Symmetry Group Theorem of the Lin-Tsien Equation and Conservation Laws Relating to the Symmetry of the Equation. Xi-Zhong Liu.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Symmetry Group Theorem of the Lin-Tsien Equation and Conservation Laws Relating to the Symmetry of the Equation. Xi-Zhong Liu."

Transcript

1 CHINESE JOURNAL OF PHYSICS VOL. 51, NO. 6 December 01 Symmery Group Theorem of he Lin-Tsien Equaion and Conservaion Laws Relaing o he Symmery of he Equaion Xi-Zhong Liu and Jun Yu Insiue of Nonlinear Science, Shaoxing Universiy, Shaoxing 1000, China (Received November 1, 01; Revised March 6, 01) We derive he symmery group heorem for he Lin-Tsien equaion by using he modified CK direc mehod, from which we obain he corresponding symmery group. Conservaion laws corresponding o he Kac-Moody-Virasoro symmery algebra of he Lin-Tsien equaion are obained up o second order group invarians. DOI: 10.61/CJP PACS numbers: 0.0.Jr, ab, 0.0.Ik I. INTRODUCTION Conservaion laws which originae in mechanics and physics play an imporan role in physics and mahemaics. Nonlinear parial differenial equaions (NPDEs) ha admi conservaion laws arise in many disciplines of he applied sciences including physical chemisry, fluid mechanics, paricle and quanum physics, plasma physics, elasiciy, gas dynamics, elecromagneism, magneohydro-dynamics, nonlinear opics, and he bio-sciences. Especially in solion heory conservaion laws have many significan uses, paricularly wih regard o inegrabiliy and linearizaion, he analysis of soluions, and numerical soluion mehods. Furhermore, compleely inegrable NPDEs [1, ] admi infiniely many independen conservaion laws. Besides, finding he symmery of NPDEs is also very imporan (see, e.g., Refs. [ 6]). The mahemaical foundaions for he deerminaion of he full group for a sysem of differenial equaions can be found in Ames [7] and Bluman and Cole [8], and he general heory is found in Ovsiannikov [9]. Among hem, he modified CK direc mehod [10, 11] is an effecive mehod for finding symmeries [1, 1], and one advanage of his mehod is ha one can easily obain he relaionship beween new exac soluions and old ones of he given NPDEs. A conservaion law is closely conneced wih a symmery, and his connecion is given by he famous Noeher heorem. In he classical Noeher heorem [14], if a given sysem of differenial equaions has a variaional principle, hen a coninuous symmery ha leaves invarian he acion funcional o wihin a divergence yields a conservaion law [15 18]. The Noeher heorem has been he only general device allowing one, in he class of Euler- Lagrange equaions, o reduce he search for conservaion laws o a search for symmeries. In he las few years, effecive mehods have been devised for finding conservaion laws for he very special class of so-called Lax equaions. In 000, Kara [19] presened he Elecronic address: liuxizhong1@16.com hp://psroc.phys.nu.edu.w/cjp 111 c 01 THE PHYSICAL SOCIETY OF THE REPUBLIC OF CHINA

2 11 SYMMETRY GROUP THEOREM TO THE LIN-TSIEN... VOL. 51 direc relaionship beween he conserved vecor of a PDE and he Lie-Bäcklund symmery generaors of he PDE, from which i is possible for us o obain conservaion laws from symmeries (see, e.g. [0]). The Lin-Tsien equaion [1] u x + u x u xx u yy = 0, (1) where he variable u u(x, y, ) is a velociy poenial, is known as a compleely inegrable model. I has been widely used o sudy dynamic ransonic flow in wo space dimensions, plasma physics, opics, condensed maer physics, ec. In he presen reamen of he Lin-Tsien equaion, our principal aims are o examine is symmery groups horoughly and hen o find he implicaions of hese symmeries as regards o conservaion laws. This paper is organized as follows. In Secion II, we derive he symmery group heorem for he Lin-Tsien equaion by using he modified CK direc mehod, hen he corresponding Lie poin symmery groups and infinie dimensional Kac-Moody-Virasoro (KMV) symmery algebra [] are obained sraighforwardly. As a comparison, we also derive he Lie poin symmery groups by he radiional Lie approaches and he resul shows ha boh mehods produce he same resuls. In Secion III, we firs review some basic noions abou Lie-Bäcklund operaors and hen using his we finally obain conservaion laws of he infinie dimensional Kac-Moody-Virasoro symmery algebra ha he Lin-Tsien equaion possesses up o second order group invarians. I is emphasized ha equaions wih he same symmeries may possesses he same ypes of conservaion laws. The las secion is a shor summary and discussion. II. TRANSFORMATION GROUP BY THE DIRECT METHOD AND KAC- MOODY VIRASORO STRUCTURE OF THE LIE POINT SYMMETRY ALGEBRA To find he complee poin symmery ransformaion group of (1), one should find he general ransformaions in he following form u = U(x, y,, F (ξ, η, τ)), () where ξ, η, and τ are funcions of x, y, and should be deermined by requiring ha F (ξ, η, τ) saisfies he same (+1)-dimensional equaion as u = u(x, y, ) wih he ransformaion {u, x, y, } {F, ξ, η, τ}, i.e., F τ,ξ + F ξ F ξξ F ηη = 0. () Forunaely, we can prove ha for he Lin-Tsien equaion i is enough o ake u = α + βf (ξ, η, τ), (4) insead of (), where α, β, ξ, η, and τ are funcions of {x, y, }. To prove he conclusion (4), one should submi he general expression () o Eq. (1). Afer eliminaing F ηη and heir higher derivaives via () and vanishing all he coefficiens

3 VOL. 51 XI-ZHONG LIU AND JUN YU 11 of he differen erms of he derivaives of he funcions F, one can ge many complicaed deermining equaions for he 4 funcions U U(x, y,, F (ξ, η, τ)), ξ, η, and τ. Two of hem read as ξ x η xu F F ξ = 0, τ x ξ xu F F τ = 0. For he reason ha U F should no be zero, and here is no nonrivial soluion for ξ x = 0, he only way o cause he coefficiens of F ξ and F τ o vanish is η x = 0, τ x = 0. (5) Under he condiion (5), he deermining equaion conaining F ξ is (U F ξ x η y)f ξ = 0. Solving he above equaion for U hen proves he conclusion ha assumpion (4) insead of he general one () is sufficien o find he general symmery group of he Lin-Tsien equaion. Now he subsiuion of (4) wih (5) ino he Lin-Tsien equaion leads o (β y η y + β x η βη yy )F η + ξ x β(ξ xx β + ξ x β x )F ξ + (β(ξ xβ + τ y ξ y τ ξ x )F ξξ +(β x βξ xx + β xξ x + βξ x β xx )F + βξ x + α x βξ xx + α x β x ξ x β y ξ y + βξ x α xx +β ξ x + β x ξ βξ yy )F ξ βτ y F ττ + (β x τ β y τ y βτ yy )F τ +(β x βξ xf + β(α x ξ x + ξ ξ x ξ y))f ξξ + β(η y + τ ξ x τ y ξ y )F ηη +β(η ξ x η y ξ y )F ξη + β x β xx F + (β x + β x α xx + α x β xx β yy )F +α x + α x α xx α yy βη y τ y F τη = 0. (6) Eq. (6) is rue for arbirary soluions F only when all he coefficiens of he polynomials of he derivaives of F are zero, which leads o a sysem of deermining equaions for ξ, η, τ, α, and β β y η y + β x η βη yy = 0, ξ x β(ξ xx β + ξ x β x ) = 0, (7) βξ x + α x βξ xx + α x β x ξ x β y ξ y + βξ x α xx + β ξ x + β x ξ βξ yy = 0, (8) β x βξ xx + β xξ x + βξ x β xx = 0, βτ y = 0, β x τ β y τ y βτ yy = 0, (9) (β x + β x α xx + α x β xx β yy ) = 0, β(η y + τ ξ x τ y ξ y ) = 0, (10) β(ξ xβ + τ y ξ y τ ξ x ) = 0, β x βξ x = 0, β(η ξ x η y ξ y ) = 0, (11) β x β xx = 0, β(α x ξ x + ξ ξ x ξ y) = 0, α x + α x α xx α yy = 0, (1)

4 114 SYMMETRY GROUP THEOREM TO THE LIN-TSIEN... VOL. 51 βη y τ y = 0. (1) I is sraighforward o obain he general soluions of he deermining equaions (7) (1). The resuls are ξ = τ 1 x + 1 y τ + τ yη 0 τ 1 + ξ 0, η = τ y + η 0, β = τ 1, (14) α = (6τ τ τ + 8τ + 9τ τ )y 4 81τ (η 0τ τ + η 0 τ τ η 0 τ + τη 0 )y τ 8 + (4τ + τ τ )x 9τ 4τ ξ 0 τ 6η 0 η 0 τ + 6ξ 0 τ + 5τ η0 y τ 7 + (η 0τ + η 0 τ )x + α τ 5 y τ x (ξ 0τ η0 )x + α τ τ 4 1, (15) where ξ 0 ξ 0 (), η 0 η 0 (), τ τ(), α 1 α 1 (), and α α () are arbirary funcions of ime. In summary, he following heorem holds: Theorem 1: If F = F (x, y, ) is a soluion of he Lin-Tsien equaion (1), hen so is u = (6τ τ τ + 8τ + 9τ τ )y 4 81τ (η 0τ τ + η 0 τ τ η 0 τ + τη 0 )y τ 8 + (4τ + τ τ )x 9τ 4τ ξ 0 τ 6η 0 η 0 τ + 6ξ 0 τ + 5τ η0 y τ 7 + (η 0τ + η 0 τ )x + α τ 5 y τ x (ξ 0τ η0 )x τ τ 4 +α 1 + τ 1 F (ξ, η, τ), (16) wih (14), where ξ 0, η 0, τ, α 1, and α are arbirary funcions of. Applying he heorem o some simple exac soluions wihou arbirary funcions, one may obain some ypes of novel generalized soluions wih some arbirary funcions. In he following, we jus presen one special soluion example.

5 VOL. 51 XI-ZHONG LIU AND JUN YU 115 Example 1. I is quie rivial ha he Lin-Tsien equaion (1) possesses a special simple soluion F = 1. (17) Using he ransformaion heorem on he above special soluion we have he following new special soluion of he Lin-Tsien equaion: u = (6τ τ τ + 8τ + 9τ τ )y 4 81τ (η 0τ τ + η 0 τ τ η 0 τ + τη 0 )y τ 8 + (4τ + τ τ )x 9τ 4τ ξ 0 τ 6η 0 η 0 τ + 6ξ 0 τ + 5τ η0 y τ 7 + (η 0τ + η 0 τ )x + α τ 5 y τ x (ξ 0τ η0 )x 1 + α τ τ τ. (18) In he radiional Lie group heory, one always ries o find he Lie poin symmeries firs and hen use Lie s firs fundamenal heorem o obain he symmery ransformaion group. Conversely, we are forunae o obain he symmery ransformaion group in he firs place by a simple direc mehod. Once he ransformaion group is known, he Lie poin symmeries and he relaed Lie symmery algebra can be obained sraighforwardly by a more simple limiing procedure. For he Lin-Tsien (1), he corresponding Lie poin symmeries can be derived from he symmery group ransformaion heorem by seing η 0 () = ϵh(), τ() = + ϵf(), ξ 0 () = ϵg(), α 1 () = ϵm(), α () = ϵn(), (19) wih ϵ being an infiniesimal parameer, hen (16) can be wrien as u = F + ϵσ(f ) + O(ϵ ), ( σ(f ) = g() + 1 f ()x + 1 ) ( f ()y + yh () F x + h() + ) f ()y F y +ff + 1 f ()F f xy 1 f x g ()x + m() +n()y 1 9 f y 4 h ()y g y h xy. (0)

6 116 SYMMETRY GROUP THEOREM TO THE LIN-TSIEN... VOL. 51 The equivalen vecor expression of he above symmery reads { V = f ()x + 1 ) f ()y x + f ()y y + f() f ()F f xy 1 f x 1 ) } 9 f y 4 F { + g() x + (g ()x + g y ) } { + yh () F x + h() y ( ) } { + h ()y + h xy m() } { n()y } F F F V 1 (f()) + V (g()) + V (h()) + V 4 (m()) + V 5 (n()). (1) Since he funcions f, g, h, m, and n are arbirary, he corresponding Lie algebra is an infinie dimensional Lie algebra. I is easy o verify ha he symmeries V i, i = 1,,, 4, 5 consiue an infinie dimensional Kac-Moody-Virasoro [] ype symmery algebra S wih he following nonzero commuaion relaions: [V 1 (f), V 4 (m)] = V 4 mf + fm ), () [V (g), V (h)] = V 5 ((hg gh + h g )), () [V 1 (f), V (h)] = V (fh ) hf, (4) [V 1 (f), V (g)] = V (g f 1 ) gf ), (5) [V (g 1 ), V (g )] = V 4 (g 1 g g 1 g ), (6) [V (h), V 5 (n)] = V 4 (hn), (7) [V 1 (f), V 5 (n)] = V 5 (f n + fn ), (8) [V 1 (f 1 ), V 1 (f )] = V 1 (f 1 f f f 1 ), (9) [V (h 1 ), V (h )] = V (h 1 h h h 1 ). (0)

7 VOL. 51 XI-ZHONG LIU AND JUN YU 117 I should be emphasized ha he algebra is infinie dimensional, because he generaors V 1, V, V, V 4, and V 5 all conain arbirary funcions. The algebra is closed because all he commuaors can be expressed by he generaors belonging o he generaor se, usually wih differen funcions, and he generaors conaining differen funcions belong o he se. Especially, i is clear ha he symmery V 1 (f) consiue a cenerless Virasoro symmery algebra. As a comparison, we now derive he Lie poin symmery of he Lin-Tsien equaion by he sandard Lie approach briefly. To sudy he symmery of Equaion (1), we search for he Lie poin symmery ransformaions in he vecor form V = X x + Y y + T + U u, where X, Y, T, and U are funcions wih respec o x, y,, u, which means ha (1) is invarian under he poin ransformaion {x, y,, u} {x + ϵx, y + ϵy, + ϵt, u + ϵu} wih infiniesimal parameer ϵ. In oher words, he symmery of he equaion (1) can be wrien as he funcion form σ = Xu x + Y u y + T u U, (1) where he symmery σ is a soluion of he linearized equaion for (1) σ x + σ x u xx + u x σ xx σ yy = 0, () which is obained by subsiuing u = u + ϵσ ino (1) and dropping he nonlinear erms in σ. I is easy o solve ou X(x, y,, u), Y (x, y,, u), T (x, y,, u), and U(x, y,, u) by subsiuing (1) ino (), and eliminaing u yy and is higher order derivaives by means of he Lin-Tsien equaion. Afer aking he consans as zero, we ge he resuls X(x, y,, u) = 1 T x + 1 T y + X y + Y, () Y (x, y,, u) = T y + X, (4) T (x, y,, u) = T (), (5) U(x, y,, u) = 1 x T 1 ut + xy T + xx y + xy y4 T + X y + Y y + Z 1 y + Z, (6)

8 118 SYMMETRY GROUP THEOREM TO THE LIN-TSIEN... VOL. 51 where X, Y, T, Z 1, and Z are arbirary funcions of. The vecor form of he Lie poin symmeries reads V = T + 1 ) ( ) T y + X y + Y x + T + X y + T + ut 1 x T xy T xx y xy 1 9 y4 T X y Y y Z 1 y Z ) u, (7) which is exacly he same as ha obained by he modified CK approach. III. CONSERVATION LAWS RELATED TO THE THE SYMMETRY (7) In order o obain conservaion laws relaed o he symmery (7), we need some basic noions abou Lie-Bäcklund operaors firs. A Lie-Bäcklund operaor is given by X 0 = ξ i x i + η u + ζ i + ζ i1 i u +, (8) i u i1 i where ξ i, η, and he addiional coefficiens are ζ i = D i (W ) + ξ j u ij, ζ i1 i = D i1 i (W ) + ξ j u ji1 i, (9) and W is he Lie characerisic funcion defined by W = η ξ j u j (40) wih D i being he operaor of oal differeniaion as D i = x i + u i u + u ij +, i = 1,, n, (41) u j u i = D i (u), u ij = D j D i (u). (4) These definiions and resuls relaing o Lie-Bäcklund operaor can be found in [], and he repeaed indices mean summaions, which is known as he Einsein summaion rule. Using Equaions (8) (4), we can calculae he nd-order Lie-Bäcklund operaor of he vecor field V defined by Equaion (7): ξ x = 1 xt + 1 T y + X y + Y, (4)

9 VOL. 51 XI-ZHONG LIU AND JUN YU 119 ξ y = yt + X, (44) ξ = T, (45) η = 1 ut + 1 x T + xy T + xx y + xy y4 T + X y + Y y + Z 1 y + Z, (46) ζ x = T u x + xt + y T + X y + Y, (47) ζ y = T u y + 4 T yx + xx y T + X y + 4Y y ( ) +Z 1 T y + X u x, (48) ζ = 4 T u 1 ut + 1 x T + xy T + xyx + xy y4 T + X y + Y y + Z 1, y + Z, xt + 1 ) ( ) y T + yx + Y u x yt + X u y, (49) ζ xx = u xx T + T, (50) ζ xy = 4 T u xy + 4 ( ) yt + X yt + X u xx, (51) ζ x = 5 T u x T u x + xt + y T + X y + Y xt + 1 ) ( ) y T + yx + Y u xx T y + X u xy, (5) ζ yy = 5 T u yy + 4 xt + 4 y T + 4X y + 4Y u xt ( ) yt + X u xy, (5)

10 1140 SYMMETRY GROUP THEOREM TO THE LIN-TSIEN... VOL. 51 ζ y = T u y T u y + 4 xyt + xx y T + X y ( ) ( ) +4yY + Z 1, yt + X u x yt + X u x xt + 1 ) ( ) y T + yx + Y u xy yt + X u yy, (54) ζ = 7 T u 5 T u 1 T u + 1 x T + xy T + xyx +xy y4 T + X y + Y y + Z 1, y + Z, xt + 1 ) y T + yx + Y u x xt + 1 y T ( ) ( ) +yx + Y )u x yt + X u y yt + X u y. (55) Correspondingly, he second order Lie-Bäcklund operaor is given by X 0 = ξ x x + ξy y + ξ + η u + ζ x + ζ y + ζ + ζ u u x u y u u xx +ζ xy + ζ x + ζ yy + ζ y + ζ. (56) u xy u x u yy u y u Theorem ([19], [4]): Suppose ha X 0 is a Lie-Bäcklund symmery of (1) such ha he conservaion vecor T = (T 1, T, T ) is invarian under X 0. Then X 0 (T i ) + T i D j ξ j j=1 T j D j (ξ i ) = 0, (i = 1,, ), (57) j=1 where D 1 = D x, D = D y, D = D, and ξ i are deermined by (56). A Lie-Bäcklund symmery X 0 is said o be associaed wih a conserved vecor T of (1) if X 0 and T saisfy relaions (57). Now we consruc he corresponding conservaion laws relaing o (7) in he form D x J 1 + D y J + D ρ = 0, (58) where T 1 = J 1, T = J, T = ρ wih J 1, J, and ρ being funcions of {x, y,, u, u x, u y,, u }. Of which ρ is called he conserved densiy, J 1 and J are he conserved currens associaed wih space dimensions x and y, respecively.

11 VOL. 51 XI-ZHONG LIU AND JUN YU 1141 In erms of T = (J 1, J, ρ), Eq. (57) is equivalen o he following hree equaions: xt + 1 ) ( ) J1 y T + yx + Y x + yt J1 + X y + T J ( ut + 1 x T + xy T + xyx + xy y4 T + ) X y + Y y J1 + Z 1 y + Z u ( + T u x + xt + ) [ J1 y T + X y + Y + T u y + 4 u x xyt + xx ) y T + X y + 4Y y + Z 1 ( yt + X u x ] J1 u y + [ 4 T u 1 ut + 1 x T + xy T + xyx + xy y4 T + X y + Y y + Z 1, y + Z, xt + 1 ) ( ) ] ( y T + yx + Y u x yt J1 + X u y + T u xx + ) u T J1 u xx [ + 4 T u xy + 4 ( ) ] [ yt + X yt J1 + X u xx + 5 u xy T u x T u x + xt + y T + X y + Y xt + 1 ) y T + yx + Y u xx ( ) ] [ yt J1 + X u xy + 5 u x T u yy + 4 xt + 4 y T + 4X y + 4Y u xt ( ) ] [ yt J1 + X u xy + u y T u y T + 4 u yy xyt + xx y T ( ) ( ) +X y + 4Y y + Z 1, yt + X u x yt + X u x xt + 1 ) ( ) ] [ y T + X y + Y u xy yt J1 + X u yy + 7 u y u T 5 u T 1 ut + 1 x T + xy T + xx y + xy y4 T + X y + Y y +Z 1, y + Z, xt + 1 ) y T + X y + Y u x xt + 1 y T ( ) ( ) ] +X y + Y )u x yt + X u y yt J1 + X u y + 5 u T J 1 ( X + ) yt J xt + 1 y T + yx + Y )ρ = 0, (59)

12 114 SYMMETRY GROUP THEOREM TO THE LIN-TSIEN... VOL. 51 xt + 1 ) ( ) J y T + yx + Y x + yt J + X y + T J ( + 1 ut + 1 x T + xy T + xyx + xy y4 T + ) X y + Y y J + Z 1 y + Z u ( + T u x + xt + ) [ J y T + X y + Y + T u y + 4 u x xyt + xx + 4 ( ) ] 9 y T + X y + 4Y y + Z 1 yt J + X u x u y [ + 4 T u 1 ut + 1 x T + xy T + xyx + xy y4 T + X y + Y y + Z 1, y + Z, xt + 1 ) y T + yx + Y u x ( ) ] ( yt J + X u y + T u xx + ) u T J u xx [ + 4 T u xy + 4 ( ) ] yt + X yt J + X u xx u xy [ + 5 T u x T u x + xt + y T + X y + Y xt + 1 ) ( ) ] [ y T + yx + Y u xx yt J + X u xy + 5 u x T u yy + 4 xt + 4 y T + 4X y + 4Y ( ) ] u xt yt J + X u xy u yy [ + u y T u y T + 4 xyt + xx y T + X y + 4Y y + Z 1, ( ) ( ) ( 1 yt + X u x yt + X u x xt + 1 ) y T + X y + Y u xy ( ) ] [ yt J + X u yy + 7 u y u T 5 u T 1 ut + 1 x T + xy T +xx y + xy y4 T + X y + Y y + Z 1, y + Z, xt + 1 ) y T + X y + Y u x xt + 1 ) y T + X y + Y u x ( ) ( ) ] yt + X u y yt J + X u y + 4 ( ) u T J yt + X ρ = 0, (60)

13 VOL. 51 XI-ZHONG LIU AND JUN YU 114 xt + 1 ) ( ) ρ ρ y T + yx + Y x + yt + X y + T ρ ( + 1 ut + 1 x T + xy T + xyx + xy y4 T + ) ρ X y + Y y + Z 1 y + Z u ( + T u x + xt + ) [ ρ y T + X y + Y + T u y + 4 u x xyt + xx ) y T + X y + 4Y y + Z 1 ( yt + X u x ] ρ u y + [ 4 T u 1 ut + 1 x T + xy T + xyx + xy y4 T + X y + Y y + Z 1, y + Z, xt + 1 ) ( ) ] ρ y T + yx + Y u x yt + X u y u ( + T u xx + ) [ ρ T + 4 u xx T u xy + 4 ( ) ] ρ yt + X yt + X u xx u xy [ + 5 T u x T u x + xt + y T + X y + Y xt + 1 ) ( ) ] ρ y T + yx + Y u xx yt + X u xy u x [ + 5 T u yy + 4 xt + 4 y T + 4X y + 4Y ( ) ] ρ u xt yt + X u xy u yy [ + u y T u y T + 4 xyt + xx y T + X y + 4Y y + Z 1, ( ) ( ) ( 1 yt + X u x yt + X u x xt + 1 ) y T + X y + Y u xy ( ) ] [ ρ yt + X u yy + 7 u y u T 5 u T 1 ut + 1 x T + xy T +xx y + xy y4 T + X y + Y y + Z 1, y + Z, xt + 1 ) y T + X y + Y u x xt + 1 ) y T + X y + Y u x ( ) ( ) ] ρ yt + X u y yt + X u y + T ρ = 0. (61) u The soluions J 1, J, and ρ of (59) (61) can be direcly found: ρ = f 0 ()K 1 ( 1,,,, 1 ), (6) J = [f 1 () + f ()y]k 1 ( 1,,,, 1 ) + f ()K ( 1,,,, 1 ), (6) J 1 = [f 4 () + f 5 ()x + f 6 ()y + f 7 ()y ]K 1 ( 1,,,, 1 ) +[f 8 () + f 9 ()y]k ( 1,,,, 1 ) + f 10 ()K ( 1,,,, 1 ), (64)

14 1144 SYMMETRY GROUP THEOREM TO THE LIN-TSIEN... VOL. 51 where K 1, K, and K are arbirary funcions of { 1,,,, 1 }, and f i, i = 0, 1,, 10 are funcions fixed by f 0 = T 1, (65) f 1 = XT, f = T T, f = T 4, (66) f 4 = Y T, f 5 = 1 T T, f 6 = X T, f 7 = 1 T T, f 8 = XT 7, f9 = T T 7, f10 = T 5, (67) wih he invarians being 1 = T y X1, (68) = T 1 x 1 T 4 T y T 4 Xy Y1, (69) = 1 T T x T 8 y 4 T T y Y 5 T 8 yx T yy +T 5 xx T xy + 9 T 5 y 4 T T T 5 y X T T 5 y XT T yxx + 4 T 5 yxxt T xy T 1 9 T y 4 T T y X 0 7 T 8 y XT T 5 xy T +T 5 y XX 5 T 8 y X T + 4 T 5 y T Y + 4T 5 yxy +ut Y, (70) 4 = u x T T 1 T x T 4 y T T 1 y T T 1 yx + 4 T 4 yxt + X T 4 Y T 1, (71) 5 = T u x y + T 1 xxt T 1 xyt 4 xyt T 1 y T T + 4 T 1 y X T + T 1 y XT 8 9 T y XT + T 1 yxx 4 T yx T + 4 T 1 yy T + XT 1 Y + Xu x xx 4 9 y T y X 4yY X T + u y T Y T y T, (7)

15 VOL. 51 XI-ZHONG LIU AND JUN YU = 1 9 T 1 (9u T 9Z + 9u y X + 9Y u x T y 4 T x 18Y y 9Z 1 y 18Y x + T u 6X y + 6u y T y + T xu x 6xy T +T y u x + 9yu x X 18xX y), (7) 7 = u xx T T, (74) 8 = 1 9 T (9uxy T + 9u xx T X + 6u xx yt T + 4yT 1yT T 18T X + 6XT ), (75) 9 = 1 T (ux T + u xy X + u xy yt + u xx Y + u xx yx y T +u xx xt + u xx y T xt 6Y + u x T 6X y), (76) 10 = 1 7 T 4 (7uyy T + 54u xy T X + 6u xy yt T + 7u xx X T +6u xx yt XT + 1u xx y T T 108T Y 18X T + 6T Y T +18T T u x + 1xT T 6xT T 8y T + 1y T T T 6y T T 108yT X + 6yT X T 4yXT ), (77) 11 = u y T Z 1 T + u xy X XY u xyt + u xxt 4 yy T + u x T X + u yy T X + u x T X u xyy T xxt y XT yxx 4 9 y T T 4 y X T xt X y T X 4 9 y T T 4yT Y + u xy T Y +u xx XY + 1 T T u xy x + u xy yt X + 1 u xyy T T 4 xyt T + u xyt T + u xx yxx + u xxyt Y + 1 u xxy XT + u xxy T X + 4 u xyyxt 4 9 xyt T + 9 u xxy T T + 1 u xxxxt + 9 u xxxyt + T T u yy y + u xt T y + T T u y, (78)

16 1146 SYMMETRY GROUP THEOREM TO THE LIN-TSIEN... VOL. 51 where 1 = 1 9 T 1 (9Z, T 9Z 1 X + ut + 15u x yx T + 9u T + 9u yy X + 9u xx Y +15u T T 18Y Y + 18u y T X + 18u x T Y 6y T Y 6y T Y +ut T 18y T Y 6y T X 18xT Y T y 4 T T x T 14y X T 4y XT 18xXX 6xT Y 18y X X 0y Y T +9u xx y X 6y T X 6y T X y 4 T T y 4 T T x T T +u xx y 4 T + 18u xy XY + u xx x T + 4u yy y T 18yY X 6yXY xy T 18y XX Z T + u xx xy T T + 6u xx xyt X 9yT Z 1, +9u y T X + 9u x T Y 1xY T + 1u y XT + 9u x XX + 9u x T Y 18yY X 9yZ 1 T + u x xt + 8u y yt + 9u x yt X + 6u x y T T + 6u x xt T +1u y yt T 18xyT X + T u x y T + 18u x yt X + u x xt T +6u y yt T 6T xy T + 1u xy y T X + 6u xy y XT + 6u x yxt +4u xy xyt + 4u xy y T T + 6u xy xxt + 1u yy yxt + 6u xx xy T +6u xx y T X + 18u xx yy X 4xyX T 6xyX T 1xyXT +7u x y T T 1xy T T + 6u xx y Y T + 18u xy yxx + 1u xy yy T ), (79) X 1 = XT 5, (80) Y 1 = T 7 X + T 4 Y, (81) Y = Z 1, (8) Y = T 11 (15Y X T 6Y T + Z T 5X 4 XY T ). (8) To deermine he funcions of K 1, K, and K, we subsiue (6), (6), and (64) ino (58) which yields a complicaed equaion: J 1,x + J 1,u u x + J 1,ux u xx + J 1,uy u xy + J 1,u u x + J 1,uxx u xxx +J 1,uxy u xxy + J 1,ux u xx + J 1,uyy u xyy + J 1,uy u xy + J 1,u u x +J,y + J,u u y + J,ux u xy + J,uy u yy + J,u u y + J,uxx u xxy +J,uxy u xyy + J,ux u xy + J,uyy u yyy + J,uy u yy + J,u u y +ρ + ρ u u + ρ ux u x + ρ uy u y + ρ u u + ρ uxx u xx + ρ uxy u xy +ρ ux u x + ρ uyy u yy + ρ uy u y + ρ u u = 0. (84) To solve he complicaed equaion (84), we begin from he highes derivaives of u for K 1, K, and K being {u xxx, u xxy,, u } independen. Leing he coefficiens of

17 VOL. 51 XI-ZHONG LIU AND JUN YU 1147 {u xxx, u xxy,, u } be zero, we can ge a more simplified equaion. For example, he erm of u in (84) is where K i, n j case is T K 1,1 u, (85) = j K n. There is no nonrivial soluion for K j 1,1 0, hus he only possible i K 1,1 = 0, i.e., K 1 K 1 ( 1,,, 11 ). (86) Under (86), he coefficien of u y is T 8 (K,1 + K 1,11 ), (87) which leads o he only possible soluion K ( 1,,,, 1 ) = 1 K 1,11 + K 1 ( 1,,,, 11 ), (88) wih K 1 ( 1,,,, 11 ) being an undeermined funcion of he indicaed variables. Like he procedure o eliminae u and u y, vanishing he erms of u xxx, u xxy,, u yyy resuls in K 1 = (F 8 + F 7 + F 10 ) 11 + (F F 11 + F 9 ) 10 +(F 4 8 F ) 9 F (F 5 + F 6 ) 8 + F F 14, (89) K = (F 8 F 7 F 10 ) 1 + (F 1 7 F 9 F 11 ) F + (F 5 + F 1 8 ) 9 + F F F 1, (90) K = (F F F 4 ) 1 + F 11 + (F 1 8 F 9 F 5 F 6 ) 11 + (F 1 9 F 9 ) 10 F 7 8 F F 1, (91) wih 14 equaions o be saisfied: F 1, 6 + F 7,5 F 9,4 = 0, F,4 + F 1,6 F,5 = 0, F 8, 6 + F 1,4 + F 7,1 + F 7, 5 = 0, F 4,4 + F 8,6 F, 5 F,1 = 0, F 9, + F 1,5 F 9, 4 + F 11, 6 = 0, F 11,6 + F, + F 10,5 + F, 4 = 0, F 10,1 F 4, 4 + F 14,6 F 10, 5 F 4, = 0, F 1,1 + F 1, 4 + F 1, 5 + F 14, 6 + F 1, = 0, F 5,5 F 11,4 + F 1, 4 + F 1, F, 6 + F 9,6 = 0, F 14,4 + F 5, 5 + F 5,1 + F 1,6 F 8, 4 F 8, + F 4, 6 = 0, F 8,5 F 7,6 + F 5,4 + F 1, 5 F, 6 + F 6,4 + F 1,1 = 0, F 4,5 + F, 5 F 10,4 + F,1 + F, 4 + F 6,6 + F 5,6 + F, = 0, (F 5, + F 6, ) 6 + F 9,1 F 7, 4 + F 1,5 + F 9, 5 + F 1,4 F 7, = 0, F 10, 6 (F 6, + F 5, ) 4 + F 1,6 + F 14,5 F 11,1 F 5, F 11, 5 F 6, = 0, (9)

18 1148 SYMMETRY GROUP THEOREM TO THE LIN-TSIEN... VOL. 51 where F i, i = 1,, 14 are funcions of { 1,,, 4, 5, 6 }. Forunaely he equaions are a linear sysem, which is sraighforward o solve. For simpliciy, we jus lis he final soluions: K 1 = (α,6 7 + α 5,6 α 1,5 6 8 ) 11 + (α 1, (α 1,4 5 + α,5 + α 6,5 5 ) 7 +α 5,5 + α 7,5 5 + α 1, α 1, 5 ) 10 + (α,6 8 + α,6 ) 9 +(α 1,4 5 α,5 α 6,5 5 ) 8 + (α 5,4 + α 8,5 α 1,1 5 4 α, 5 α 1, 5 + α,5 α, ) 8 + ((α 6, 5 + α, α 10,4 4 ) 5 + α 6, 4 +α 11,4 + 4 α 6, 4 + α,4 α 7,4 4 + α 6, + α,1 + α 6,1 5 + α 8,4 ) 7 +(α 7, 5 α 10, 4 + α 15, 4 α 10, 4 + α 10, + α 5, ) 5 + 4α 6, +(α 1, + α 11, α 7, 4 + α 8, + α, + α 6, ) 4 + α 17 + α 5,1 + α 7,1 5 +α, + α 8, + α 10,1 + α 15,1 + α 6, α 7, 4 + α 11, + α 1,, (9) K = (α 1,5 6 8 α,6 7 α 5,6 ) 1 + (α 1, (α 1,4 5 α,5 α 6,5 5 ) 7 α 7,5 5 α 1, 5 4 α 1, 5 α 5,5 ) α,6 + ( 8 (α 1,4 5 + α,5 + α 6,5 5 ) 6 α 1, 6 + (α 6, 5 + α, ) 4 α 7,4 5 + α 9,6 α 1, α 5,4 + α 6, 5 +α 4,6 + α, ) 9 + α 4,5 8 + ((α 10,4 4 α, α 6, 5 α 1, 4 ) 6 + α 4,4 +α 9,4 + α 1,4 ) 7 + ((α 1, + α 10, 4 ) 4 α 10, α 5, α 7, 5 α 1, + α 10, 4 α 15, ) 6 + α 9, + α 4, + α 1, +(α 1, + α 14, + α 9, + α 4, ) 4 + α 14, α 16, + α 18, (94) K = (α 1, α,6 8 α,6 ) α 1,5 6 + ( 8 (α 1,4 5 + α,5 + α 6,5 5 ) α,6 9 4 α 6, 5 + α 1, + α 7, α 1, 6 α 4,6 α 6, 5 α 9,6 α,5 + α 1, α 1, 5 α 8,5 ) 11 + ((α 1,4 5 α,5 α 6,5 5 ) 9 α 4,5 ) 10 + ((α, α 6, 5 + α 10,4 4 ) 5 α,1 α,4 α 6, 4 α 6, α 8,4 + α 7,4 4 α 6,1 5 4 α 6, 4 α 11,4 ) 9 + ((α 10,4 4 + α, + α 6, 5 +α 1, 4 ) 6 α 4,4 α 9,4 α 1,4 ) 8 + ( 5 α 1, 4 α 6, α 6, α 8, α, α 10,1 4 α 11, α 1, + α 1,1 + α 7, 4 ) 6 + (α 9, α 4, α 1, α 14, ) 5 α 4,1 α 1,1 α 14,1 + α 16,1 α 9,1, (95) wih α i (i = 1,,, 5) being arbirary funcions of { 1,,, 4, 5, 6 }, α i (i = 6, 7, 8) being arbirary funcions of { 1,,, 4, 5 }, α 9 being arbirary funcion of { 1,,, 4, 6 }, α i (i = 10, 11, 1) being arbirary funcions of { 1,,, 4 }, α 1, α 14, α 15 being arbirary funcions of { 1,, }, α 16, α 17 being arbirary funcions of { 1, }, and α 18 is a funcion of. Subsiuing (9) (95) ino (6) (64), we can obain he conservaion laws of he Lin- Tsien equaion associaed wih he Lie-Bäcklund generaor X 0. We have verified ha he conserved vecor (J 1, J, ρ) really saisfied Eq. (58).

19 VOL. 51 XI-ZHONG LIU AND JUN YU 1149 IV. CONCLUSION AND DISCUSSION In his paper, by applying he modified CK direc mehod, we se up Theorem 1, which shows he relaionship beween new exac soluions and old ones of he (+1)-dimensional Lin-Tsien equaion. Using he ransformaion relaions we hen ge he corresponding KMV symmery algebra and he Lie poin symmery which coincide wih he resul generaed from he sandard Lie approach. We generae he conservaion laws of he Lin-Tsien equaion relaed o he infinie dimensional KMV symmery group by use of he Lie-Bäcklund generaor up o he second order group invarians. The exisence of arbirary funcions of he group invarians proves he Lin-Tsien equaion has infiniely many conservaion laws which connec wih he general Lie poin symmery (7). Though he symmeries and conservaion laws are obained from he Lin-Tsien equaion, he conservaion laws we derived only depended on he symmery which may be possessed by many equaions. Acknowledgemens This work was suppored by he Naional Naural Science Foundaion of China under Gran Nos ,117519, and he Naural Science Foundaion of Zhe Jiang Province of China (Gran No. Y ). References [1] M. J. Ablowiz and P. A. Clarkson, Solions, Nonlinear Evoluion Equaions and Inverse Scaering (Cambridge Universiy Press, Cambridge, 1991). [] M. J. Ablowiz and H. Segur, Solions and he Inverse Scaering Transform (SIAM, Philadelphia, 1981). [] R. X. Yao, X. Y. Jiao, and S. Y. Lou, Chin. Phys. B (009). [4] J. H. Li and S. Y. Lou, Chin. Phys. B 17, 747 (008). [5] M. Jia, Chin. Phys. B 16, 154 (007). [6] Y. F. Wang, S. Y. Lou, and X. M. Qian, Chin. Phys. B 19, 0 (010). [7] W. F. Ames, Nonlinear Parial Differenial Equaions in Engineering (Academic Press, New York, 197). [8] G. W. Bluman and J. D. Cole Similariy Mehods for Differenial Equaions (Springer, New York, 1974). [9] L. V. Ovsiannikov Group Analysis of Differenial Equaions (NAUKA, 1978). [10] H. C. Ma, Chin. Phys. Le., 554 (005). [11] S. Y. Lou, J. Phys. A: Mah. Gen. 8, 19 (005). [1] X. Y. Tang, Y. Gao, F. Huang, and S. Y. Lou, Chin. Phys. B 18, 46 (009). [1] X. Y. Jiao and S. Y. Lou, Chin. Phys. B 18, 611 (009). [14] E. Noeher Nachr. König. Gesellsch. Wiss. Göingen, Mah-phys. Klasse, 5 (1918). [15] E. Bessel-Hagen, Mah. Ann. 84, 58 (191). [16] N. H. Ibragimov, Transformaion groups applied o mahemaical physics (Reidel, Boson,

20 1150 SYMMETRY GROUP THEOREM TO THE LIN-TSIEN... VOL ). [17] P. J. Olver, Applicaions of Lie groups o differenial equaions (Springer, New York, 1986). [18] G. Bluman and S. Kumei, Symmeries and differenial equaions (Springer, New York, 1989). [19] A. H. Kara and F. M. Mahomed, In. J. Theor. Phys. 9, (000). [0] M. Jia, Y. Gao, and S. Y. Lou, Phys. Le. A 74, 1704 (010). [1] K. Oswaisch, Symposium Transonicum (Springer-Verlag, Berlin, 1964). [] P. Goddard and D. Olive Kac-Moody and Virasoro algebras, Advanced series in Mahmaical Physics (World Scienific, 1989). [] N. H. Ibragimov, A. H. Kara, and F. M. Mahomed, Nonlinear Dynam. 15, 115 (1998). [4] A. H. Kara and C. M. Khalique, In. J. Non-linear Mech. 6, 1041 (001).

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4, Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Linear singular perturbations of hyperbolic-parabolic type

Linear singular perturbations of hyperbolic-parabolic type BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions

Διαβάστε περισσότερα

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016 4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Representation of Five Dimensional Lie Algebra and Generating Relations for the Generalized Hypergeometric Functions

Representation of Five Dimensional Lie Algebra and Generating Relations for the Generalized Hypergeometric Functions Represenaion of Five Diensional Lie Algebra and Generaing Relaions for he Generalized Hypergeoeric Funcions V.S.BHAGAVAN Deparen of Maheaics FED-I K.L.Universiy Vaddeswara- Gunur Dis. A.P. India. E-ail

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

On Strong Product of Two Fuzzy Graphs

On Strong Product of Two Fuzzy Graphs Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Multiple positive periodic solutions of nonlinear functional differential system with feedback control

Multiple positive periodic solutions of nonlinear functional differential system with feedback control J. Mah. Anal. Appl. 288 (23) 819 832 www.elsevier.com/locae/jmaa Muliple posiive periodic soluions of nonlinear funcional differenial sysem wih feedback conrol Ping Liu and Yongkun Li Deparmen of Mahemaics,

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Riemann Hypothesis: a GGC representation

Riemann Hypothesis: a GGC representation Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

is the home less foreign interest rate differential (expressed as it

is the home less foreign interest rate differential (expressed as it The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Non-Markovian dynamics of an open quantum system in fermionic environments

Non-Markovian dynamics of an open quantum system in fermionic environments Non-Marovian dynamics of an open quanum sysem in fermionic environmens J. Q. You Deparmen of Physics, Fudan Universiy, Shanghai, and Beijing Compuaional Science Research Cener, Beijing Mi Chen (PhD suden

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Symmetric Complex Boundary Element Scheme for 2-D Stokes Mixed Boundary Value Problem

Symmetric Complex Boundary Element Scheme for 2-D Stokes Mixed Boundary Value Problem S. G. Hong / Elecronic Journal of Boundary Elemens, Vol. 3, No., pp. -32 26 Symmeric Complex Boundary Elemen Scheme for 2-D Sokes Mixed Boundary Value Problem Sun-Gwon Hong Insiue of Mahemaics, Academy

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface ANNALE POLONICI MAHEMAICI LIX.2 (1994 On local moion of a general compressible viscous hea conducing fluid bounded by a free surface by Ewa Zadrzyńska ( Lódź and Wojciech M. Zaja czkowski (Warszawa Absrac.

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα