Δυαδικη παρασταση αριθμων και συμβολων
|
|
- Ζήνων Γεννάδιος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a 0 r 0 +a -1 r -1 +a -2 r a -m r -m Αν r = 10 (Δεκαδικο) a i =0,1,2,,9 (345) 10 = Aν r = 2 (Δυαδικο) a i = 0,1 (binary digits ή bits) (1001) 2 = = (9) 10 Aν r = 8 (Οκταδικο) a i = 0,1,,7 (345) 8 = = (229) 10 Aν r=16 (Δεκαεξαδικο) a i = 0,1,,9,A,B,C,D,E,F (5AD) 16 = = (1453) 10
2 Γιατι δυαδικο συστημα?? Πλεονεκτηματα του δυαδικου συστηματος: Ευκολη η αποθηκευση (δυο καταστασεις) Απληηεπεξεργασια Μεγαλύτερη ανοχή στο θόρυβο Μειονεκτημα Το μεγαλυτερο πληθος ψηφιων για την παρασταση δεδομενου αριθμου
3 Μετατροπη Δυαδικου Δεκαδικο Ακεραιος δυαδικος (a n a n-1 a 1 a 0 ) 2 = a n 2 n +a n-1 2 n-1 + +a (11010) 2 = = (26) 10
4 Μετατροπη Δυαδικου Δεκαδικο Κλασματικος δυαδικος (0.a -1 a -2 a -m ) 2 = a a -m+1 2 -m+1 +a -m 2 -m (0.1101) 2 = =1/2 +1/4 +1/16 =13/16 =0.8125
5 Μετατροπη Δεκαδικου Δυαδικο Ακεραιος δεκαδικος (11) 10 = (a n a n-1 a 0 ) 2 = =a n 2 n + a n-1 2 n-1 + +a a = =(((a n 2+a n-1 ) 2+a n-1 )2 +a 1 )2 + a 0 11/2: πηλικο=5, υπολοιπο=1, 5/2: πηλικο=2, υπολοιπο=1, 2/2: πηλικο=1, υπολοιπο=0, 1/2: πηλικο=0, υπολοιπο=1. (11) 10 = ( ) 2
6 Μετατροπη Δεκαδικου Δυαδικο Κλασματικος δεκαδικος (0.81) 10 =(0.a -1 a -2 a -m ) 2 = =a a a -m 2 -m = = (a -1 + (a -2 +a -3 (a (a -m 2-1 ) 2-1 )2-1 ) ) x2= x2= x2= x2= = x2= x2= x2= x2=
7 Γενικος τυπος μετατροπης μεταξυ αριθμητικων συστηματων (a n a n-1 a 1 a 0 ) r = (b m b m-1 b 1 b 0 ) ρ a n r n +a n-1 r n a 1 r 1 +a 0 = b m ρ m +b m-1 ρ m-1 + +b 1 ρ 1 +b 0 a 0 +r ( a 1 + r(a n-1 +r a n ))) = b 0 +ρ( b 1 + +ρ( b m-1 +ρ b m ))))
8 Δυαδικο σε Οκταδικο a 0 +a a a a a a a a a = = a 0 +a a (a 3 +a a ) (a 6 +a a )+2 9 ( = = (a 0 +a a ) + (a 3 +a a ) (a 6 +a a )8 2 + = = b b b (11101) 2 = [(011) 2 (101) 2 ] 8 = (35) 8 =(29) ( ) 2 =[ 0. (110) 2 (011) 2 (110) 2 ] 8 = (0.636) 8 = (0.81) (35) 8 = [(011) 2 (101) 2 ] 8 = (0.636) 8 =
9 Δυαδικο σε Δεκαεξαδικο a 0 +a a a a a a a a a = = (a 0 +a a a ) + (a 4 +a a a ) (a 8 +a a a ) = = b b b (101101) 2 = [(0010) 2 (1101) 2 ] 16 = (2D) 8 =(45) 10 2 D ( ) 2 =[ 0. (1100) 2 (1111) 2 ] 16 = (0.CF) 16 = ( ) 10 C F
10 Δυαδικη Αριθμητικη Προσθεση : 0+0=0, 0+1=1, 1+0=1 1+1 = 10 (Αθροισμα =0, κρατουμενο=1) = 11 (Αθροισμα=1, κρατουμενο =1) κρατουμενα
11 Δυαδικη Αριθμητικη Αφαιρεση: 0-0=0, 1-0=1, 1-1=0, 0-1= υπολοιπο 1, δανεικο =1-1 δανεικο
12 Δυαδικη Αριθμητικη Πολλαπλασιασμος: 0 x 0 = 0, 0 x 1= 0, 1 x 0 = 0, 1 x 1 = x 11 x
13 Παρασταση αρνητικων αριθμων Η παρασταση των θετικων αριθμων ειναι ιδια σε ολα τα αριθμητικα συστηματα που θα εξετασουμε στην συνεχεια. Η κυρια διαφορα των αριθμητικων συστηματων εγκειται στον τροπο παραστασης των αρνητικων αριθμων. Τρια ειναι τα πιο διαδεδομενα συστηματα παραστασης αρνητικων αριθμων 1. Προσημο και μετρο 2. συμπληρωμα ως προς ΕΝΑ, και 3. συμπληρωμα ως προς ΔΥΟ. Παραδοχες: Υποθετουμε οτι το συστημα μας χειριζεται αριθμους με 4 δυαδικα ψηφια Μπορουμε να παραστησουμε 16 διαφορετικες τιμες με τα 4 bits. Περιπου οι μισες τιμες ειναι θετικες, καιοιυπολοιπεςαρνητικες
