. Κώδικες
Ψηφιακά Συστήματα 2. Κώδικες Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L., Ψηφιακά ηλεκτρονικά,
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η
Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:
Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα Επιλογή Αναπαράστασης
ΠΛΗ21 Κεφάλαιο 2. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: Παράσταση Προσημασμένων Αριθμών Συμπληρώματα
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 2.3.4 Παράσταση Προσημασμένων Αριθμών Συμπληρώματα Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι ένας Συμπλήρωμα ενός αριθμού πρακτικά Τι είναι Συμπλήρωμα ως
Δυαδικη παρασταση αριθμων και συμβολων
Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Κώδικες, 1ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Αριθμητικά Συστήματα Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αριθμητικά Συστήματα Δεκαδικό Σύστημα: Βάση το 10, ψηφία 10 και συντελεστές
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην
2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα
2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ 2.1 Αριθμητικά συστήματα Κάθε πραγματικός αριθμός χ μπορεί να παρασταθεί σε ένα αριθμητικό σύστημα με βάση β>1 με μια δυναμοσειρά της μορφής, -οο * = ± Σ ψ β " (2 1) η - ν
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,
Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version
Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε
Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Αναπαράσταση Δεδομένων ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση δεδομένων Κατάλληλη συμβολική αναπαράσταση δεδομένων, για απλοποίηση βασικών πράξεων, όπως πρόσθεση Πόσο εύκολο είναι
Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών
Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά
Εισαγωγή στην Πληροφορική ΓΕΝΙΚΟ ΤΜΗΜΑ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ TEI ΧΑΛΚΙ ΑΣ
Εισαγωγή στην Πληροφορική 1 Περιεχόµενα - Κωδικοποιήσεις - Αριθµητικά Συστήµατα 2 Ηλεκτρονικός Υπολογιστής Είπαµε ότι είναι, µία Ηλεκτρονική Μηχανή, που δουλεύει κάτω από τον έλεγχο εντολών αποθηκευµένων
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 2ο Αναπαράσταση Δεδομένων 1 2.1 Τύποι Δεδομένων Τα δεδομένα σήμερα συναντώνται σε διάφορες μορφές, στις οποίες περιλαμβάνονται αριθμοί,
Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή
Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5
Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ
Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0
Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,
ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ
Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου
ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.2.1 : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ. Στο δυαδικό σύστημα αρίθμησης, αντί για δεκάδες, εκατοντάδες με τις
Αριθµητική υπολογιστών
Αριθµητική υπολογιστών Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #03 1 εκαδικό σύστηµα αρίθµησης Βάση το 10. 10 ψηφία: 0 1 2 3 4 5 6 7 8 9 1 δεκαδικό ψηφίο εκφράζει 1 από 10 πιθανές επιλογές
Υπολογιστές Ι. Άδειες Χρήσης. Εισαγωγή. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Εισαγωγή Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί
Υπολογιστές και Πληροφορία 1
ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται
ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών
Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου
Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και
Σύστημα Πλεονάσματος. Αναπαράσταση Πραγματικών Αριθμών. Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος Αναπαράσταση Πραγματικών Αριθμών Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 1: Εισαγωγή σε βασικές έννοιες δυαδικού συστήματος Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07
ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό
1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα
1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών πράξεων
Λογική Σχεδίαση Ψηφιακών Συστημάτων
Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδικοί Αριθμοί Η γενική αναπαράσταση ενός οποιουδήποτε
Αριθμητικά Συστήματα Κώδικες
Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 4 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 4 ο Μάθημα Λεωνίδας λεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση τους Τέλος, στη δημιουργία των αριθμητικών συστημάτων:
Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Σύστημα Πλεονάσματος και Αναπαράσταση Αριθμών Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος και Αναπαράσταση Αριθμών Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση θετικών και αρνητικών ακεραίων σε έναν
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 12
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 12 17 Οκτωβρίου, 2006 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ακαδημαϊκό Έτος 2010-2011 Επιμέλεια Ξενοφών Βασιλάκος Περιεχόμενα Φροντιστηρίου 1. Κωδικοποίηση και Δυαδική Αναπαράσταση 2. Κωδικοποίηση ASCII Κωδικοποίηση Unicode Εισαγωγή
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 2: Αναπαράσταση Δεδομένων Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Κωδικοποίηση & Αποκωδικοποίηση
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 4 : Πράξεις με bits Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ
Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή
Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:07 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:
Δεδομένα & Αναπαράσταση Πληροφορίας
Προγραμματισμός Η/Υ Ι Δεδομένα & Αναπαράσταση Πληροφορίας ΕΛΕΥΘΕΡΙΟΣ ΚΟΣΜΑΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2018-2019 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περίληψη Σήμερα... θα μιλήσουμε για δεδομένα, ψηφιακά δεδομένα και
Μαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Τμήμα Μαθηματικών, ΕΚΠΑ. Ακαδ. έτος
½ ½ ÈÐ ÖÓ ÓÖ Á Javaµ Τμήμα Μαθηματικών, ΕΚΠΑ Ακαδ. έτος 2007 2008 ¾ È Ö Õ Ñ ÒÓ Ñ Ñ ØÓ Εισαγωγή στην πληροφορική με έμφαση σε: αρχιτεκτονική και αριθμητική υπολογιστών αλγοριθμική επίλυση προβλημάτων βασικές