14 Παρασταση αρνητικων με μετρο και προσημο Δυο παραστασεις για το 0 +0=0000, -0=1000 Το περισσοτερο σημαντικο ψηφιο (MSB) ειναι το προσημο: 0= θετικος, 1=αρνητικος Τα τρια τελευταια bits ειναι το μετρο: απο το 0 (000) εως το 7 (111) Η περιοχη τιμων που παριστανονται με 4 bits= ± = ± 7. Η περιοχη τιμων που παριστανονται με n bits= ± 2 n-1 1. Δυσκολια στην εκτελεση της προσθεσης και της αφαιρεσης
15 Παρασταση αρνητικων με συμπληρωμα ως προς ενα Αν Ν ειναι ενας θετικος αριθμος, ο [Ν] 1 =(2 n -1) Ν ειναι το συμπληρωμα του ως προς ενα και ειναι ο αρνητικος του Ν. Παραδειγμα: για n=4 συμπληρωμα ως προς ενα του = = 0111 παρασταση του 7 = 1000 = [7] 1 Γρηγορη μεθοδος υπολογισμου του [Ν] 1 Απλα συμπληρωνουμε τα bits του Ν ,
16 Παρασταση αρνητικων με συμπληρωμα ως προς ενα Οι θετικοι και αρνητικοι αριθμοι σε μορφη συμπλ. ως προς 1 για n=4 H αφαιρεση εκτελειται προσθετοντας το συμπλ. ως προς 1 του αφαιρετεου. Και παλι δυο παραστασεις του 0!! Αυτο δημιουργει μερικα προβληματα
17 Παρασταση αρνητικων με συμπληρωμα ως προς δυο Μοιαζει με το συμπλ. ως προς 1 αλλα οι αρνητικοι εχουν μετατοπισθει μια θεση κατα την ωρολογιακη φορα. Μονο μια παρασταση για το 0 Οι αρνητικοι αριθμοι ειναι κατα εναν περισσοτεροι απο τους θετικους
18 Παρασταση αρνητικων με συμπληρωμα ως προς δυο Αν Ν ειναι ενας θετικος αριθμος, ο [Ν] 2 =2 n Ν ειναι το συμπληρωμα του ως προς δυο και ειναι ο αρνητικος του Ν στο συστημα αυτο. n=4 2 4 = Παραδειγμα 1ο: συμπλ. ως προς 2 του 7 7 = 0111 παρασταση του = Παραδειγμα 2ο: συμπλ. ως προς 2 του -7 = 1001 παρασταση του Γρηγορη μεθοδος υπολογισμου του συμπλ. ως προς 2 [Ν] 2 =2 n -N=(2 n -1)-N +1= [N] 1 +1 = συμπληρωμα ψηφιων του Ν + 1 [0111] 2 =[0111] 1 +1=1000+1=1001 (παρασταση του 7) [1010] 2 =[1010] 1 +1=0101+1=0110 = 6 => 1010 = 6
19 Προσθεση και Αφαιρεση Αριθμων Συστημα αριθμων «Μετρο και προσημο» Το προσημο του αποτελεσματος συμπιπτει με το προσημο των (-3) αριθμων Εαν διαφερουν τα προσημα κανουμε αφαιρεση και +(-3) το προσημο του αποτελεσματος εξαρταται απο το προσημο του αριθμου με την μεγαλυτερη απολυτη τιμη
20 Προσθεση και Αφαιρεση Αριθμων Συστημα αριθμων «Συμπληρωμα ως προς ενα» (-3) Επαναφορα κρατουμενου Επαναφορα κρατουμενου
21 Προσθεση και Αφαιρεση Αριθμων Συστημα αριθμων «Συμπληρωμα ως προς ενα» Γιατι γινεται η επαναφορα του κρατουμενου?? Ειναι ισοδυναμη με την αφαιρεση του 2 n και προσθηκη του 1 Για το Μ Ν όπου M > N εχουμε: [M N] 1 = M + [N] 1 = M + (2 n 1 N) = (M N) + 2 n 1 Για το ( Μ)+( Ν) όπου M+N < 2 n-1 [ M + ( N)] 1 = [M] 1 +[N] 1 = (2 n 1 M) + (2 n 1 N) = = 2 n + {2 n 1 (M + N)} 1 = μετα την επαναφορα κρατουμενου = 2 n 1 (M + N) =[(Μ+Ν)] 1 Η τελευταια εκφραση ειναι η σωστη παρασταση του (Μ + Ν) σε μορφη συμπληρωματος ως προς 1.
22 Προσθεση και Αφαιρεση Αριθμων Συστημα αριθμων «Συμπληρωμα ως προς δυο» (-3) Η απλουστευμενη προσθεση συντελει ωστε η μορφη του συμπληρωματος ως προς δυο να ειναι η συνηθεστερη μορφη παραστασης αρνητικων αριθμων
23 Προσθεση και Αφαιρεση Αριθμων Συστημα αριθμων «Συμπληρωμα ως προς δυο» Γιατι μπορουμε να αγνοησουμε το τελικο κρατουμενο?? Για το Μ Νοταν Μ> Ν [Μ Ν] 2 =Μ + [Ν] 2 = Μ + (2 n Ν) = 2 n + (Μ Ν) Αγνοωντας το κρατουμενο ειναι σαν να αφαιρουμε το 2 n Για το ( Μ) + ( Ν) οταν M+N 2 n-1 [( M)+( N)] 2 = [M] 2 + [N] 2 = (2 n M) + (2 n N) = 2 n (M + N) + 2 n Αγνοωντας το κρατουμενο βρισκουμε την σωστη παρασταση σε μορφησυμπληρωματοςωςπροςδυοτου (Μ + Ν)
24 Προσθεση και Αφαιρεση Αριθμων Υπερχειλιση (overflow) εχουμε οταν η προσθεση δυο ομοσημων αριθμων δινει ετεροσημο αριθμο. Παραδειγματα: Συστημα συμπλ. ως προς δυο, n= OVERFLOW NO OVERFLOW
25 Προσθεση και Αφαιρεση Αριθμων Overflow στο συστημα «συμπληρωμα ως προς δυο» n= = = +7
26 Συνοψη τροπων προσθεσης και αφαιρεσης δυαδικων αριθμων ΣΥΣΤΗΜΑ ΚΑΝΟΝΕΣ ΠΡΟΣΘΕΣΗΣ ΑΡΝΗΤΙΚΟΣ ΚΑΝΟΝΕΣ ΑΦΑΙΡΕΣΗΣ Μη προσημα- Προσθετουμε κανονικα Αφαιρουμε τον αφαιρετεο σμενοι αριθμοι Εχουμε υπερχειλιση αν Ν/Α απο τον μειωτεο υπαρχει τελικο κρατουμενο Το αποτελεσμα δεν ειναι αποδεκτο αν εχουμε τελικο δανεικο Προσημο/ Ομοσημοι: προσθετουμε τα Αλλαζουμε το Αλλαζουμε το προσημο /μετρο μετρα. Ιδιο προσημο. προσημο απο του αφαιρετεου, και Υπερχειλιση αν υπαρχει 0 (+) σε 1 (-) προσθετουμε κανονικα τελικο κρατουμενο Ετεροσημοι Αφαιρουμε το μικροτερο μετρο απο το μεγαλυτερο. Προσημο το προσημο του μεγαλυτερου
27 Συνοψη τροπων προσθεσης και αφαιρεσης δυαδικων αριθμων (2) ΣΥΣΤΗΜΑ ΚΑΝΟΝΕΣ ΠΡΟΣΘΕΣΗΣ ΑΡΝΗΤΙΚΟΙ ΚΑΝΟΝΕΣ ΑΦΑΙΡΕΣΗΣ Προσθετουμε ολα τα ψηφια Προσθετουμε το ΣΥΜΠΛΗΡΩΜΑ Επανεισαγουμε το τελικο Συμπληρωνουμε συμπληρωμα του ΩΣ ΠΡΟΣ 1 κρατουμενο. ολα τα bits του αφαιρετεου Εχουμε υπερχειλιση αν οι αριθμου. αριθμοι ειναι ομοσημοι και το αποτελεσμα ετεροσημο Προσθετουμε ολα τα ψηφια Προσθετουμε το ΣΥΜΠΛΗΡΩΜΑ Αγνοουμε το τελικο Συμπληρωνουμε συμπληρωμα του ΩΣ ΠΡΟΣ 2 κρατουμενο. ολα τα bits του αφαιρετεου Εχουμε υπερχειλιση αν οι αριθμου και αριθμοι ειναι ομοσημοι και προσθετουμε 1 το αποτελεσμα ετεροσημο
ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ
Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1
Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Περιεχόμενα Μαθήματος Συστήματα αρίθμησης Πύλες Διάγραμμα ροής-ψευδοκώδικας Python Συστήματα Αρίθμησης Δεκαδικό σύστημα Οι άνθρωποι χρησιμοποιούν το περίφημο «θεσιακό,
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λογική Σχεδίαση Ψηφιακών Συστημάτων
Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Σταμούλης Γεώργιος georges@uth.gr Δαδαλιάρης Αντώνιος dadaliaris@uth.gr Δυαδικοί Αριθμοί Η γενική αναπαράσταση ενός οποιουδήποτε
1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ. α i. (α i β i ) (1.3) όπου: η= το πλήθος ακεραίων ψηφίων του αριθμού Ν. n-1
1. ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ 1.1 Εισαγωγή Το δεκαδικό σύστημα (Decimal System) αρίθμησης χρησιμοποιείται από τον άνθρωπο και είναι κατάλληλο βέβαια γι αυτόν, είναι όμως εντελώς ακατάλληλο για τις ηλεκτρονικές
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 3. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Β Παράσταση Προσημασμένων
Ψηφιακά Συστήματα. 1. Συστήματα Αριθμών
Ψηφιακά Συστήματα 1. Συστήματα Αριθμών Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd Thomas L.,
Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης
Εισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα
ΠΛΗ21 Κεφάλαιο 2. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: Παράσταση Προσημασμένων Αριθμών Συμπληρώματα
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 2.3.4 Παράσταση Προσημασμένων Αριθμών Συμπληρώματα Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι ένας Συμπλήρωμα ενός αριθμού πρακτικά Τι είναι Συμπλήρωμα ως
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Αριθµητική υπολογιστών
Αριθµητική υπολογιστών Μιχάλης ρακόπουλος Υπολογιστική Επιστήµη & Τεχνολογία, #03 1 εκαδικό σύστηµα αρίθµησης Βάση το 10. 10 ψηφία: 0 1 2 3 4 5 6 7 8 9 1 δεκαδικό ψηφίο εκφράζει 1 από 10 πιθανές επιλογές
ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6
ΠΛΗΡΟΦΟΡΙΚΗ I Ενότητα 6 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Bits & Bytes Bit: η μικρότερη μονάδα πληροφορίας μία από δύο πιθανές καταστάσεις (ναι / όχι, αληθές / ψευδές, n / ff) κωδικοποίηση σε 0 ή 1 δυαδικό σύστημα
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Αριθμητικά Συστήματα. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Αριθμητικά Συστήματα Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αριθμητικά Συστήματα Δεκαδικό Σύστημα: Βάση το 10, ψηφία 10 και συντελεστές
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα
Αριθμητικά Συστήματα Κώδικες
Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και
Κεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή
Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5
2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. 2.1 Αριθμητικά συστήματα
2. ΑΡΙΘΜΗΤΙΚΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ 2.1 Αριθμητικά συστήματα Κάθε πραγματικός αριθμός χ μπορεί να παρασταθεί σε ένα αριθμητικό σύστημα με βάση β>1 με μια δυναμοσειρά της μορφής, -οο * = ± Σ ψ β " (2 1) η - ν
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Συστήματα αρίθμησης Δυαδικό αριθμητικό
1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί
Ψηφιακοί Υπολογιστές
1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία
Οργάνωση Υπολογιστών
Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Κωδικοποίηση & Αποκωδικοποίηση
Δυαδικό Σύστημα Αρίθμησης
Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 2. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Α 2 Τεχνολογία
! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς
Ψηφιακά Κυκλώματα Ι. Μάθημα 1: Δυαδικά συστήματα - Κώδικες. Λευτέρης Καπετανάκης
ΤΛ2002 Ψηφιακά Κυκλώματα Ι Μάθημα 1: Δυαδικά συστήματα - Κώδικες Λευτέρης Καπετανάκης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Άνοιξη 2011 ΤΛ-2002: L1 Slide 1 Ψηφιακά Συστήματα ΤΛ-2002:
Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς
Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση
Αριθμητικά Συστήματα Η ανάγκη του ανθρώπου για μετρήσεις οδήγησε αρχικά στην επινόηση των αριθμών Κατόπιν, στην επινόηση συμβόλων για τη παράσταση τους Κατόπιν, στην επινόηση συμβόλων για τη παράσταση
Αναπαράσταση Δεδομένων. ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Αναπαράσταση Δεδομένων ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Αναπαράσταση δεδομένων Κατάλληλη συμβολική αναπαράσταση δεδομένων, για απλοποίηση βασικών πράξεων, όπως πρόσθεση Πόσο εύκολο είναι
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 3 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version
Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε
11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Εισαγωγή στην επιστήμη των υπολογιστών
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 1: Εισαγωγή σε βασικές έννοιες δυαδικού συστήματος Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής
Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών
Εισαγωγή στην επιστήμη των υπολογιστών. Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση 3 Πρόσθεση στη μορφή συμπληρώματος ως προς δύο
Εισαγωγή στην Πληροφορική
Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ www.cslab.ece.ntua.gr Εισαγωγή στην
a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3
ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται
ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ. Τμήμα Πληρουορικής και Τεχμολογίας Υπολογιστώμ
ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΠΟΛΟΓΙΣΤΩΝ Αριθμητικά Συςτήματα Ζνασ αριθμόσ m-ψηφίων και βάςησ b, γράφεται ωσ μια ακολουθία m-ψηφίων. x = xm-1xm-2 x1x0 Όπου τα ψηφία xi ανήκουν ςτο διάςτημα 0 xi b-1 Ζτςι, η τιμή
Αριθμητικά Συστήματα
Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά
Αριθμητικά Συστήματα = 3 x x x x 10 0
Δεκαδικό Όταν αναφερόμαστε σε μία αριθμητική τιμή, απεικονίζουμε μία ποσότητα με ένα σύμβολο ή έναν συνδυασμό από σύμβολα. Το αριθμητικό σύστημα που χρησιμοποιούμε είναι το δεκαδικό. Αποτελείται από δέκα
10-δικό δικό
Προγραμματισμός Η/Υ - Ι Εαρινό Εξάμηνο 2018-2019 Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Αριθμητικά Συστήματα 1. Εισαγωγή Όπως γνωρίζουμε, οι υπολογιστές χρησιμοποιούν το δυαδικό σύστημα για την αναπαράσταση
Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα Επιλογή Αναπαράστασης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Σ ή. : υαδικά. Ε ό. ή Ενότητα
1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,
Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΕΡΓΑΣΙΑ 1: Ονοματεπώνυμο: Εξάμηνο: Ανασκόπηση στα ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Α.Μ: Έτος: 1. Το δεκαδικό σύστημα Είναι φανερό ότι οι χιλιάδες, εκατοντάδες, δεκάδες, μονάδες και τα δεκαδικά ψηφία είναι δυνάμεις
1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα
1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών πράξεων
Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών
Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά
Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Αλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί
Κεφάλαιο 1. B για κάθε 0 Ψ i (1-1)
Κεφάλαιο 1 Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν τα κύρια αριθμητικά συστήματα, οι αλγόριθμοι μετατροπής μεταξύ των συστημάτων για την κάθε μια περίπτωση, ο τρόπος εκτέλεσης των τεσσάρων βασικών πράξεων
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης
1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ
. A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση
Εισαγωγή στον Προγραμματισμό
Εισαγωγή στον Προγραμματισμό Ενότητα 3 Λειτουργίες σε Bits, Αριθμητικά Συστήματα Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Φύση υπολογιστών Η
αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.2.1 : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ. Στο δυαδικό σύστημα αρίθμησης, αντί για δεκάδες, εκατοντάδες με τις
Αθροιστές. Ημιαθροιστής
Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που
Αριθμητική Υπολογιστών (Κεφάλαιο 3)
ΗΥ 134 Εισαγωγή στην Οργάνωση και στον Σχεδιασμό Υπολογιστών Ι Διάλεξη 9 Αριθμητική Υπολογιστών (Κεφάλαιο 3) Νίκος Μπέλλας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων 1 Αριθμητική για υπολογιστές
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις
Μάθημα 2: Παράσταση της Πληροφορίας
Μάθημα 2: Παράσταση της Πληροφορίας 2.1 Παράσταση δεδομένων Κάθε υπολογιστική μηχανή αποτελείται από ηλεκτρονικά κυκλώματα που η λειτουργία τους βασίζεται στην αρχή ανοιχτό-κλειστό. Η συμπεριφορά τους
Κεφάλαιο 2 Κωδικοποίηση & Αποκωδικοποίηση
Κεφάλαιο 2 Κωδικοποίηση & Αποκωδικοποίηση Αριθµών & Χαρακτήρων Αποκωδικοποίηση Κωδικοποίηση Συστήµατα Αρίθµησης το υαδικό Μετατροπή από το ένα σύστηµα στο άλλο Η πρόσθεση & η αφαίρεση στο υαδικό H αφαίρεση
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ
Ενότητα 9 ΑΡΙΘΜΗΤΙΚΑ & ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Προσημασμένοι Ακέραιοι Δυαδικοί Αριθμοί Ημιαθροιστής - Ημιαφαιρέτης Πλήρης Αθροιστής - Πλήρης Αφαιρέτης Αθροιστής Διάδοσης Κρατούμενου Επαναληπτικές
ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 2
ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Ο κύκλος της πληροφορίας Η σηµασία της πληροφορίας Ο υπολογιστής (επεξεργασία-αποθήκευση) 2 Παράσταση δεδοµένων Αριθµητικά συστήµατα εκαδικό σύστηµα 3 υαδικό
Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Εισαγωγή στην επιστήµη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Αριθµητικό Σύστηµα! Ορίζει τον τρόπο αναπαράστασης ενός αριθµού µε διακεκριµένα σύµβολα! Ένας αριθµός αναπαρίσταται διαφορετικά σε κάθε σύστηµα,
Αρχιτεκτονική Υπολογιστών. Data. Κείμενο. Βίντεο. Αριθμοί Εικόνες. Ήχοι
Data Κείμενο Βίντεο Αριθμοί Εικόνες Ήχοι 1 Τα δεδομένα στους ηλεκτρονικούς υπολογιστές αναπαρίστανται σαν αριθμοί Οι αριθμοί αποθηκεύονται σε bits (δυαδικό σύστημα). Θέματα: Πως αναπαριστώνται οι αρνητικοί
1.4 Αριθμητική υπολογιστών και σφάλματα
Γ. Γεωργίου, Αριθμητική Ανάλυση 1.4 Αριθμητική υπολογιστών και σφάλματα Στην παράγραφο αυτή καλύπτουμε πρώτα γενικά το θέμα της αριθμητικής υπολογιστών και στην συνέχεια διαπραγματευόμαστε την έννοια του
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 2: Αναπαράσταση Δεδομένων Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας
ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ ΔΙΑΡΚΕΙΑ: 1 περιόδους 22/1/2010 10:11 καθ. Τεχνολογίας 22/1/2010 10:12 Παραδείγματα Τι ονομάζουμε αριθμητικό σύστημα? Το σύνολο από ψηφία (αριθμοί & χαρακτήρες). Που χρησιμεύουν
Υπολογιστές και Πληροφορία 1
ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Σκοπός του μαθήματος Λογικός Σχεδιασμός και Σχεδιασμός Η/Υ Εισαγωγή, Υπολογιστές και Πληροφορία Διδάσκουσα: Μαρία Κ. Μιχαήλ Βασικές έννοιες & εργαλεία που χρησιμοποιούνται
ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ
Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 2 Αριθµητικά Συστήµατα και Αριθµητική Υπολογιστών Γιώργος Γιαγλής Περίληψη Κεφαλαίου
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη
Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)
Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά
Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα
2 κεφάλαιο Aριθμητικά συστήματα και κώδικες Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα τα οποία επεξεργάζονται δυαδικά ψηφία 0 και 1, όμως στην πράξη πολύ λίγα πραγματικά προβλήματα βασίζονται
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 12
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 12 17 Οκτωβρίου, 2006 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ
Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 Αριθμητικές Πράξεις σε Ακέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 11
ΗΜΥ Εισαγωγή στην Τεχνολογία ιάλεξη 11 13 Οκτωβρίου, 6 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.ntua.gr/ml23021/ 4 ο Μάθημα Λεωνίδας λεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Στα προηγούμενο μάθημα Συστήματα
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης
1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα
ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΚΩ ΙΚΕΣ
1 ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΚΩ ΙΚΕΣ 2 Σκοπός Μέθοδοι παράστασης και ερµηνείας των ψηφιακών δεδοµένων στα υπολογιστικά συστήµατα ιάφορα αριθµητικά συστήµατα που χρησιµοποιούνται στους υπολογιστές και επεξήγηση
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 5 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 5 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Chapter 3. Αριθμητική Υπολογιστών. Έβδομη (7 η ) δίωρη διάλεξη. Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L.
Η διασύνδεση Υλικού και λογισμικού David A. Patterson και John L. Hennessy Chapter 3 Αριθμητική Υπολογιστών Έβδομη (7 η ) δίωρη διάλεξη. Διαφάνειες διδασκαλίας από το πρωτότυπο αγγλικό βιβλίο (4 η έκδοση),
7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.
ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης